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Abstract One of the central issues in space mapping optimization is the quality
of the underlying coarse models and surrogates. Whether a coarse model is suffi-
ciently similar to the fine model may be critical to the performance of the space
mapping optimization algorithm and a poor coarse model may result in lack of con-
vergence. Although similarity requirements can be expressed with proper analytical
conditions, it is difficult to verify such conditions beforehand for real-world engi-
neering optimization problems. In this paper, we provide methods of assessing the
quality of coarse/surrogate models. These methods can be used to predict whether a
given model might be successfully used in space mapping optimization, to compare
the quality of different coarse models, or to choose the proper type of space mapping
which would be suitable to a given engineering design problem. Our quality estima-
tion methods are derived from convergence results for space mapping algorithms. We
provide illustrations and several practical application examples.
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1 Introduction

Engineers have used optimization techniques for device and system modeling and
design for decades (Steer et al. 2002). Traditional techniques (Bandler and Chen
1988) utilize simulations of appropriate models of the devices and any available
derivatives to force relevant system responses to satisfy specifications. For high-
fidelity models the cost of application of direct optimization can, however, be pro-
hibitive. Methodologies based on exploitation of iteratively refined surrogates of ac-
curate or high-fidelity models address this issue. Space mapping (Bandler et al. 1994;
Bandler et al. 2004d) is an example of this methodology.

There is a rich literature concerning surrogate-based optimization. Alexandrov et
al. (2001, 1998) describe the so-called approximation and model management opti-
mization technique. Marsden et al. (2004), Booker et al. (1999), Dennis and Torczon
(1997) present a surrogate management framework. Surrogate optimization based
on surface response approximation and kriging are discussed in (Leary et al. 2003;
Gano et al. 2004). A survey and recommendations for the use of statistical approxi-
mation techniques in engineering design are given in (Simpson et al. 2001). Several
review papers are available (Barthelemy and Haftka 1993; Torczon and Trosset 1998;
Queipo et al. 2005).

In space mapping (SM), the objective function to be optimized is constructed from
the responses of a so-called “fine model”. By responses, we mean a vector of function
values that represents the model’s behavior for a given set of design parameter values.
It is also assumed that there is an alternative set of functions available, from the so-
called “coarse model”, not as accurate as those provided by the fine model but much
faster to evaluate. SM can link coarse and fine models of different complexities in
order to create a surrogate model that is almost as cheap to evaluate as the coarse
model and (locally at least) almost as accurate as the fine model.

A number of space mapping algorithms have been developed during the last
twelve years, including aggressive space mapping (ASM) (Bandler et al. 2004d),
trust-region ASM (Bakr et al. 1998), implicit SM (Bandler et al. 2004a, 2004c), out-
put SM (Bandler et al. 2004b; Koziel et al. 2005), and generalized SM (Koziel et al.
2006). A review and exposition of advances in SM technology is contained in paper
(Bandler et al. 2004d). Convergence studies concerning hybrid SM algorithms can
be found in (Vicente 2003; Bakr et al. 2001; Madsen and Søndergaard 2004). SM
technology is recognized as a contribution to engineering design, especially in the
microwave and RF arena (Ros et al. 2005; Rautio 2004; Encica et al. 2005), civil
engineering (Pedersen et al. 2005), and structural optimization (Leary et al. 2001;
Redhe and Nilsson 2004).

One of the most important issues in space mapping optimization is the quality of
the coarse model used in the optimization process, as well as a proper choice of the
space mapping type used to construct a surrogate model. Whether or not the coarse
model is sufficiently similar to the fine model may be critical to the performance of
the space mapping algorithm, and a poor coarse model may result in lack of con-
vergence. On the other hand, the variety of available space mapping types makes it
difficult to choose a combination that would be suitable to a given problem in terms
of ensuring SM algorithm convergence. Although both the similarity between the
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coarse and fine models and the quality of the surrogate model can be formulated us-
ing proper analytical conditions, it is difficult to verify such conditions beforehand
for real-world engineering optimization problems. In this paper, we provide methods
of assessing the quality of the coarse model that can be used to predict whether a
given model might be successfully used in space mapping optimization, to compare
the quality of different coarse models, or to choose the proper type of space mapping
which would suit a given optimization problem. Our quality estimation methods are
derived from convergence results for space mapping algorithms which are formulated
in this paper.

