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 Abstract—A new space mapping optimization algorithm for 

microwave design is presented. We implement a distributed fine 
model evaluation through independent processing of the fine model 
responses corresponding to consecutive frequency samples using a 
number of processors. This allows us to obtain a substantial 
reduction of the overall optimization time for the space mapping 
algorithm. When our technique is used together with previously 
published methods of reducing the computational cost of solving 
the parameter extraction and surrogate optimization sub-problems, 
the total optimization time of the microwave structure can be 
comparable to or less than a single fine model evaluation on a 
single processor. Illustration examples are provided. 

Index Terms—Computer-aided design (CAD), EM optimization, 
space mapping, surrogate modeling, parallel model evaluation. 

I. INTRODUCTION 
Space mapping (SM) addresses the problem of optimization of 

expensive functions, also called “fine” models, through iterative 
optimization and updating of the surrogate models which are 
built using cheaper “coarse” models [1]-[3]. In the microwave 
area, the “fine” model is typically implemented with a high 
fidelity CPU-intensive EM simulator. The “coarse” model can be 
an equivalent circuit of the corresponding device. SM proved to 
be successful in many engineering areas (e.g., [4]-[6]).  

A lot of effort has been devoted to improving the efficiency 
of SM optimization. Recent work includes: (i) introducing 
new algorithms and SM surrogate model types in order to 
reduce the number of fine model evaluations necessary to find 
a satisfactory solution (e.g., [1]-[3]); (ii) improving 
convergence properties of SM algorithms (e.g., [7]); and (iii) 
reducing the computational overhead of the parameter 
extraction and surrogate optimization sub-problems [8], [9]. 

Here we present a new implementation of SM optimization 
with distributed evaluation of the fine model, realized through 
independent processing of the fine model responses 
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corresponding to consecutive frequency samples using a 
number of machines. This allows parallelization of the fine 
model processing regardless of whether the fine model 
simulator has a multi-processor analysis capability or not. Also, 
it allows us to use any mixture of PCs, workstations and nodes 
of the computational cluster, if available. The new algorithm has 
been implemented within the SMF system [10], [11].  

II. SPACE MAPPING OPTIMIZATION ALGORITHM 

Let Rf denote the response vector of a fine model of the 
device of interest, which might be the evaluation of some 
characteristics of the device, e.g., |S21|, at a given set of 
frequencies. Our goal is to solve 

( )* arg min ( )f fU=
x

x R x  (1) 
where U is a given objective function. We consider an 
optimization algorithm that generates a sequence of points x(i), 
i = 0, 1, 2, …, and a family of surrogate models Rs

(i) , so that 
( )( 1) ( )arg min ( )i i

sU+ =
x

x R x  (2) 
Let Rc denote the response vector of the coarse model that 

describes the same object as the fine model: less accurate but 
much faster to evaluate. Surrogate models are constructed from 
the coarse model so that the misalignment between Rs

(i) and the 
fine model is minimized. Rs

(i) is defined as  
( ) ( )( ) ( , )i i
s s=R x R x p  (3) 

where 
sR  is a generic SM surrogate model, i.e., the coarse 

model composed with suitable SM transformations. 
( ) ( ) ( )

.0
argmin || ( ) ( , ) ||ii k k

i k f sk
w

=
= −∑p

p R x R x p  (4) 
is a vector of model parameters and wi.k are weighting factors. 
A variety of SM surrogate models is available [1]-[3], e.g., the 
input SM [1], in which the generic SM surrogate model takes 
the form ( , ) ( , , ) ( )s s c= = ⋅ +R x p R x B c R B x c . Typically, the 
starting point x(0) of the SM optimization algorithm is a coarse 
model optimal solution, i.e., x(0) = arg min{x : U(Rc(x))}. 

The space mapping optimization algorithm flow can be 
described as follows: 

Step 1 Set i = 0; 
Step 2 Evaluate the fine model to find Rf(x(i)); 
Step 3 Obtain the surrogate model Rs

(i) using (3) and (4); 
Step 4 Given x(i) and Rs

(i), obtain x(i+1) using (2); 
Step 5 If the termination condition is not satisfied go 

to Step 2; else terminate the algorithm; 
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Usually, the algorithm is terminated when it converges or 
when the maximum number of iterations is exceeded. 

A reduction of the computational cost of SM optimization can 
be obtain through a reduction in the number of fine model 
evaluations, a reduction in the computational overhead of 
parameter extraction and surrogate model optimization, or by 
decreasing the evaluation time for the fine model. The first two 
options have undergone significant research recently as 
described in the introduction. The last possibility, described in 
the next section, can be realized by a distributed evaluation of 
the fine model.  

