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 Abstract—We introduce a tuning space mapping (TSM) 

technology for microwave design optimization. For the first time, 
we formulate the novel TSM concept and show how it relates to 
the standard space mapping methodology. The new method is 
based on a so-called tuning model that is created using 
engineering expertise and knowledge of the design problem, but 
also utilizes the efficiency of space mapping for translating the 
adjustment of the tuning parameters into relevant updates of the 
design variables. We illustrate our approach through 
optimization of a high-temperature superconducting (HTS) filter. 

Index Terms—Computer-aided design (CAD), engineering 
optimization, space-mapping (SM), surrogate models, tuning. 

I. INTRODUCTION 
Space mapping (SM) is a widely recognized technique for 

optimization of expensive functions, also called “fine” models 
(typically implemented with CPU-intensive EM simulators), 
through iterative optimization and updating of the surrogate 
models which are built using cheaper “coarse” models [1]-[3]. 
SM has proved its success in many areas (e.g., [1]-[6]).  

The concept of tuning, also widely used in microwave 
engineering [7], [8], can be considered within the scope of the 
SM approach. In our new tuning space mapping (TSM) 
algorithm, the surrogate model’s role is taken by a so-called 
tuning model, which is constructed by introducing circuit-theory 
based components (e.g., capacitors, inductors or coupled-line 
models) into the fine model structure, and parameters of these 
circuit components are chosen to be tunable. In each iteration, 
the tuning model is updated and optimized with respect to the 
tuning parameters. This process takes little CPU effort as the 
                                                           

This work was supported in part by the Natural Sciences and Engineering 
Research Council of Canada under Grants RGPIN7239-06, RGPIN249780-
06, and STGP336760-06, and by Bandler Corporation.  

J. Meng and Q.S. Cheng are with the Simulation Optimization Systems 
Research Laboratory, Department of Electrical and Computer Engineering, 
McMaster University, Hamilton, ON, Canada L8S 4K1. 

S. Koziel was with the Simulation Optimization Systems Research 
Laboratory, Department of Electrical and Computer Engineering, McMaster 
University, Hamilton, ON, Canada L8S 4K1. He is now with the School of 
Science and Engineering, Reykjavik University, Kringlunni 1, IS-103 
Reykjavik, Iceland. 

J.W. Bandler is with the Simulation Optimization Systems Research 
Laboratory, Department of Electrical and Computer Engineering, McMaster 
University, Hamilton, ON, Canada L8S 4K1, and also with Bandler 
Corporation, Dundas, ON, Canada L9H 5E7. 

M.H. Bakr is with the Computational Electromagnetics Research 
Laboratory, Department of Electrical and Computer Engineering, McMaster 
University, Hamilton, ON, Canada L8S 4K1. 

tuning model is typically implemented within a circuit 
simulator. With the optimal tuning parameters thus obtained, a 
calibration is needed to transform these tuning values into an 
appropriate modification of the design variables, which are then 
assigned to the fine model. The calibration process involves an 
auxiliary model, typically a fast space mapping surrogate. The 
TSM iteration is repeated until the fine model response is 
sufficiently close to the design target. The structure of the 
tuning model as well as a proper selection of tuning elements 
are crucial for the performance of the overall optimization 
process and normally require significant engineering expertise. 

Approaches based on the idea of TSM have been proposed 
and applied in the microwave and RF arena although they are not 
explicitly formulated in the SM nomenclature. Rautio [7] 
introduced the tuning method developed by EPCOS for LTCC 
design and stated that it is an effective technique that can be used 
for any RF design. Swanson [8] successfully applied the port 
tuning strategy to microwave circuits such as combline filters.  

In this paper, for the first time, we give a formal description of 
our novel tuning space mapping (TSM) optimization algorithm 
that iteratively updates and optimizes a so-called tuning model in 
conjunction with a calibration procedure which translates the 
adjustment of the tuning parameters into relevant adjustments of 
the design variable values. We illustrate the TSM algorithm 
using a simple microstrip line example and then use it to 
optimize a high-temperature superconducting (HTS) filter. 