2 Basics of space mapping optimization

Let f : Ωf → R
m,Ωf ⊆ R

n, denote the fine model of the engineering device. Our
goal is to solve the problem

x∗
f ∈ arg min

x∈Ωf

H(f (x)) (1)

where H : R
m → R is a given merit function, e.g., a norm. H ◦ f is the objective

function. We shall denote by Ω∗
f the set of solutions to (1) and call it the set of fine

model minimizers.

Definition 1 If Ω∗
f is not empty, we define Hmin as Hmin = minx∈Ωf

H(f (x)).

By definition, H(f (x∗)) = Hmin if and only if x∗ ∈ Ω∗
f .

We consider the fine model to be expensive to compute and solving (1) by direct
optimization to be impractical. Instead, we use surrogate models, i.e., models that are
not as accurate as the fine model but are computationally cheap, hence suitable for
iterative optimization. We consider a general optimization algorithm that generates a
sequence of points x(i) ∈ Ωf , i = 1, 2, . . ., and a family of surrogate models s(i) :
Ω

(i)
s → R

m, i = 0, 1, . . ., so that

x(i+1) ∈ arg min
x∈Ωf ∩Ω

(i)
s

H(s(i)(x)). (2)

If the solution to (2) is non-unique we may impose regularization.
SM assumes the existence of a so-called coarse model c : Ωc → R

m,Ωc ⊆ R
n,

that describes the same object as the fine model: less accurate but much faster to
evaluate. The family of surrogate models is constructed from the coarse model in
such a way that s(i) is a suitable distortion of c, such that given matching conditions
are satisfied.

Let s̄ : Ωs → R
m be a generic space mapping surrogate model which is the coarse

model composed with some suitable space mapping transformations, where Ωs ⊆
Ωc × Ωp , with Ωp being the parameter space of these transformations. We call Ωp

a space mapping parameter domain. The surrogate model s(i) is defined as

s(i)(x) = s̄(x,p(i)) (3)
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where

p(i) ∈ arg min
p∈Ω

(i)
p

(
i∑

k=0

wi.k‖f (x(k)) − s̄(x(k),p)‖
)

(4)

where Ω
(i)
p = {p ∈ Ωp : (x(k),p) ∈ Ωs for k = 0,1, . . . , i} and wi.k are weighting

factors. Typically we use wi.k = 1 for k = 0, 1,. . . , i. The domain Ω
(i)
s of the surro-

gate model s(i) is Ω
(i)
s = {x ∈ Ωc : (x,p(i)) ∈ Ωs}.

As an example, consider the so-called input space mapping (Bandler et al. 1994),
in which space mapping is an affine transformation of the coarse model domain of
the form x → B ·x +q . In this case the generic space mapping surrogate model takes
the following form.

s̄(x,p) = s̄(x,B,q) = c(B · x + q). (5)

Other space mapping types can be found, e.g., in (Koziel et al. 2006).
It is easy to notice that the space mapping algorithm (2–4) has the following two

features. First of all, consistency conditions between the fine and surrogate models
are not necessarily satisfied. In particular, we do not require that the surrogate model
matches the fine model with respect to value and first-order derivative at any of the
iteration points. Second, subsequent iterations are accepted regardless of the objective
function improvement. As a consequence, convergence of the SM algorithm is not
guaranteed in general, and the choice of optimal space mapping approach for a given
problem is not obvious. In the next section we will provide methods for assessing
the quality of the coarse/surrogate model, which are based on information obtained
from the fine model at a set of test points. This information is used to estimate certain
conditions in the convergence results and allows us to predict whether a given model
might be successfully used in space mapping optimization. Using our method one
can also compare the quality of different coarse models, or choose the proper type of
space mapping which would suit a given optimization problem.

3 Quality assessment of coarse and surrogate models

We consider the general space mapping surrogate model (3). We assume for simplic-
ity that Ωf = Ωc = Ω . We start from assumptions concerning the fine and coarse
models and then formulate the convergence theorem.

Assumption 1 Suppose that the following conditions are satisfied.