III. DISTRIBUTED EVALUATION OF THE FINE MODEL IN SMF 

A distributed evaluation of the fine model has been 
implemented within the SMF system, a user-friendly space 
mapping software engine, allowing automated SM 
optimization of microwave devices and circuits [10], [11]. 

Distributed evaluation of the fine model is realized through 
independent processing of the fine model responses 
corresponding to consecutive frequency samples using a 
number of machines. Thus, it can be applied for models using 
frequency-domain simulators. Because parallelization is 
implemented internally in the SMF system, it works regardless 
of whether the fine model simulator has a multi-processor 
analysis capability or not. 

Fig. 1 shows the flowchart of the distributed fine model 
evaluation. Evaluation is performed by the main SMF copy 
and by n distributed evaluation clients (SMFDs) running on 
separate processors. Suppose that the fine model is evaluated 
at m frequency points, f1, f2, …, fm. This frequency sweep is 
divided into K sub-bands, B1 to BK. In particular, the sub-
bands may consist of single frequency samples. The 
information about the design variable vector x and frequency 
sub-bands is put into a so-called order set. Orders are picked 
up and processed by both the main SMF copy and by the 
SMFD clients and the results are exported into the results set, 
which is checked by the main SMF program. Once all orders 
are processed and corresponding responses are in the response 
set, the complete fine model response is returned.  

Fig. 2 shows the architecture of the distributed model 
evaluation. All the information about the model, including the 
data allowing SMF and the SMFDs to prepare simulator input 
files, call the simulator and format the output data as well as 
the evaluation vector x and frequency sub-band, is gathered in 
the so-called order files. If SMF requests model evaluation, a 
number of order files corresponding to the number of 
frequency sub-bands as described before are generated and 
copied to a separate folder accessible by all SMFD clients. 
SMF and the SMFD clients pick up available order files and, 
after processing them, return the results to a result folder. 
Each SMFD client uses a separate working folder for 
temporary files. All the folders may reside in a designated 
directory on a local network drive or in a file system of a 
computational cluster. Communication between SMF, the 
SMFDs and the folders is realized through the SSH protocol. 

In the ideal case, assuming that the main SMF program and 
n SMFD clients are used in the distributed model evaluation 
process, the computation time should be n+1 times smaller 
than the evaluation time on a single processor. In practice this 
is never the case because of the following factors: 
(i)  In order to obtain maximum possible efficiency the 

number K of frequency sub-bands should an integer 
multiplier of the number of processors n+1, which may 
not be the case; 

(ii) The CPU type and speed, and, consequently, evaluation 
time of order files, may be different for different 
processors; 

(iii) There is some overhead related to communication 
between SMF and the SMFDs and the designated folders; 

 

 
 Fig. 1. Flowchart of distributed model evaluation in the SMF system [10]. 
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Fig. 2. Architecture of distributed model evaluation in the SMF system [10]. 
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(iv) There may be additional overhead related to the fact that 
some actions which would normally be done once, e.g., 
meshing of the structure, might be performed for each 
frequency sub-band separately by each SMFD client; 

The first factor plays the crucial role and the speed-up s that 
can be obtained with our method, neglecting factors (ii), (iii) 
and (iv), is given by 

/( 1)s K K n= +⎡ ⎤⎢ ⎥  (5) 
where È.˘ denotes a ceiling function. 

The parallel efficiency ε is defined as the speed-up divided 
by the number of processors [12], i.e.,  

( 1)s nε = +  (6) 
For example, if we have 30 sub-bands and 8 processors, the 
speed-up is 7.5 and the parallel efficiency is about 94%. 

In practice, because of factors (ii), (iii) and (iv), the actual 
parallel efficiency is smaller and typically it is between 60 and 
90 percent, assuming that the number of processors is 
properly related to the number of frequency samples, i.e., the 
speed-up s (1) is sufficiently high, e.g., 90% and more. 

IV. EXAMPLES 

In this section we consider two examples of microwave 
design problems. To solve each problem we use a standard 
implementation of an SM algorithm, our SM algorithm with 
distributed fine model evaluation, as well as our SM algorithm 
with distributed fine model evaluation and inside-ADS 
parameter extraction and surrogate model optimization [9]. 

As the first example, consider the microstrip band-pass filter 
[13] shown in Fig. 3. The design parameters are 
x = [L1  L2  L3  L4  g]T. The fine model is simulated in FEKO [14] 
with a dense mesh (number of meshes about 700), the coarse 
model is the circuit model implemented in Agilent ADS [15] 
(Fig. 4). The design specifications are |S21| ≤ –20 dB for 
4.5 GHz ≤ ω ≤ 4.7 GHz and 5.3 GHz ≤ ω ≤ 5.5 GHz, and |S21| ≥ 
–3 dB for 4.9 GHz ≤ ω ≤ 5.1 GHz. The number of frequency 
samples is K = 41. The initial design is the coarse model optimal 
solution x(0) = [6.784 4.890 6.256 5.28 0.0956]T mm 
(specification error +24 dB). We use the SM surrogate model 
with input and output SM of the form ( , )s =R x p  

( , , ) ( )s c= + +R x c d R x c d . Fig. 5 shows the fine model initial 
and optimized responses after 4 SM iterations (x(4)=[6.433 4.743 
6.172 4.911  0.0787]T mm; the specification error is –1.4 dB).  

