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SUMMARY

We review recent developments in space mapping techniques for modeling of microwave devices. We
present a surrogate modeling methodology that utilizes space mapping combined with radial basis function
interpolation. The method has advantages both over the standard space mapping modeling methodology
and the recently published space mapping modeling with variable weight coefficients. In particular, it
provides accuracy comparable or better than the latter method and computational efficiency as good as the
standard space mapping modeling procedure. A comparison between the space mapping modeling
methodologies as well as application examples of optimization and statistical analysis of microwave
structures is presented. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Statistical analysis and yield optimization, crucial for manufacturability-driven designs in a
time-to-market development environment, demand accurate and fast models. Full-wave EM
simulations of microwave structures offer accuracy at the cost of CPU effort. High CPU cost is
undesirable from the point of view of direct statistical analysis and design. The space mapping
concept [1–8, 27] addresses this issue.
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Space mapping assumes the existence of ‘fine’ and ‘coarse’ models. The ‘fine’ model may be a
high fidelity CPU-intensive EM simulator, undesirable for direct statistical analysis and design.
The ‘coarse’ model can be a simplified representation such as an equivalent circuit with
empirical formulas. Space mapping modeling [9–15] and neuro-space-mapping modeling [16–18]
exploit the speed of the coarse model and the accuracy of the fine model to develop fast,
accurate enhanced models (surrogates) valid over a wide range of parameter values. The main
factor that differentiates space mapping from other surrogate-based modeling methodologies
(e.g. [19–24]) is the use of a physics-based coarse model, which facilitates obtaining good
modeling accuracy for a small amount of fine model data.

The standard SM modeling approach is based on setting up the surrogate model using a small
amount of fine model data (usually a so-called star distribution: 2nþ 1 points, where n is the
number of design variables) and performing extraction of the mapping parameters over the
whole set of these data [10, 11]. This simple methodology gives reasonable accuracy especially
for low-dimensional problems. To further improve modeling performance, one needs to involve
a larger amount of fine model information. Unfortunately, space mapping is not suited to
handling a large amount of fine model data by itself, i.e. increasing the number of base points
does not help if the number of surrogate model parameters remains unchanged.

A recently published space mapping modeling approach with variable weight coefficients
[13, 14] was aimed at overcoming these limitations. It indeed provides better accuracy than the
standard method, however, at the expense of significant increase of the evaluation time, which is
due to a separate parameter extraction required for each evaluation of the surrogate model. This
limits potential applications of the method.

A novel approach [15] combines the standard space mapping modeling methodology with
radial basis function interpolation. This combination gives modeling accuracy comparable or
better than the variable weight method [13] without compromising computational cost.
Moreover, because of the underlying coarse model, modeling accuracy is substantially better
than for radial basis function interpolation used directly.

In this paper, we present a brief description and comparison of space mapping modeling
methodologies. We also provide application examples of space mapping modeling techniques
for optimization and statistical analysis of microwave structures. Numerical results confirm that
a combination of space mapping and radial basis functions is the best space-mapping-based
modeling methodology thus far, both with respect to accuracy and computational efficiency.

2. SPACE MAPPING MODELING METHODOLOGIES

In this section, we present three space-mapping-based modeling methodologies. We will use the
following notation. Let Rf : Xf ! Rm and Rc : Xc ! Rm denote the fine and coarse model
response vectors, where Xf � Rn and Xc � Rn are design variable domains of the fine and coarse
models, respectively. For example, Rf ðxÞ and RcðxÞ may represent the magnitude of a transfer
function of a microwave filter at m chosen frequencies. We denote by XR � Xf the region of
interest in which we want enhanced matching between the surrogate and the fine model. We
assume that XR is an n-dimensional interval in Rn centered at reference point
x0 ¼ ½x0:1 . . . x0:n�

T 2 Rn:

XR ¼ ½x
0 � d;x0 þ d� ¼ ½x0:1 � d1; x0:1 þ d1� � � � � � ½x0:n � dn;x0:n þ dn� ð1Þ
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where d ¼ ½d1 . . . dn�T determines the size of XR: We use XRðx
0; dÞ to denote the region of

interest defined by x0 and d: Suppose we have the base set XB ¼ fx
1; x2; . . . ; xNg � XRðx

0; dÞ;
where N is the number of base points, such that the fine model response is known at all
points xj ; j ¼ 1; 2; . . . ;N: In general, we do not assume any particular location of these
base points.