(i) Ω and Ωp are closed sets.
(ii) Let Ω∗

s (p) denote a set of solutions to the problem x∗
s ∈ arg minx∈Ω{H(s̄(x,p)):

(x,p) ∈ Ωs}. We assume that Ω∗
s (p) is not empty for any p ∈ Ωp.s = {r ∈ Ωp :

∃x∈Ω(x, r) ∈ Ωs} and the following condition is satisfied

sup
x∈Ω∗

s (p)

sup
y∈Ω∗

s (r)

‖x − y‖ ≤ K(r)‖p − r‖ (6)

for any p, r ∈ Ωp.s , where K : Ωp.s → R+ is a bounded function on Ωp.s .
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(iii) Let Ω∗
p(x) denote a set of solutions to the surrogate model parameter extraction

problem. We assume that Ω∗
p(x) is not empty. We also assume that there is k > 1

such that for each i > k, any p(i) ∈ Ω∗
p(x(i)) and any p(i+1) ∈ Ω∗

p(x(i+1)) there
exist Mi > 0 such that

‖p(i+1) − p(i)‖ ≤ Mi‖x(i+1) − x(i)‖ (7)

where {x(i)} is the sequence produced by algorithm (2–4).

Assumption 1(ii) requires that the surrogate model optimal solution is regular with
respect to the space mapping parameters. Assumption 1(iii) can be easily satisfied in
practice if wi.j > 0 for all i and j in the parameter extraction process (4), so that the
uniqueness of the parameter extraction process is ensured for sufficiently large i.

Having the assumptions we can formulate the following convergence result.

Theorem 1 Let {(x(i),p(i))} be a sequence defined by algorithm (2–4). Suppose that
Assumption 1 is satisfied and for each i > k with k as in Assumption 1(iii) we have

qi = K(p(i)) · Mi < 1 − ε (8)

where ε ∈ (0,1) is a small constant independent of i. Then, the sequence {x(i)} is
convergent to x∗, where x∗ ∈ Ω and the sequence {p(i)} is convergent to p∗, where
p∗ ∈ Ωp .

Proof Let us take any x(0) ∈ Ω . Define the sequence {x(i)} as in (2), i.e., x(i+1) ∈
arg min

x∈Ω
H(s(i)(x)) for i = 1, 2, . . . . We need an estimate for ‖x(i+2) − x(i+1)‖. From

Assumption 1(ii) we have

‖x(i+2) − x(i+1)‖ ≤ K(p(i))‖p(i+1) − p(i)‖. (9)

It follows from (9) and Assumption 1(iii) that, for i > k, we have the following esti-
mate.

‖x(i+2) − x(i+1)‖ ≤ K(p(i)) · Mi‖x(i+1) − x(i)‖ ≤ qi‖x(i+1) − x(i)‖ (10)

with qi < 1 − ε for each i = 1, 2, . . . . Now, for any j > i we have

‖x(j) − x(i)‖ ≤ ‖x(i+1) − x(i)‖ + ‖x(i+2) − x(i+1)‖ + · · · + ‖x(j) − x(j−1)‖
≤ (1 + qi + qiqi+1 + · · · + qiqi+1 · · · · · qj−1qj−2) · ‖x(i+1) − x(i)‖
≤ (1 + (1 − ε) + (1 − ε)2 + · · · + (1 − ε)j−i−1) · ‖x(i+1) − x(i)‖

≤ 1 − (1 − ε)j−i

1 − (1 − ε)
‖x(i+1) − x(i)‖ ≤ (1 − ε)i+1

ε
‖x(1) − x(0)‖ (11)

which is arbitrarily small for sufficiently large i, i.e., {x(i)} is a Cauchy sequence.
Thus, since Ω is closed, there exists x∗ ∈ Ω,x∗ = limi→∞ x(i). Existence of the
limit point p∗ of the sequence {p(i)} can be shown in a similar way. This ends the
proof of the theorem. �
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Assumption 2 Suppose that Assumption 1 and the following conditions are satis-
fied.

(i) For any p ∈ Ωp.s there is x ∈ Ω such that (x,p) ∈ Ωs and H(s̄(x,p)) ≤ Hmin,
where Hmin is defined in Definition 1.

(ii) Let (x∗,p∗) be a limit point of the sequence {(x(i),p(i))} as in Theorem 1 and
f (x∗) − s̄(x∗,p∗) = 0 (i.e., the parameter extraction error is zero at the limit
point).