II. TUNING SPACE MAPPING ALGORITHM 
We are concerned with the following optimization problem 

( )* arg min ( )f fU=
x

x R x  (1) 
where Rf ∈ Rm denotes the response vector of a fine model of 
the device of interest, U is a merit function (e.g., minimax 
function or a norm), x is a vector of design parameters, and xf

* 
is the optimal solution to be determined.  

The tuning space mapping (TSM) approach is an iterative 
optimization procedure that assumes the existence of two 
surrogate models: both are less accurate but computationally 
much cheaper than the fine model. The first model is a so-
called tuning model Rt that contains relevant fine model data 
(typically a fine model response) at the current iteration point 
and tuning parameters (typically implemented through circuit 
elements inserted into tuning ports). The tunable parameters 
are adjusted so that the model Rt satisfies the design 
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specifications. The conceptual illustration of the tuning model 
is shown in Fig. 1. The second model, Rc is used for 
calibration purposes: it allows us to translate the change of the 
tuning parameters into relevant changes of the actual design 
variables; Rc is dependent on three sets of variables: design 
parameters, tuning parameters (which are actually the same 
parameters as the ones used in Rt), and space mapping 
parameters that are adjusted using the usual parameter 
extraction process [2] in order to have the model Rc meet 
certain matching conditions. Typically, the model Rc is a 
standard space mapping surrogate (i.e., a coarse model 
composed with suitable transformations) enhanced by the 
same or corresponding tuning elements as the model Rt. 
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Fig. 1. The concept of the tuning model. 

 
The TSM algorithm produces a sequence of points (design 

variable vectors) x(i), i = 0, 1, … . The iteration of the 
algorithm consists of two steps: optimization of the tuning 
model and a calibration procedure. First, the current tuning 
model Rt

(i) is built using fine model data at point x(i). In 
general, because the fine model has undergone a disturbance, 
the tuning model response may not agree with the response of 
the fine model at x(i) even if the values of the tuning 
parameters xt are zero, so that these values must be adjusted 
to, say, xt.0

(i) in order to obtain alignment: 
( ) ( ) ( )
.0 arg min ( ) ( )

t

i i i
t f t t= −

x
x R x R x  (2) 

In the next step, we optimize Rt
(i) to have it meet the design 

specifications. We obtain the optimal values of the tuning 
parameters xt.1

(i) as follows: 
( )( ) ( )

.1 arg min ( )
t

i i
t t tU=

x
x R x  (3) 

Having xt.1
(i) we perform the calibration procedure to 

determine changes in the design variables that yield the same 
change in the calibration model response as that caused by 
xt.1

(i) – xt.0
(i). We first adjust the space mapping parameters p(i) 

of the calibration model to obtain a match with the fine model 
response at x(i) 

( ) ( ) ( ) ( )
.0arg min ( ) ( , , )i i i i

f c t= −
p

p R x R x p x  (4) 
The calibration model is then optimized with respect to the 
design variables in order to obtain the next iteration point x(i+1) 

( 1) ( ) ( ) ( ) ( )
.1 .1arg min ( ) ( , , )i i i i i

t t c t
+ = −

x
x R x R x p x  (5) 

Note that we use xt.0
(i) in (4), which corresponds to the state 

of the tuning model after performing the alignment procedure 

(2), and xt.1
(i) in (5), which corresponds to the optimized 

tuning model (cf. (3)). Thus, (4) and (5) allow us to find the 
change of design variable values x(i+1) – x(i) necessary to 
compensate the effect of changing the tuning parameters from 
xt.0

(i) to xt.1
(i).  