2.1. Standard space mapping modeling

Standard space mapping model (SM-Standard) is a generic surrogate model Rs : Xf �Mm�m �

Mn�n �Mn�1 ! Rm defined as [10]

%Rsðx;A;B; cÞ ¼ A � RcðB � xþ cÞ ð2Þ

with matrices A ¼ diagfa1; . . . ; amg; B 2Mn�n; and c 2Mn�1 (Mk�l denotes the set of k� l real
matrices) found using the parameter extraction process

ðA;B; cÞ ¼ arg min
ða;b;gÞ

XN

k¼1

jjRf ðx
kÞ � Rsðx

k;a; b;gÞjj ð3Þ

Note that Rs is a coarse model composed with linear transformations. Apart from model (2),
(3), an optional frequency scaling can be implemented that works in such a way that the coarse
model is evaluated at a different frequency than the fine model using the transformation: o!
f0 þ f1o; where F ¼ ½f0 f1� 2 R2 is obtained together with matrices A; B; and c using a parameter
extraction process similar to (3). More general space mapping surrogate models can be found,
e.g. in [3, 10].

The standard space mapping surrogate model is very simple and fast, because once the space
mapping parameters are established, model evaluation cost is roughly the same as the evaluation
cost of the coarse model, which is assumed to be much cheaper than the fine model. The
limitation of this model is that linear mappings such as (2) may not be able to provide sufficient
accuracy. Moreover, including more base points has little effect on the model’s accuracy because
of the finite number of model parameters, and also because the parameters are extracted in one
shot for the whole region of interest.

2.2. Space mapping modeling with variable weight coefficients

Space mapping modeling with variable weight coefficients (SM-VWC) [13] overcomes the
limitations of the standard model discussed above. This methodology uses the generic surrogate
model (2), however, the model parameters are obtained in the following parameter extraction
process:

ðA;B; cÞ ¼ arg min
ða;b;gÞ

XN

k¼1

wkðxÞjjRf ðx
kÞ � Rsðx

k; a; b;gÞjj ð4Þ

The weighting coefficients wk in (4) are functions of x: They are calculated according to

wk ¼ wkðx;C; gÞ ¼
expð�jjx� xkjj2=C � g2ÞPN
j¼1 expð�jjx� xjjj2=C � g2Þ

; k ¼ 1; 2; . . . ;N ð5Þ
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where x is the evaluation point, g ¼ g ðd;NÞ is a characteristic distance depending on the size of
the region of interest and the number of base points

gðd;NÞ ¼
2

nN1=n

Xn
i¼1

di ð6Þ

If the base points are uniformly distributed in XR; g ¼ gðd;NÞ is just an average distance between
neighboring points. Constant C > 0 determines how fast the weighting coefficients decrease with
increase of base-point distance from x: Paper [13] contains a discussion on the implementation
details of the method. In can be shown that this space mapping modeling methodology with variable
weight coefficients can assure any required accuracy, provided that the base set is sufficiently dense,
even if the number of model parameters is fixed [14]. The disadvantage of the method is the
significant increase in the evaluation time, which is due to a separate parameter extraction process
required for each evaluation of the surrogate model. This limits potential applications of the method.

2.3. Space mapping modeling with radial basis functions

The recent development in space mapping modeling is a combination of space mapping and radial
basis functions (SM-RBF) [15]. In particular, on the top of the standard space mapping surrogate, a
correction term is added that interpolates the difference between the fine model Rf and the standard
space mapping surrogate Rs through radial basis functions [25, 26]. Let Rf ðxÞ ¼ ½Rf :1ðxÞ . . .Rf :m�

ðxÞ�T and RsðxÞ ¼ ½Rs:1ðxÞ . . .Rs:mðxÞ�
T: The radial basis function model *Rs is defined as

*RsðxÞ ¼

PN
j¼1 l1:jfðjjx� xjjj=gÞ

. . .
PN

j¼1 lm:jfðjjx� xjjj=gÞ

2
6664

3
7775 ð7Þ

where jj:jj denotes the Euclidean norm. The parameters lk:j are calculated so that they satisfy

Fkk ¼ Fk; k ¼ 1; 2; . . . ;m ð8Þ

where kk ¼ ½lk:1 lk:2 . . . lk:N �T;

Fk ¼

Rf :kðx
1Þ � %Rs:kðx

1Þ

..

.

Rf :kðx
NÞ � %Rs:kðx

NÞ

2
6664

3
7775 ð9Þ

and F is an N �N matrix with elements

Fij ¼ fðjjxi � xjjj=gÞ ð10Þ

with g ¼ gðd;NÞ being a characteristic distance of the base set defined by (6). Parameter g is used
in (4) as a normalization factor.