Remark 1 Assumption 2(i) is satisfied, in particular, if for any p, f (Ω) ⊆ s̄({(x, q) ∈
Ωs : q = p}).

Corollary 1 Suppose that Assumption 2 is satisfied, Ω∗
f is not empty, and c,H are

continuous. Then x∗ ∈ Ω∗
f , i.e., x∗ is an optimal solution of the fine model defined

by (1).

Proof Convergence of the sequence {x(i)} follows from Theorem 1. Let x∗ ∈ Ω

be the limit point of {x(i)}, i.e., x∗ = limi→∞ x(i). From Assumption 1 we have
H(s̄(x(i+1), p(i))) ≤ Hmin for all i = 0,1,2, . . . . In particular, we have

Hmin = min
x∈Ω

H(f (x)) ≤ H(f (x∗)) = H(s̄(x∗,p∗)) ≤ Hmin (12)

which gives x∗ ∈ Ω∗
f . The second equality in (12) follows from Assumption 2(ii).

The corollary is proved. �

It is seen that for given fine and coarse models, Assumptions 1 and 2 are not easily
verified unless both f and c are relatively simple explicit functions. Nevertheless,
Theorem 1 and Corollary 1 can be used to derive a simple assessment that would
verify whether a given surrogate (i.e., the coarse model enhanced by some space
mapping) is likely to assure convergence of the space mapping algorithm. This is im-
portant because, as mentioned in the previous section, convergence of the algorithm
is not guaranteed in general and algorithm performance depends on the right choice
of the coarse model and space mapping type.

We will define a set of quality coefficients that, based on the fine and coarse model
data gathered for a set of test points, provide estimates for the product of the bounding
function K and numbers Mi , and estimates for the objective function value attainable
by the optimized surrogate model as well as estimates for the parameter extraction
error. These will allow us to predict whether Assumptions 1 and 2 are likely to be
satisfied for a given combination of a coarse model and space mapping. As a result,
we can choose the surrogate model that is going to perform well while used in a space
mapping algorithm for a given optimization problem.

Let XT = {x(1)
t , x

(2)
t , . . . , x

(Nt )
t } ⊂ Ω be a set of Nt test points. Let us define the

quality factors LSM,HSM, and DSM as follows

LSM = max
i,j∈{1,...,Nt },i =j

lSM.ij , (13)
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HSM = 1

Nt

Nt∑
j=1

H(s̄(y
(j)
t , p

(j)
t )), (14)

DSM = 1

Nt

Nt∑
j=1

‖f (x
(j)
t ) − s̄(x

(j)
t , p

(j)
t )‖ (15)

where

lSM.ij = ‖y(i)
t − y

(j)
t ‖

‖x(i)
t − x

(j)
t ‖

(16)

and p
(i)
t ∈ arg minp∈Ωp.t (

∑Nt

j=1 w
(i)
j ‖f (x

(j)
t ) − s̄(x

(j)
t , p)‖) with Ωp.t being the do-

main of the SM parameters corresponding to the current test set, Ωp.t = {p ∈ Ωp :
(x

(j)
t , p) ∈ Ωs for j = 1, . . . ,Nt }, and y

(j)
t ∈ Ω∗

s (p
(j)
t ) being the optimal solution

of the SM surrogate obtained with our optimization routine. The weighting factors
w(i) should correspond to the distribution of weights used in the actual algorithm.
For example, if the SM algorithm uses wi.i = 1, wi.k = 0 for k = 0,1, . . . , i − 1 (i.e.,
only the fine model data at the most recent point is used in the parameter extraction
process), the weighting factors w(i) should be w

(i)
j = 1 for j = i, and w

(i)
j = 0 for

j = i. For other weighting schemes we recommend: w
(i)
j = 1 for j = i, and w

(i)
j = α

for j = i, with α defined as

α = β

Nt − β(Nt − 1)
(17)

where

β =
∑�Nmax/2�−1

j=0 w�Nmax/2�.j∑�Nmax/2�
j=0 w�Nmax/2�.j

(18)

and Nmax is the expected maximum number of iterations of the SM algorithm. This
definition assures us that the relative effect of increasing w

(i)
j from α to 1 in the

parameter extraction is the same as that of adding a next iteration point in the middle
of the SM algorithm execution (i.e., at iteration �Nmax/2�) while using the weighting
scheme w.

