
 

Adaptive Space Mapping with Convergence Enhancement 
for Optimization of Microwave Structures and Devices 

Slawomir Koziel, Senior Member, IEEE, John W. Bandler, Life Fellow, IEEE, 
and Qingsha S. Cheng, Member, IEEE 

School of Science and Engineering, Reykjavik University, Kringlunni 1, IS-103 Reykjavik, Iceland 
Department of Electrical and Computer Eng., McMaster University, Hamilton, ON, Canada L8S 4K1 

 
 Abstract—A novel space mapping algorithm is presented that 

adaptively adjusts the type of space mapping surrogate model used 
in a given iteration, based on the approximation and generalization 
capabilities of the model, its ability to satisfy the design 
specifications, as well as convergence properties of the iterative 
optimization process. The new technique allows us to avoid a 
wrong choice of space mapping surrogate which might lead to poor 
performance of the space mapping algorithm. No extra fine model 
evaluations are necessary as the assessment process uses only data 
emerging naturally during the optimization procedure. The 
performance of the method is verified using microwave design 
optimization examples and is compared with the previously 
published adaptive space mapping algorithm. 

Index Terms—Computer-aided design (CAD), EM optimization, 
space mapping, adaptive surrogate model, microwave design. 

I. INTRODUCTION 
Space mapping (SM) addresses the problem of optimization 

of expensive functions, also called “fine” models (typically 
implemented with CPU-intensive EM simulators), through 
iterative optimization and updating of the surrogate models 
which are built using cheaper “coarse” models (e.g., 
equivalent circuits of the corresponding device) [1], [2]. SM 
has proved to be successful in many areas (e.g., [1]-[5]).  

A common problem in SM optimization is a good choice of the 
mapping type. Available mappings include input, implicit and 
different variations of output SM, as well as a frequency SM [2]. 
They can be combined to adjust the flexibility of the SM surrogate 
model, which is correlated with the number and type of SM 
parameters. The surrogate model cannot be too simple; otherwise 
it will not properly reflect the features of the fine model. Also, it 
cannot be over-flexible because its generalization properties 
would be too poor to allow accurate prediction of the fine model 
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response in the neighborhood of the current iteration point. 
Unfortunately, it is difficult to tell beforehand which combination 
of mappings may be best for a given problem. A bad choice of 
mapping may lead to poor performance of the SM algorithm.  

In [6], an adaptive technique is presented that allows automatic 
choice of the surrogate model based on approximation and 
generalization capabilities estimated using available fine model 
data. The method [6] overcomes, to some extent, the problem of 
the proper choice of the surrogate model but it does not take into 
account other factors such as ability of the surrogate model to 
satisfy the design specifications and, even more crucial [7], 
convergence properties of the SM algorithm for a given model. 

Here we present an enhancement of our algorithm [6]. This 
algorithm automatically adjusts the surrogate model type used 
in a given iteration based not only on the approximation/ 
generalization capability of the model (as in [6]) but also on 
the factors mentioned in the previous paragraph, i.e., the 
estimated convergence properties of the iterative optimization 
process, and the flexibility of the surrogate model in terms of 
being capable of satisfying the design specifications. 

II. ADAPTIVE SPACE MAPPING OPTIMIZATION ALGORITHM 
WITH CONVERGENCE ENHANCEMENT 

Let Rf denote the response vector of a fine model of the 
device of interest. Our goal is to solve 

( )* arg min ( )f fU=
x

x R x  (1) 
where U is a given objective function. We consider an 
optimization algorithm that generates a sequence of points x(i), 
i = 0, 1, 2, …, and a family of surrogate models Rs

(i) , so that 
( )( ) ( )

( 1) ( )

, || ||
arg min ( )

i i

i i
sU

δ

+

− ≤
=

x x x
x R x  (2) 

with δ(i) being the trust region (TR) radius at iteration i. We use 
a TR method [8] to ensure convergence of the algorithm. 