In this paper, we use a Gaussian basis function defined as

fðrÞ ¼ e�cr
2

; r50; c > 0 ð11Þ

In the experiments presented in this paper, parameter c is adjusted to minimize the
generalization error calculated using the cross-validation method [22] (c was kept fixed and
equal to 1 in [15]). Other choices of basis functions can be found in the literature [26].
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The combined surrogate model %Rs : XR! Rm is defined as

%RsðxÞ ¼ RsðxÞ þ *RsðxÞ ð12Þ

where Rs is a standard space mapping surrogate model, which is obtained using a subset of the
base set XB; e.g. the star distribution [10], however, in this paper, we use the whole XB to
determine Rs:

Once coefficients k are found, evaluation of (7) is fast, which means that the evaluation cost of
model (10) is not significantly larger than the evaluation cost of the standard space mapping
surrogate model (2). This is in contrast with the modeling technique [13], requiring a separate
parameter extraction for each evaluation of the surrogate model, which involves a number of
coarse model evaluations (typically hundreds or even thousands).

3. COMPARISON OF MODELING METHODOLOGIES

In this section, we compare the accuracy of the space mapping modeling techniques described in
Section 2 using examples of microwave components and structures.

3.1. Description of the test problems

Problem 1: Microstrip right-angle bend [9]. The fine model, Figure 1(a), is analyzed by Sonnet’s
emTM [28] using grid with a 0:5 mil� 0:5 mil cell size. The coarse model, Figure 1(b), is an
equivalent circuit with parameters calculated from Kirschning et al. [29]. The design parameters
are x ¼ ½W H Er�T: The response vector consists of reflection coefficient jS11j in the frequency
range 1–31 GHz: The reference point is x0 ¼ ½25 12 9�T; and the region size d ¼ ½6 4 1�T:

Problem 2: Second-order tapped-line microstrip filter [30] shown in Figure 2. The fine model is
simulated in FEKO [31]. The coarse model, Figure 3, is the equivalent circuit model
implemented in Agilent ADS [32]. The design parameters are x ¼ ½L1 g�T: The response vector
consists of transmission coefficient jS21j in the frequency range 3–7 GHz: The reference point is
x0 ¼ ½6:977 0:060�T mm and the region size is d ¼ ½2 0:03�T mm:

Problem 3: Bandstop microstrip filter with open stubs [33] shown in Figure 4. The fine model
is simulated with Sonnet’s em [28] using high-resolution grid with a 0:2 mil� 1 mil cell size. The
coarse model, Figure 5, is the equivalent circuit model implemented in Agilent
ADS [32]. The design parameters are x ¼ ½W1 W2 L0 L1 L2�

T: The response vector consists

H

r

W

W

L L

C

(a) (b)

Figure 1. The microstrip right-angle bend: (a) the fine model and (b) the coarse model [9].
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Figure 2. Geometry of the second-order tapped-line microstrip filter [30].
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Figure 3. Coarse model of the second-order tapped-line filter (Agilent ADS).
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Figure 4. Bandstop microstrip filter with open stubs [33].
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of transmission coefficient jS21j in the frequency range 5–15 GHz: The reference point is
x0 ¼ ½5:6 10:4 119:2 118 112�T mil and the region size is d ¼ ½0:4 0:4 2 2 2�T mil:

3.2. Experimental setup

For each of the test problems, we performed a number of experiments using the following
surrogate models: SM-Standard, SM-VWC, and SM-RBF. Table I gives details of the base sets
used in our experiments. The base sets have growing numbers of points (and decreasing
characteristic distances g) in order to examine the dependence of the modeling error on the
amount of fine model data used to create the model.

Accuracy was tested using 30 test points randomly distributed in the region of interest. The
error measure used was the l2 norm of the difference between the fine model response and the
corresponding surrogate model response.

3.3. Results and discussion

Tables II–IV give numerical results (error statistics) for the models with the various base sets
considered. Figures 6–8 show error plots (the modulus of the difference between the fine model
and the corresponding surrogate model response versus frequency) for the SM-Standard and
SM-RBF with base set XB3; respectively. Figures 9–11 show dependence of average modeling

Table I. Base set data for test problems 1–3.