Table I shows a comparison of the optimization time for the 
three implementations of the SM algorithm. For the standard 
implementation, most of the computational cost comes from the 
fine model evaluation (about 30 min per evaluation on a Pentium 
D 3.4 GHz processor). Our SM algorithm with distributed fine 
model evaluation uses 14 processors (1 Pentium D 3.4 GHz for 
SMF, and 13 nodes of the computational cluster containing Dual 
Core AMD 2 GHz processors and Intel Xeon 3.06 GHz 
processors for the SMFDs), which gives a very good speed-up 
(5) of 13.7 and a parallel efficiency of more than 97%. The 
actual distributed evaluation time is about 2 min 30 s, which 

gives a parallel efficiency of about 86%. In this case the 
computational cost of solving the parameter extraction and 
surrogate optimization sub-problems is more than half of the 
total optimization cost. The application of inside-ADS parameter 
extraction and surrogate optimization [9] allows further reduction 
of the SM optimization cost to only 15 minutes, which is half the 
time necessary to evaluate the fine model on a single processor. 

The second example is the band-stop microstrip filter with 
open stubs [16] shown in Fig. 6. The fine model is simulated 
with Sonnet’s em [17] using a high-resolution grid with a 
0.2 mil × 1 mil cell size. The coarse model, Fig. 7, is the 
equivalent circuit model implemented in Agilent ADS [15]. 
The design parameters are x = [W1 W2 L0 L1 L2]T. The design 
specifications are |S21| ≤ 0.05 for 9.4 GHz ≤ ω ≤ 10.6 GHz, 
and |S21| ≥ 0.9 for 5 GHz ≤ ω ≤ 8 GHz and for 12 GHz ≤ ω ≤ 
15 GHz. The number of frequency samples is K = 51.  

 
 

 
 

Fig. 3. Geometry of the microstrip band-pass filter [13]. 
 
 

 
Fig. 4. Coarse model of the microstrip band-pass filter (Agilent ADS). 
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Fig. 5. Initial (dashed line) and optimized (solid line) |S21| versus frequency for 
the microstrip band-pass filter. 

 
 

TABLE I 
MICROSTRIP BANDPASS FILTER: OPTIMIZATION TIME FOR THE 

THREE IMPLEMENTATIONS OF SPACE MAPPING 
SM Algorithm Optimization 

Time 
Time 

Savings
Standard implementation 169 min - 

Distributed fine model evaluation 32 min 81% 
Distributed fine model evaluation and inside-ADS 
parameter extraction and surrogate optimization [9] 15 min 91% 
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The initial design is the coarse model optimal solution 
x(0) = [4.2 9.2 114.6 116 113]T mm (specification error 
+0.024). We use the SM surrogate model with input and 
output space mapping of the form ( , )s =R x p  

( , , ) ( )s c= + +R x c d R x c d . The fine model solution after 5 SM 
iterations is x(5)=[3.6 11.6 116.2 122 107]T mm with a 
specification error of –0.02. 

Table II shows a comparison of the optimization time for 
the three implementations of the SM algorithm. For the 
standard implementation, most of the computational cost 
comes from the fine model evaluation (about 31 min per 
evaluation). The SM algorithm with distributed fine model 
evaluation uses 13 processors (1 Pentium D 3.4 GHz, and 12 
nodes of the computational cluster). The distributed 
evaluation time is about 3 min 40 s, which gives a parallel 
efficiency of about 65%. In this case the computational cost of 
solving the parameter extraction and surrogate optimization 
sub-problems is over 60% of the total optimization cost. As in 
the previous example, the application of inside-ADS 
parameter extraction and surrogate optimization [9] allows 
further reduction of the SM optimization cost to only 25 
minutes, which is less than necessary to evaluate the fine 
model on a single processor. 

V. CONCLUSION 

A new implementation of our SM algorithm with distributed 
evaluation of the fine model is presented. The new algorithm 
allows substantial reduction of the SM optimization time in 
comparison with the standard implementation. When combined 
with previously published techniques for the reduction of the 
parameter extraction and surrogate optimization cost, it permits 
us to complete SM optimization in less time than necessary to 
evaluate the fine model on a single processor. 
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Fig. 6. Geometry of the band-stop microstrip filter with open stubs [16]. 

 

 
Fig. 7. Coarse model of the band-stop microstrip filter (Agilent ADS). 
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