Let Rc denote the response vector of the coarse model that 
describes the same device as the fine model: less accurate but 
much faster to evaluate. Surrogate models are constructed from 
the coarse model so that the misalignment between Rs

(i) and the 
fine model is minimized. Rs

(i) is defined as  
( ) ( )( ) ( , )i i
s s=R x R x p  (3) 

where 
sR  is a generic SM surrogate model, i.e., the coarse 

model composed with suitable SM transformations, and 
( ) ( ) ( )

0
argmin || ( ) ( , ) ||ii k k

f sk=
= −∑p

p R x R x p  (4) 
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is a vector of model parameters. Examples of surrogate 
models are shown in Table I (Section III.B). 

The general SM algorithm (2)-(4) allows us to use various 
surrogate models. However, a good choice of mapping is 
usually problem dependent and difficult to make beforehand. 
Here, we describe a technique for an automatic choice of the 
suitable surrogate model. The method is adaptive in the sense 
that it can change the space mapping type used from iteration to 
iteration based on the following criteria: (i) estimated 
approximation and generalization capability of the surrogate 
model, (ii) convergence properties of the optimization process, 
and (iii) ability of the surrogate model to satisfy the design 
specifications. The algorithm proposed in [6] used only the first 
of these criteria: it will be used in this paper as a reference 
method for comparison purposes. 

Let RS = {Rs.1 … Rs.K} be a set of candidate surrogate models. 
We shall denote by pj

0 the set of initial values of the parameters 
of candidate model Rs.j, j = 1, …, K. The model 

( ) ( )
. .( ) ( , )i i

s j s j j⋅ = ⋅R R p  is set up by proper choice of its parameter 

values pj
(i), which are determined using the parameter extraction 

procedure 
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( )
.arg min || ( ) ( , ) ||

p j i
APP

i
j f s jX

X
∈

∈
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where ( )i
APPX  is a subset of X(i) = {x(0), x(1), ..., x(i)}, the set of 

all previous iteration points. Let ( ) ( )i i
GENX X⊂ , such that 

( ) ( )i i
APP GENX X∩ = ∅ . Now, let us define two coefficients: 
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and 
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If ( )i
GENX  is empty, we set ( ) ( )

. .
i i

GEN j APP jF F= .  

The first factor, ( )
.

i
APP jF , measures the quality of the 

approximation properties of model Rs.j, because it is the ratio of 
the matching error before and after parameter extraction, 
calculated for the points which were used in parameter 
extraction. The second factor, ( )

.
i

GEN jF , measures the quality of 

the generalization properties of model Rs.j, because it is the ratio 
of the matching error before and after parameter extraction, 
calculated for the points which were not used in extraction. Let 
Fj

(i) be a combined quality factor defined as 
( ) ( ) ( )

. .(1 )i i i
j APP j GEN jF F Fα α= + −  (8) 

A good surrogate model exhibits high values for both ( )
.

i
APP jF  

and ( )
.

i
GEN jF , however, we consider generalization properties as 

more important and, therefore, we use small values of α (e.g., 
α = 0.1) [6]. In [6], the choice of the surrogate model Rs

(i) at any 
given iteration has been made based on the value of Fj

(i), in 
particular we had 

max

( ) ( )
.

i i
s s j=R R  where ( )
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jj K
j F
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Here, we enhance this adaptive scheme by considering 
estimated convergence properties of the iterative optimization 
process, and the ability of the surrogate model to satisfy the 

design specifications. In particular, each of the candidate models 
( ) ( )
. .( ) ( , )i i

s j s j j⋅ = ⋅R R p  is optimized 
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and the following factors are calculated 
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( )( ) ( ) ( )
. .( )i i i

j s j s jU U= R x  (11) 
Factor Dj

(i) measures the convergence property of the 
algorithm when using model ( )

.
i

s jR . The higher the value of Dj
(i), 

the larger the ratio between ||x(i)–x(i–1)|| and ||xs.j
(i)–x(i)||, i.e., the 

algorithm using the model ( )
.
i

s jR  is likely to converge faster. Uj
(i) 

is the value of the specification error for the optimized model 
( )
.
i

s jR , which may be used to estimate the specification error for 

the fine model at xs.j
(i), provided that ( )

.
i

s jR  exhibits sufficient 

matching capability (measured by Fj
(i)). 