Test Base Number of base
problem set Base set description points g

XB1 Uniform mesh of density 2 þ star distribution 15 2.97
1 XB2 Uniform mesh of density 3 27 2.44

XB3 Uniform mesh of density 4 64 1.83
XB1 Uniform mesh of density 3 9 0.68

2 XB2 Uniform mesh of density 4 16 0.51
XB3 Uniform mesh of density 5 25 0.41
XB1 Star distribution 11 1.68

3 XB2 Uniform mesh of density 2 [ star distribution 43 1.28
XB3 Uniform mesh of density 2 [ star distribution

[ 30 edgen points
73 1.15

nThirty points randomly chosen out of points in the uniform mesh of density 3 but not belonging to XB2:
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Figure 5. Coarse model of the bandstop microstrip filter with open stubs (Agilent ADS).
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error on the characteristic distance g: Table V presents the qualitative comparison of the
surrogate model evaluation cost for all the considered methods.

The results show that the SM-RBF model}the combination of space mapping and RBF
interpolation}outperforms both the standard SM model and the SM model with variable

Table III. Modeling results for test problem 2. Verification for 30 random test points.

Model Base set Average error Maximum error Standard deviation

SM-Standard 2.57 5.52 1.30
SM-VWC XB1 2.47 7.33 1.85
SM-RBF 1.40 2.77 0.84

SM-Standard 2.32 5.09 1.16
SM-VWC XB2 1.67 4.85 1.12
SM-RBF 0.74 1.64 0.52

SM-Standard 2.15 4.72 1.05
SM-VWC XB3 1.25 3.16 0.64
SM-RBF 0.52 1.91 0.63

Table IV. Modeling results for test problem 3. Verification for 30 random test points.

Model Base set Average error Maximum error Standard deviation

SM-Standard 0.0389 0.0635 0.0084
SM-VWC XB1 0.0326 0.0483 0.0058
SM-RBF 0.0055 0.0154 0.0038

SM-Standard 0.0403 0.0581 0.0073
SM-VWC XB2 0.0296 0.0440 0.0051
SM-RBF 0.0024 0.0108 0.0022

SM-Standard 0.0404 0.0599 0.0074
SM-VWC XB3 0.0243 0.0343 0.0061
SM-RBF 0.0022 0.0110 0.0021

Table II. Modeling results for test problem 1. Verification for 30 random test points.

Model Base set Average error Maximum error Standard deviation

SM-Standard 0.0096 0.0219 0.0042
SM-VWC XB1 0.0063 0.0179 0.0037
SM-RBF 0.0045 0.0096 0.0023

SM-Standard 0.0095 0.0196 0.0037
SM-VWC XB2 0.0086 0.0179 0.0047
SM-RBF 0.0029 0.0067 0.0016

SM-Standard 0.0084 0.0184 0.0038
SM-VWC XB3 0.0027 0.0056 0.0012
SM-RBF 0.0005 0.0013 0.0003
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Figure 6. Test problem 1: error plots for (a) the SM-Standard and (b) SM-RBF surrogate models with
base set XB3 (30 test points).

3 4 5 6 7
0

0.5

1

1.5

Frequency [GHz]

E
rr

or
 M

od
ul

us

(a)
3 4 5 6 7

0

0.5

1

1.5

Frequency [GHz]

E
rr

or
 M

od
ul

us

(b)

Figure 7. Test problem 2: error plots for (a) the SM-Standard and (b) SM-RBF surrogate models with
base set XB3 (30 test points).
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Figure 8. Test problem 3: error plots for (a) the SM-Standard and (b) SM-RBF surrogate models with
base set XB3 (30 test points).
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weight coefficients. Moreover, the computational cost of the SM-RBF model is significantly
lower than the cost of the SM-VWC model and almost the same as for the standard SM model.
The reason is that the computational cost of SM-RBF and SM-Standard is virtually the same as
the cost of the coarse model (after their parameters are established). The evaluation cost of the
SM-VWC model is much higher because of the fact that each evaluation requires a separate
parameter extraction, which typically amounts to hundreds of coarse model evaluations.

Table V gives the qualitative comparison of computational cost of the space mapping
surrogate models. For the examples presented in this section, the evaluation time for the fine
model is about 6 min (5 min; 45 min) for Problem 1 (2, 3), while coarse model evaluation takes a
couple of miliseconds for Problem 1 and about 1 s for Problems 2 and 3. Typical parameter
extraction time is about 30 s for Problems 1 and 2, and up to several minutes for Problem 3.
(For Problems 2 and 3, we use our inside-ADS optimization approach [34] in order to speed-up
the parameter extraction process.)