The quality factor LSM is an estimate of the products K · Mi mentioned in Theo-
rem 1, which determines the convergence properties of the SM algorithm. HSM is an
estimate for satisfying Assumption 2. DSM is the measure of the matching error of the
surrogate model. DSM can be treated as another measure of confidence for HSM be-
cause a large matching error means that the estimation of the objective function value
given by HSM cannot be trusted. The number of test points should be chosen so that
one can get a good assessment of the surrogate model with reasonable computational
cost.

Obviously, the larger the number of test points, the better the estimates we can
get, however, in practice, only a few points can provide us with accuracy which is
sufficient for practical assessment of the coarse model. If the value of LSM is smaller
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than 1 it is likely that the space mapping algorithm will converge with a given coarse
model, however even with values larger than 1, convergence is not excluded because
Theorem 1 is concerned with sufficient conditions only. On the other hand, conver-
gence of the algorithm and convergence to the optimal solution of the fine model are
two different issues, which are basically not related to each other, as seen in Theo-
rem 1 and Corollary 1. This is a characteristic feature of space mapping. That is why
we define both HSM and DSM as an estimate for the quality of the solution obtained
using SM. Normally, HSM should be compared with Hmin, which is often not known
beforehand. In many cases, however, e.g., when we are dealing with minimax op-
timization, 0 is a threshold value for the objective function H which distinguishes
between solutions that satisfy the design specifications (H ≤ 0) and those not sat-
isfying the design specifications (H > 0). In such cases, HSM should be compared
with 0. The value of DSM should be as small as possible. On the other hand, if one
wants to compare different coarse models or different space mapping surrogate types,
it is enough to directly compare the values of LSM,HSM and DSM corresponding to
these models.

It is advisable to choose test points as close to the expected location of the fine
model solution as possible, because convergence of the space mapping algorithm is
determined by the values of function K and number Mi (see Assumption 1) in the
neighborhood of the limit point.

4 Examples

In this section we consider two examples of engineering design optimization prob-
lems. Our examples are chosen to illustrate how the assessment methodology de-
scribed in this paper can help in choosing the proper space mapping surrogate model
to solve a given optimization problem. In all numerical experiments, both for space
mapping optimization and the direct optimization, the starting point is chosen to be
the coarse model optimal solution.

4.1 Second-order tapped-line microstrip filter

Consider the following optimization problem: a second-order tapped-line microstrip
filter (Manchec et al. 2006) shown in Fig. 1. The design parameters are x = [L1 g]T ,
where L1 and g are the length and gap parameters shown in Fig. 1. The fine model
f is simulated in FEKO (FEKO® 2004). Evaluation time for the fine model is about
15 minutes on a 3.4 GHz processor. The design specifications are |S21| ≤ −20 dB
for 3.0 GHz≤ ω ≤ 4.0 GHz, |S21| ≥ −3 dB for 4.75 GHz ≤ ω ≤ 5.25 GHz and
|S21| ≤ −20 dB for 6.0 GHz ≤ ω ≤ 7.0 GHz, where S21 is the complex transmission
coefficient between the input and output ports. We use a minimax objective function
(Zhu et al. 2007) in this problem. The model response is the evaluation of |S21| at
33 frequency points uniformly distributed in the interval 3 to 7 GHz. The coarse
model c is the circuit model implemented in Agilent ADS (Agilent ADS 2003) shown
in Fig. 2. Evaluation time for c is a couple of milliseconds. The initial design is
the coarse model optimal solution x(0) = [7.00 0.059]T mm. Figure 3 shows the
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Fig. 1 Geometry of the second-order tapped-line microstrip filter (Manchec et al. 2006)

Fig. 2 Coarse model of the second-order tapped-line microstrip filter (Agilent ADS)

Fig. 3 Second-order
tapped-line microstrip filter: fine
model response (solid line) and
coarse model response (dashed
line) at the initial design x(0)
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Table 1 Second-order tapped-line microstrip filter: quality factor values and optimization results

Surrogate model LSM HSM [dB] DSM Objective function value [dB]

s̄1 1.77 0.62 0 −0.40

s̄2 2.17 −0.34 0 −0.21

s̄3 0.37 −0.73 0 −0.72

fine and coarse model response at x(0). Neither the coarse model nor the fine model
satisfies the design specifications at the initial design, i.e., the corresponding objective
function values are positive.