It should be noted that the TSM method exploits both the 
standard SM optimization, classical circuit and 
electromagnetic (EM) theory, as well as the engineer’s 
expertise. For example, in a physics-based simulation 
according to classical EM theory, design parameters such as 
physical length and width of a microstrip line can be mapped 
to a “tuning component” such as an inductor or capacitor. The 
calibration process then transfers the tuning parameters to 
physical design parameters, which can be achieved by taking 
advantage of classical theory and engineering experience.  

The TSM algorithm can be seen as a specialized case of a 
standard SM procedure that brings the concept of tuning into 
space mapping. In comparison with the standard SM [2], the 
TSM algorithm is equipped with an additional step: a 
calibration procedure that allows us to translate the 
adjustments of the tuning parameters into the relevant 
adjustments of the design variables. This step is necessary 
because there might be no straightforward relation between 
the tuning and design parameters in general.  

III. EXAMPLES 

A. Microstrip Transmission Line 
In order to illustrate and clarify our TSM algorithm we use 

a simple example of a microstrip transmission line [7]. The 
fine model is implemented in Sonnet em [9] (Fig. 2), and the 
fine model response is taken as the inductance of the line as a 
function of the line’s length. The original length of the line is 
chosen to be x(0) = 400 mils with width of 25 mils. A substrate 
with thickness H = 25 mil and 9.8rε =  is used. Our goal is to 
find a length of line so that the corresponding inductance is 
6.5 nH at 300MHz. The Sonnet em simulation at x(0) gives the 
value of 4.38 nH, i.e., Rf(x(0)) = 4.38 nH. 

We use the TSM algorithm of Section II. The tuning model 
Rt is developed by dividing the structure in Fig. 2 into two 
separate parts and adding the two tuning ports as shown in 
Fig. 3. A small inductor is then inserted between these ports as 
a tuning element. Note that the new version of Sonnet em 
allows the use of co-calibrated ports, which in this case has a 
negligible impact on the simulation results. 

The tuning model is implemented in Agilent ADS [10] and 
shown in Fig. 4. The model contains the fine model data at the 
initial design in the form of the S4P element as well as the 
tuning element (inductor). Because of Sonnet’s co-calibrated 
ports, there is perfect agreement between the fine and tuning 
model responses when the value of the tuning inductance is 
zero, so that xt.0

(0) is zero in our case. 
Next, we optimize the tuning model to meet our target 

inductance 6.5 nH. The optimized value of the tuning 
inductance is xt.1

(0) = 2.07 nH. 
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Now, we need to perform the calibration step. We use the 
calibration model shown in Fig. 5 in which the dielectric 
constant of the microstrip element is used as a space mapping 
parameter p. The value of this parameter is adjusted using (4) to 
23.7 so that the response of the calibration model is 4.38 nH at 
400 mil, i.e., it agrees with the fine model response at x(0). 

The last step is to obtain the new value of the microstrip 
length, which is done according to (5). In particular, we 
optimize x (length of the line) with the tuning inductance set to 
xt.1

(0) = 2.07 nH to match the total inductance of the calibration 
model to the optimized tuning model response, 6.5 nH. The 
result is x(1) = 586 mil; the fine model response at x(1) obtained 
by Sonnet em simulation is 6.48 nH, which is acceptable.  

This result can be further improved by performing a second 
iteration of the TSM algorithm, which gives the length of the 
microstrip line equal to 588 mil and its corresponding 
inductance of exactly 6.5 nH. 

 

 
Fig. 2. The original structure of microstrip line in Sonnet. 
 

 
Fig. 3. The microstrip line under test after being divided and with inserted the 
co-calibrated ports. 

 

 
Fig. 4. Tuning model for the microstrip line design problem. 

 

 
Fig. 5. Calibration model for the microstrip line design problem. 
 