2 2.5 3

10-3

10-2

Characteristic Distance

A
ve

ra
ge

 E
rr

or

Figure 9. Test problem 1: average modeling error versus characteristic distance g: Data for
SM-Standard (o), SM-VWC ð�Þ; and SM-RBF (* Þ:
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Figure 10. Test problem 2: average modeling error versus characteristic distance g: Data for
SM-Standard (o), SM-VWC ð�Þ; and SM-RBF ð* Þ:
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Table VI gives a comparison of modeling accuracy between the space mapping surrogate
models and direct RBF interpolation. The models were developed for test Problems 1, 2 and 3
described in Section 3.1 using the base set XB3: It is seen that the accuracy of the space mapping
models is better than the accuracy of direct RBF interpolation in all cases except Problem 3 for
SM-Standard and SM-VWC. For Problems 1 and 2, the performance of direct RBF interpolation
is substantially worse than the performance of the space mapping approaches (regardless of the
base set used, cf. Tables II–IV). This confirms that employing the physics-based coarse model,
which is characteristic to space mapping, is essential to obtain good modeling accuracy, especially
for large regions of interest as in Problems 1 and 2. Only in Problem 3, which is characterized by a
relatively small region of interest, direct RBF interpolation beats the SM-Standard and SM-VWC,
however it is outperformed by SM-RBF, which combines the features of space mapping and
interpolation properties of radial basis functions.

1.1 1.2 1.3 1.4 1.5 1.6 1.710-3

10-2

Characteristic Distance

A
ve

ra
ge

 E
rr

or

Figure 11. Test problem 3: average modeling error versus characteristic distance g: Data for
SM-Standard (o), SM-VWC ð�Þ; and SM-RBF ð* Þ:

Table V. Qualitative comparison of computational cost of evaluating the surrogate model.

Surrogate model Main sources of computational cost Relative evaluation cost

SM-Standard Coarse model evaluation Similar to coarse model
SM-VWC Parameter extraction Much higher than coarse model
SM-RBF Coarse model evaluation Similar to coarse model

Table VI. Comparison of modeling accuracy: space mapping versus direct RBF interpolation. Models
developed for base set XB3:

Average modeling error

Test problem SM-Standard SM-VWC SM-RBF Direct RBF interpolation

1 0.0084 0.0027 0.0005 0.0142
2 2.15 1.25 0.52 5.12
3 0.0404 0.0280 0.0022 0.0054

Note: Verification for 30 random test points.
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4. APPLICATION EXAMPLES

In this section, we present two examples of application of the space mapping surrogate models
considered in the previous section to optimization and statistical analysis of microwave devices.
The examples provide an additional comparison between the standard space mapping model
and the space mapping model with radial basis function interpolation, verifying the robustness
of the latter.

4.1. Optimization of second-order tapped-line filter

We use two space mapping surrogate models, the SM-Standard and SM-RBF, to optimize the
second-order tapped-line filter described in Section 3. Surrogate models are obtained for the
base set XB3 with parameters as described in Section 3.

The design specifications for the filter are: jS21j4� 20 dB for 3:0 GHz4o44:0 GHz; jS21j

5� 3 dB for 4:75 GHz4o45:25 GHz; and jS21j4� 20 dB for 6:0 GHz4o47:0 GHz: The
starting point for optimization is x0 ¼ ½6:977 0:060�T; which is the optimal solution of the coarse
model. The fine model specification error at x0 is þ1:25 dB:

Table VII shows the final solution as well as the specification error of the surrogate
models and the fine model at corresponding surrogate model optima. Figures 12 and 13 show
the fine and surrogate model responses at the surrogate model optimum for SM-Standard

3 4 5 6 7
-35

-30

-25

-20

-15

-10

-5

0

frequency [GHz]

|S
2

1
|

Figure 12. jS21j versus frequency for the second-order tapped-line filter at the optimal
solution of the SM-Standard surrogate model: the fine model response (solid line) and the

SM-Standard surrogate model response (dashed line).

Table VII. Optimization results of second-order tapped-line filter.

Surrogate model
Surrogate model

optimum
Surrogate model specification

error at optimum (dB)
Fine model specification
error at optimum (dB)

SM-Standard ½4:406 0:1936�T �0:78 þ1:06
SM-RBF ½5:893 0:0637�T �0:65 �0:65
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and SM-RBF, respectively. It is observed that the quality of the solution obtained with the
SM-RBF model is much better than the quality of the solution obtained with the standard
space mapping model. This is because of the better accuracy of the SM-RBF model, as indicated
in Table II. Actually, the fine and SM-RBF surrogate model responses are indistinguishable
in Figure 13.