Having this in mind, for each candidate surrogate mode Rs.j
(i) 

we define a figure of merit Hj
(i) as follows 

( ) ( )( )( ) ( ) ( ) ( )expi i i i
j j j jH F D U

γβ
= ⋅ ⋅ −  (12) 

In (12), we use exp(–Uj
(i)) instead of Uj

(i) because we want to 
transform all possible values of the specification error into 
positive numbers and have the larger values of factor Hj

(i) 
corresponding to smaller values of Uj

(i) as we are dealing with a 
minization problem (cf. (1)). Having factors Hj

(i) we choose the 
most suitable surrogate model at iteration i as follows: 

max

( ) ( )
.

i i
s s j=R R , where ( )

max {1,2,..., }
arg max i

jj K
j H

∈
= . In fact, because all 

candidate surrogate models have been optimized in order to 
calculate Dj

(i) and Uj
(i), we can simply set 

max

( 1) ( )
.

i i
s j

+ =x x  (13) 
with xs.j

(i) given by (9) and jmax defined as above. 
Parameters β and γ determine to what extent the factors Dj

(i) 
and Uj

(i) influence the choice of the surrogate model. For 
β = γ = 0 we are back to the algorithm [6]. The adaptive SM 
algorithm (5)-(13) can be summarized as follows. 

Step 0 Set i = 0; Choose the candidate model set RS;  
Step 1 Given X(i) = {x(0), x(1), …, x(i)}, set ( )i

APPX  and ( )i
GENX ; 

Step 2 Perform parameter extraction, obtain models Rs.j
(i), and 

calculate quality factors Fj
(i) as in (8); 

Step 3 Optimize models Rs.j
(i) and obtain xs.j

(i), Dj
(i), and Uj

(i) 
using (9), (10), and (11), respectively; 

Step 4 Calculate figures of merit Hj
(i) as in (12); 

Step 5 Set x(i+1) as in (13); 
Step 6 Evaluate Rf at x(i+1); 
Step 7 Update δ(i); 
Step 8 If x(i+1) is accepted set i = i + 1, δ(i) = δ(i–1) and go to 

Step 1; else go to Step 3; 
Step 9 If the termination condition is not satisfied go to 

Step 1; else terminate the algorithm. 
Our algorithm does not require any extra fine model 

evaluations because the surrogate model assessment is based on 
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already existing fine model data. Additional computational 
effort concerns the coarse model only, and does not substantially 
affect the total execution time of the optimization algorithm as 
the coarse model is assumed to be cheap. On the other hand, 
because the surrogate model assessment is based on additional 
criteria including convergence properties and model flexibility, 
it is expected that our algorithm will exhibit performance 
comparable or better than the algorithm [6]. 

III. VERIFICATION EXAMPLES 

A. Test Problem Description 
Problem 1: Bandstop microstrip filter with open stubs [9] 

(Fig. 1). The fine model is simulated with Sonnet’s em [10] 
using a grid with a 0.2 mil × 1 mil cell size. The coarse model, 
Fig. 2, is the equivalent circuit implemented in Agilent ADS 
[11]. The design parameters are x = [W1 W2 L0 L1 L2]T. The 
design specs are |S21| ≤ 0.05 for 9.4 GHz ≤ ω ≤ 10.6 GHz, and 
|S21| ≥ 0.9 for 5 GHz ≤ ω ≤ 8 GHz and 12 GHz ≤ ω ≤ 15 GHz. 

Problem 2: Seven-section capacitively-loaded impedance 
transformer [12]. Both “coarse” and “fine” models (Fig. 3) are 
implemented in Matlab. The design parameters are 
x = [L1 L2 L3 L4 L5 L6 L7] T. The design specs are |S11| ≤ 0.07 
for 1.0 GHz ≤ ω ≤ 7.7 GHz.  

Problem 3: Second-order capacitively-coupled dual-
behavior resonator (CCDBR) microstrip filter [13] (Fig. 4). 
The design parameters are x = [L1 L2 L3 S]T. The fine model is 
simulated in FEKO [14]. The coarse model, Fig. 5, is 
implemented in Agilent ADS [11]. The design specifications 
are |S21| ≥ –3 dB for 3.8 GHz ≤ ω ≤ 4.2 GHz, and |S21| ≤ –20 dB 
for 2.0 GHz ≤ ω ≤ 3.2 GHz and 4.8 GHz ≤ ω ≤ 6.0 GHz.  