B. High-Temperature Superconducting (HTS) Filter 

The high-temperature superconducting (HTS) bandpass 
filter [11] is shown in Fig. 6. The design parameters are the 
lengths of the microstrip coupled lines and the spacings 
between them: L1, L2, L3, S1, S2, S3. Design specifications are 
|S21| ≥ 0.95 for 4.008 GHz ≤ ω ≤ 4.058 GHz, and |S21| ≤ 0.05 
for ω ≤ 3.967 GHz and ω ≥ 4.099 GHz. The fine model is 
simulated in Sonnet em [9] using a substrate of lanthanum 
aluminate with εr = 23.425, height H = 20 mil and loss tangent 
= 0.00003. The width W = 7 mil and the length of the input 
and output lines L0 = 50 mil. 

The tuning model is constructed by dividing the five coupled 
line polygons in the middle and inserting the tuning ports at the 

new cut edges. Its S22P data file is then loaded into Agilent 
ADS. The circuit-theory coupled line components and capacitor 
components are chosen to be the tuning elements and are 
inserted into each pair of the tuning ports (Fig. 7). The lengths 
of the imposed coupled lines and the capacitances of the 
capacitors are assigned to be the tuning parameters, so that we 
have xt = [LL1 LL2 LL3 C1 C2 C3]T (LLk in mils, Ck in pF). 

The calibration model is implemented in ADS and shown in 
Fig. 8. It contains the same tuning elements as the tuning 
model. It basically mimics the division of the coupled lines 
performed while preparing Rt. The calibration model also 
contains six (implicit) space mapping parameters that will be 
used as parameters p in the calibration process (4), (5). These 
parameters are p = [H1 H2 H3 εr1 εr2 εr3]T, where Hk and εrk are 
substrate height (in mils) and dielectric constant of the 
coupled line segment of length Lk according to Fig. 6. Initial 
values of these parameters are [20  20  20  9.8  9.8  9.8]T. 
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Fig. 6. HTS filter: Physical structure [11]. 

 
Fig. 7. HTS filter: tuning model (Agilent ADS). 

 
Fig. 8. HTS filter: calibration model (Agilent ADS). 
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The initial design, x(0) = [189.2 196.2 189.1 22.1 94.2 
106.2]T mil, is the optimal solution of the coarse model, i.e., 
the calibration model with zero values of the tuning 
parameters. 

In this example, there is a small misalignment between the 
fine model (Sonnet em) response and the tuning model 
response with the tuning elements set to zero, even though the 
tuning elements have been inserted using the co-calibrated 
ports. Therefore, the alignment process (2) gives non-trivial 
values of xt.0

(i) = [0.00 –0.32 –0.02 0.00 0.00 0.00]T.  
Fig. 9 shows the fine model response at the initial solution, 

and the response of the optimized tuning model. The tuning 
parameters obtained with (3) are xt.1

(0) = [3.06 –3.07 –3.04 
0.0022 0.0028 0.0026]T. Note that some of the parameters 
take negative values, which is permitted in ADS. 

Now, the calibration process must be performed in order to 
find the updated values of the design parameters. First, the 
space mapping parameters are adjusted using (4) to align the 
calibration model with the optimized tuning model for the 
values of tuning parameters equal xt.0

(0). We get p(0) = [19.2 
16.1 14.6 25.1 23.2 24.9]T. Then, the new design x(1) = [183.2 
195.7 182.6 21.4 80.9 85.6]T mil is found using (5). This 
solution already satisfies the design specifications, however, 
we perform the second TSM iteration to improve it further. 
The final design is obtained as x(2) = [183.1 195.5 183.0 21.0 
83.7 87.4]T mil. Fig. 10 shows the fine model response at x(2). 
The values of the design variables are summarized in Table I.  

Note that the TSM algorithm requires only one iteration to 
satisfy the design specifications, and only one additional 
iteration to obtain an almost equal-ripple fine model response.  

IV. CONCLUSION 

A tuning space mapping—an effective technique for 
microwave design is presented that brings together expert-
knowledge-based tuning and the efficiency of space mapping. 
We present the formal description of the tuning space 
mapping algorithm as well as provide examples that illustrate 
the concept and show its robustness. A highly optimized HTS 
filter design emerges after only three EM simulations. 
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