We use three surrogate models: s̄1(x,p) = s̄1(x, q, d) = c(x + q) + d , which cor-
responds to input space mapping and output space mapping; s̄2(x,p) = s̄2(x,pf ,

d) = cf (x,pf ) + d , which corresponds to frequency and output space mapping,
where cf is a frequency-mapped coarse model, i.e., the coarse model evaluated at
frequencies different from the original frequency sweep for the fine model, according
to the mapping ω → pf.1 +pf.2ω, with pf = [pf.1 pf.2]T ; s̄3(x,p) = s̄3(x,pi, d) =
ci(x,pi) + d , which corresponds to implicit and output space mapping, where ci is
an implicit-space-mapped coarse model with preassigned parameters pi = [εr H ]T ,
where εr and H are relative permittivity and thickness of the dielectric substrate of
the filter, respectively. In all models, input/frequency/implicit SM parameters are ex-
tracted as in (4) with wi.k = 1 for k = 0,1, . . . , i. The output SM parameter d is
calculated as d = f (x) − c(x + q) for model s̄1, d = f (x) − cf (x,pf ) for model
s̄2, and d = f (x) − ci(x,pi) for model s̄3 after the extractable SM parameters are
known.

For our three surrogate models, we calculate the values of LSM,HSM and DSM
using the same set XT consisting of 5 points: the starting point x(0) and four random
points in its neighborhood. Then, we perform optimization using algorithm (2–4).
Table 1 shows the values of the quality factors as well as the value of the objective
function for all the three coarse models considered. Note that DSM equals zero in
all cases by the definitions of the surrogate models. Figure 4 shows the convergence
properties for the SM algorithm using all the considered coarse models.

Our results indicate that the performance of the algorithms complies with the pre-
diction obtained using the quality factors LSM and HSM. The value of LSM for the
model s̄1 is 1.77, and 2.17 for model s̄2, which indicates convergence problems. In-
deed, the plots in Fig. 4 confirm this. In fact, we can observe convergence, which
is, however, very slow. LSM for the model s̄3 is much smaller than 1, and the SM
algorithm is actually convergent.

Also, the solution found by the algorithm working with model s̄3 is better than the
solution found by the algorithm working with models s̄1 and s̄2. Figure 5 shows the
fine model response at the solution x∗ = [6.317 0.050]T found by the SM algorithm
with the surrogate model s̄3.

For comparison purposes we performed direct optimization of the fine model using
the Matlab fminimax method (Matlab™ 2005) which is based on sequential quadratic
programming and line searches. We also performed SM optimization with the surro-
gate model s̄3 and a warm start of the algorithm in which all the test points used in the
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Fig. 4 Second-order
tapped-line microstrip filter:
convergence properties for the
SM algorithm using the
surrogate model s̄1(∗), s̄2 (�),
and s̄3(o)

Fig. 5 Second-order
tapped-line microstrip filter: fine
model response at the solution
found by the SM algorithm with
the surrogate model s̄3

model assessment are employed to create the initial surrogate model for the SM algo-
rithm. Table 2 compares of the computational complexity of the direct optimization
and SM optimization without and with the warm start, as well as the computational
effort of the assessment procedure itself. As we can see, the total SM optimization
time including surrogate model assessment is substantially smaller than the direct op-
timization time. The savings is 83%. By reusing the fine model data obtained during
the assessment phase we can additionally save two fine model evaluations and reduce
the total execution time by 32 minutes. The savings with respect to direct optimiza-
tion is 86%.