4.2. Statistical analysis of bandstop filter with open stubs

We use two space mapping surrogate models, the SM-Standard and the SM-RBF, to perform
statistical analysis of the bandstop filter with open stubs described in Section 3. For verification
purposes, we also perform the analysis using the fine model. Surrogate models are obtained for
the base set XB3 with parameters the same as in Section 3. The design specifications for the filter
are: jS21j50:95 for 5:0 GHz4o48:0 GHz; jS21j40:05 for 9:4 GHz4o410:6 GHz; and jS21j

50:95 for 12:0 GHz4o415:0 GHz: We perform statistical analysis around the fine model
optimal solution with respect to these specifications, which is x ¼ ½5:6 10:4 119:2 118 112�T mil
(the reference point used in Section 3 for Problem 3) with a maximum deviation of the design
variables of 0:04 mil for W1;W2 and 2 mil for L0; L1; L2; which corresponds to the region size d
used for Problem 3 in Section 3.

The results of statistical analysis are used to estimate the yield, i.e. the percentage of points for
which the design specifications are satisfied. Yield estimation obtained using the SM-Standard
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Figure 13. jS21j versus frequency for the second-order tapped-line filter at the optimal
solution of the SM-RBF surrogate model: the fine model response (solid line) and the

SM-RBF surrogate model response (dashed line).

Table VIII. Statistical analysis of bandstop filter with open stubs.

Model used in statistical analysis Yield estimation (%)

SM-Standard 69.5
SM-RBF 63.0
Fine model 63.5
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and SM-RBF surrogate models as well as the fine model are given in Table VIII. jS21j plots for
all the models are shown in Figures 14–16. It is observed that the SM-RBF model gives a better
prediction of yield than the standard SM model although the prediction given by SM-Standard
is also decent. Note that the plot for the SM-Standard model (Figure 14) is visually different
from the plot for the fine model (Figure 16), however, the plot for the SM-RBF model (Figure
15) is visually indistinguishable from the plot for the fine model. It should be noted that
statistical analysis performed using the fine model took almost a week because of the
computational cost of evaluating the model (about 45 min per evaluation). Analysis using the
space mapping surrogate models takes less than a few seconds when using the multi-point
evaluation capability of the coarse model simulator (cf. [34]).
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Figure 14. Bandstop filter with open stubs: a statistical analysis at the fine model
optimal solution x ¼ ½5:6 10:4 119:2 118 112�T mil using the SM-Standard
surrogate model. Estimated yield 69.5%; 200 random test points; maximum

deviation 0:04 mil for W1; W2; and 2 mil for L0; L1; L2:
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Figure 15. Bandstop filter with open stubs: a statistical analysis at the fine model
optimal solution x ¼ ½5:6 10:4 119:2 118 112�T mil using the SM-RBF model.
Estimated yield 63.0%; 200 random test points; maximum deviation 0:04 mil for W1;

W2; and 2 mil for L0; L1; L2:
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5. CONCLUSION

A review of recent developments in space mapping modeling methodology is presented.
A comparison of several modeling techniques is given, including a novel modeling technique
that combines space mapping with radial basis function interpolation. It is shown that this
combination allows, without compromising the computational cost, the reduction of the
modeling error to a level not attainable for any other space mapping techniques thus far.
Application examples demonstrate the robustness of the method.

ACKNOWLEDGEMENTS

The authors thank Sonnet Software, Inc., Syracuse, NY, for emTM and Agilent Technologies, Santa Rosa,
CA, for making ADS available. This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada under Grants OGP0007239 and STPGP336760.

REFERENCES

1. Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH. Space mapping technique for electromagnetic
optimization. IEEE Transactions on Microwave Theory and Techniques 1994; 4(12):536–544.

2. Bandler JW, Cheng QS, Dakroury SA, Mohamed AS, Bakr MH, Madsen K, Sondergaard J. Space mapping: the
state of the art. IEEE Transactions on Microwave Theory and Techniques 2004; 52(1):337–361.

3. Koziel S, Bandler JW, Madsen K. A space mapping framework for engineering optimization: theory and
implementation. IEEE Transactions on Microwave Theory and Techniques 2006; 54(10):3721–3730.

4. Echeverria D, Hemker PW. Space mapping and defect correction. CMAM the International Mathematical Journal
Computational Methods in Applied Mathematics 2005; 5(2):107–136.

5. Choi H-S, Kim DH, Park IH, Hahn SY. A new design technique of magnetic systems using space mapping
algorithm. IEEE Transactions on Magnetics 2001; 37(5):3627–3630.