B. Experimental Setup 
For Problems 1-3 we performed SM optimization using the 

adaptive SM algorithm introduced in Section II. We use α = 0.1 
and two settings for β and γ : (i) β = γ = 0, which corresponds to 
the algorithm [6] used here as a reference method, and (ii) 
β = γ = 1, which corresponds to the algorithm of Section II with 
factors Dj

(i) and Uj
(i) taken into account in a nontrivial way. For 

all problems we use the same candidate model set {cd, dF, cdF, 
Bcd}. The model naming convention is explained in Table I. 
The test set ( )i

APPX  ( ( )i
GENX ) is chosen to contain about 2/3 (1/3) 

of available points (cf. [6]). 
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Fig. 1. Bandstop microstrip filter with open stubs [9]. 

 
Fig. 2. Coarse model of the bandstop microstrip filter (Agilent ADS). 
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Fig. 3. Seven-section capacitively-loaded impedance transformer: “fine” 
model (a) and “coarse” model (b) [12]. 
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L2

Input OutputS

L3

L3

S  
Fig. 4. Geometry of the CCDBR microstrip filter [13]. 

 
Fig. 5. Coarse model of the CCDBR microstrip filter (Agilent ADS). 
 

TABLE I 
NAMING CONVENTION FOR SM SURROGATE MODELS 1 

Name Definition Description 
c Rc(x + c) Input SM with c being n×1 vector 2

B Rc(B⋅x) Input SM with B being n×n matrix 2 

F Rc(x,F) 
Frequency SM with coarse model evaluated at 
frequencies different from the original sweep 

according to ω → f1 + f2ω, with F = [f1 f2]T  

d Rc(x) + d Output SM with d being m×1 vector 3; at 
iteration i, d is calculated as d = Rf(x(i)) – Rc(x(i))

1 Combined models are obtained as combinations of the corresponding 
definitions, e.g., cd is defined as Rc(x+c)+d, Bc is defined as Rc(B⋅x+c), etc. 
2 n is the number of the design variables 
3 m is the dimension of the model response 
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C. Experimental Results and Discussion 

Table II shows the results of our experiments, i.e., the 
objective function value (specification error) and the number 
of fine model evaluations necessary to obtain the solution for 
problems 1-3. Figs. 6-8 show the initial fine model response 
and the response at the final solution found by the algorithm 
(5)-(13). It is seen that in Problem 1 both algorithms exhibit 
the same performance, which indicates that the same surrogate 
models are chosen in subsequent iterations of the algorithm in 
both cases. For Problem 2, the new algorithm yields slightly 
better results than the algorithm [6] with a smaller number of 
fine model evaluations. For Problem 3, the new algorithm 
yields a substantially better solution than the algorithm [6] 
with a similar number of fine model evaluations. Thus, the 
overall performance is in favor of the new algorithm. 

IV. CONCLUSION 

An adaptive SM algorithm with convergence enhancement 
is presented. At any iteration, the algorithm automatically 
chooses the most suitable surrogate model based on several 
criteria including approximation/generalization capability of 
the model as well as the estimated convergence properties of 
the optimization process. As verified with several microwave 
design optimization problems, the performance of the SM 
optimization process is improved with respect to the 
previously published adaptive SM technique. 
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TABLE II 
OPTIMIZATION RESULTS FOR PROBLEMS 1-3 

Test 
Problem SM Algorithm Specification 

Error 

Number of 
Fine Model 
Evaluations

1 Adaptive [6] (β = γ = 0) –0.0192 13 
Adaptive (5)-(13) (β = γ = 1) –0.0192 13 

2 Adaptive [6] (β = γ = 0) –0.0083 9 
Adaptive (5)-(13) (β = γ = 1) –0.0085 6 

3 Adaptive [6] (β = γ = 0) –0.48 12 
Adaptive (5)-(13) (β = γ = 1) –2.04 14 
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Fig. 6. Problem 1: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency for the microstrip band-stop filter. 
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Fig. 7. Problem 2: Initial (dashed line) and optimized (solid line) |S11| versus 
frequency for the seven-section impedance transformer. 
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Fig. 8. Problem 3: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency for the CCDBR filter. 
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