6. Ismail MA, Smith D, Panariello A, Wang Y, Yu M. EM-based design of large-scale dielectric-resonator filters and
multiplexers by space mapping. IEEE Transactions on Microwave Theory and Techniques 2004; 52(1):386–392.

7. Amari S, LeDrew C, Menzel W. Space-mapping optimization of planar coupled-resonator microwave filters. IEEE
Transactions on Microwave Theory and Techniques 2006; 54(5):2153–2159.

5 10 15
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

| S
2

1
|

Figure 16. Bandstop filter with open stubs: a statistical analysis at the fine model
optimal solution x ¼ ½5:6 10:4 119:2 118 112�T mil using the fine model. Estimated
yield 63.5%; 200 random test points; maximum deviation 0:04 mil for W1; W2; and

2 mil for L0; L1; L2:

MODELING OF MICROWAVE DEVICES 201

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 21:187–203

DOI: 10.1002/jnm



8. Rayas-Sánchez JE, Gutiérrez-Ayala V. EM-based Monte Carlo analysis and yield prediction of microwave circuits
using linear-input neural-output space mapping. IEEE Transactions on Microwave Theory and Techniques 2006;
54(12):4528–4537.

9. Bandler JW, Georgieva N, Ismail MA, Rayas-Sánchez JE, Zhang QJ. A generalized space mapping tableau
approach to device modeling. IEEE Transactions on Microwave Theory and Techniques 2001; 49(1):67–79.

10. Koziel S, Bandler JW, Mohamed AS, Madsen K. Enhanced surrogate models for statistical design exploiting space
mapping technology. IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, June 2005;
1609–1612.

11. Bandler JW, Cheng QS, Koziel S. Simplified space mapping approach to enhancement of microwave device models.
International Journal of RF and Microwave Computer-Aided Engineering 2006; 16(5):518–535.

12. Rautio JC. A space mapped model of thick, tightly coupled conductors for planar electromagnetic analysis. IEEE
Microwave Magazine 2004; 5(3):62–72.

13. Koziel S, Bandler JW. Space-mapping-based modeling utilizing parameter extraction with variable weight
coefficients and a data base. IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, June
2006; 1763–1766.

14. Koziel S, Bandler JW, Madsen K. Theoretical justification of space-mapping-based modeling utilizing a data
base and on-demand parameter extraction. IEEE Transactions on Microwave Theory and Techniques 2006;
54(12):4316–4322.

15. Koziel S, Bandler JW. Microwave device modeling utilizing parameter extraction and radial basis functions. IEEE
MTT-S International Microwave Symposium Digest, Honolulu, Hawaii, June 2007; 799–802.

16. Zhang L, Xu JJ, Yagoub M, Ding RT, Zhang QJ. Neuro-space mapping technique for nonlinear device modeling and
large signal simulation. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, June 2003; 173–176.

17. Devabhaktuni VK, Chattaraj B, Yagoub MCE, Zhang Q-J. Advanced microwave modeling framework exploiting
automatic model generation, knowledge neural networks, and space mapping. IEEE Transactions on Microwave
Theory and Techniques 2003; 51(7):1822–1833.

18. Zhang L, Xu J, YagoubMCE, Ding R, Zhang Q-J. Efficient analytical formulation and sensitivity analysis of neuro-
space mapping for nonlinear microwave device modeling. IEEE Transactions on Microwave Theory and Techniques
2005; 53(9):2752–2767.

19. Burrascano P, Dionigi M, Fancelli C, Mongiardo M. A neural network model for CAD and optimization of
microwave filters. IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, 1998; 13–16.

20. Peik SF, Mansour RR, Chow YL. Multidimensional Cauchy method and adaptive sampling for an accurate
microwave circuit modeling. IEEE Transactions on Microwave Theory and Techniques 1998; 46(12):2364–2371.

21. Simpson TW, Peplinski J, Koch PN, Allen JK. Metamodels for computer-based engineering design: survey and
recommendations. Engineering with Computers 2001; 17(2):129–150.

22. Queipo NV, Haftka RT, Shyy W, Goel T, Vaidynathan R, Tucker PK. Surrogate-based analysis and optimization.
Progress in Aerospace Sciences 2005; 41(1):1–28.

23. Mullur AA, Messac A. Metamodeling using extended radial basis functions: a comparative approach. Engineering
with Computers 2006; 21(3):203–217.

24. Simpson TW, Maurey TM, Korte JJ, Mistree F. Kriging models for global approximation in simulation-based
multidisciplinary design optimization. AIAA Journal 2001; 39(12):2233–2241.

25. Powell MJD. Radial basis functions for multivariate interpolation: a review. In Algorithms for Approximation,
Mason JC, Cox MG (eds). Clarendon Press: Oxford, 1987.

26. Buhmann MD, Ablowitz MJ. Radial Basis Functions: Theory and Implementations. Cambridge University Press:
Cambridge, U.K., 2003.

27. Bakr MH, Bandler JW, Madsen K, S�ndergaard J. An introduction to the space mapping technique. Optimization
Engineering 2001; 2(4):369–384.

28. Sonnet Software, Inc. emTM Version 10.53, Sonnet Software, Inc., North Syracuse, NY, U.S.A.
29. Kirschning M, Jansen RH, Koster NHL. Measurement and computer-aided modeling of microstrip discontinuities

by an improved resonator method. IEEE MTT-S International Microwave Symposium Digest, Boston, MA, May
1983; 495–497.

30. Manchec A, Quendo C, Favennec J-F, Rius E, Person C. Synthesis of capacitive-coupled dual-behavior resonator
(CCDBR) filters. IEEE Transactions on Microwave Theory and Techniques 2006; 54(6):2346–2355.

31. EM Software & Systems-S.A. (Pty) Ltd. FEKO1 User’s Manual, EM Software & Systems-S.A. (Pty) Ltd,
Stellenbosch, South Africa, June 2004, http://www.feko.info

32. Agilent ADS. Version 2003C, Agilent Technologies, Santa Rosa, CA, 2003.
33. Bakr MH, Bandler JW, Ismail MA, Rayas-Sanchez JE, Zhang QJ. Neural space-mapping optimization for

EM-based design. IEEE Transactions on Microwave Theory and Techniques 2000; 48(12):2307–2315.
34. Koziel S, Cheng QS, Bandler JW. Improving efficiency of space mapping optimization of microwave structures and

devices. IEEE MTT-S International Microwave Symposium Digest, Honolulu, Hawaii, June 2007; 1995–1998.

S. KOZIEL AND J. W. BANDLER202

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 21:187–203

DOI: 10.1002/jnm



AUTHORS’ BIOGRAPHIES

Slawomir Koziel received the MSc and PhD degrees in electronic engineering from
Gdansk University of Technology, Poland, in 1995 and 2000, respectively. He also
received the MSc degrees in theoretical physics and in mathematics, in 2000 and 2002,
respectively, as well as the PhD in mathematics in 2003, from the University of
Gdansk, Poland. He is currently a Research Associate in the Department of Electrical
and Computer Engineering, McMaster University, Canada. He has published more
than 100 papers. His research interests include space mapping, circuit theory, analog
signal processing, evolutionary computation and numerical analysis.

John W. Bandler studied at Imperial College of Science and Technology and received
the BSc(Eng.), PhD, and DSc(Eng.) degrees from the University of London, England,
in 1963, 1967, and 1976, respectively.

He joined Mullard Research Laboratories, Redhill, Surrey, England in 1966.
From 1967 to 1969 he was a Postdoctorate Fellow and Sessional Lecturer
at the University of Manitoba, Winnipeg, Canada. He joined McMaster
University, Canada, in 1969. He has served as Chairman of the Department of
Electrical Engineering and Dean of the Faculty of Engineering. He is now Professor
Emeritus. He was President of Optimization Systems Associates Inc., which
he founded in 1983, until November 20, 1997, the date of acquisition by
Hewlett-Packard Company. He is President of Bandler Corporation, which he
founded in 1997.

He has served as associate editor, guest editor, and on the editorial boards of various engineering
journals and organizations. He has served as a member and chair of the IEEE MTT Society MTT-1
Technical Committee on Computer-Aided Design. He has published more than 400 papers.
He is a Fellow of the Canadian Academy of Engineering, a Fellow of the Royal Society of Canada, a

Fellow of the Institution of Electrical Engineers (Great Britain), a Fellow of the Engineering Institute of
Canada, a Member of the Association of Professional Engineers of the Province of Ontario (Canada) and a
Member of the MIT Electromagnetics Academy. He received the Automatic Radio Frequency Techniques
Group (ARFTG) Automated Measurements Career Award in 1994 and the IEEE MTT-S Microwave
Application Award in 2004.

MODELING OF MICROWAVE DEVICES 203

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2008; 21:187–203

DOI: 10.1002/jnm