4.2 Microstrip bandpass filter with two transmission zeros

Our second example is a microstrip bandpass filter with two transmission ze-
ros (Hsieh and Chang 2003) shown in Fig. 6. The design parameters are x =
[L1 L2 g s d]T , where L1, L2, g, s and d are geometrical parameters defined in
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Table 2 Second-order tapped-line microstrip filter: comparison of computational complexity for direct
and space mapping optimization

Procedure Number of fine Objective function Total execution

model evaluations value [dB] time*

Direct optimization 83 −0.70 1228 min

Surrogate model assessment 5 N/A 79 min

SM optimization 8 −0.72 124 min

Surrogate model assessment + 13 203 min

SM optimization

SM optimization with warm start 6 −0.72 93 min

Surrogate model assessment + 11 172 min

SM optimization with warm start

*Total execution time includes the total fine model evaluation time and all the overhead related to parameter
extraction and surrogate optimization

Fig. 6 Geometry of the
bandpass filter with two
transmission zeros (Hsieh and
Chang 2003)

Fig. 6. The fine model f is simulated in FEKO (FEKO® 2004). Evaluation time
for the fine model is about 25 minutes on a 3.4 GHz processor. The design spec-
ifications are |S21| ≤ −20 dB for 1.0 GHz ≤ ω ≤ 1.7 GHz, |S21| ≥ −3 dB for
1.9 GHz ≤ ω ≤ 2.1 GHz and |S21| ≤ −20 dB for 2.3 GHz ≤ ω ≤ 3.0 GHz. We use
a minimax objective function (Zhu et al. 2007). The model response is the evalua-
tion of |S21| at 41 frequency points uniformly distributed in the interval 1 to 3 GHz.
The coarse model c is the circuit model implemented in Agilent ADS (Agilent ADS
2003) shown in Fig. 7. Evaluation time for c is several milliseconds. The initial design
is the coarse model optimal solution x(0) = [3.374 10.89 0.113 0.344 2.699]T mm.
Figure 8 shows the fine and coarse model response at x(0).

We use four surrogate models: s̄1(x,p) = s̄1(x, q) = c(x + q), which corresponds
to input space mapping; s̄2(x,p) = s̄2(x, q,pf ) = cf (x +q,pf ), which corresponds
to input space mapping with cf being a frequency-mapped coarse model, i.e., the
coarse model evaluated at frequencies different from the original frequency sweep for
the fine model, according to the mapping ω → pf.1 +pf.2ω, with pf = [pf.1 pf.2]T ;
s̄3(x,p) = s̄1(x, q, d) = c(x + q) + d , which corresponds to input and output space
mapping; and s̄4(x,p) = s̄2(x, q,pf , d) = cf (x + q,pf ) + d , which corresponds to
input and output space mapping with cf as in s̄2. In all models, the SM parameters
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Fig. 7 Coarse model of the bandpass filter with two transmission zeros (Agilent ADS)

Fig. 8 Bandpass filter with two
transmission zeros: fine model
response (solid line) and coarse
model response (dashed line) at
the initial design x(0)

are extracted as in (4) with wi.k = 1 for k = 0,1, . . . , i. The output SM parameter d

is calculated as d = f (x)− c(x + q) for model s̄3, and d = f (x)− cf (x + q,pf ) for
model s̄4, after the extractable SM parameters are known.

For all surrogate models, we calculate values of LSM,HSM and DSM using the
same set XT consisting of 5 points: the starting point x(0) and four random points
in its neighborhood. Then, we perform optimization using algorithm (2–4). Table 3
shows the values of the quality factors as well as the value of the objective function
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Table 3 Bandpass filter with two transmission zeros: quality factor values and optimization results

Surrogate model LSM HSM [dB] DSM Objective function value [dB]

s̄1 0.17 −2.05 0.022 −1.51

s̄2 0.15 −2.05 0.023 −1.79

s̄3 8.7 −1.57 0 +4.09

s̄4 12.6 −1.92 0 +3.50

Fig. 9 Bandpass filter with two
transmission zeros: convergence
properties for the SM algorithm
using the surrogate model
s̄1(×), s̄2 (o), s̄3 (�), and s̄4 (∗)

for all the three coarse models considered. Figure 9 shows the convergence properties
for the SM algorithm using all the considered coarse models. Figure 10 shows the fine
model response at the solution x∗ = [2.371 11.879 0.569 0.364 2.558]T found by the
SM algorithm with the surrogate model s̄3.

Based on the values of the quality factors in Table 3 we can predict that the space
mapping algorithm using surrogate models that use the output space mapping term d

should perform worse than the algorithm working with models not using the output
space mapping, which is actually the case, even if the output space mapping allows
us to obtain perfect matching between the surrogate and the fine model at the current
iteration point (i.e., DSM = 0). Note also that DSM for models s̄1 and s̄2 is very small,
which means that input and input/frequency space mapping is able to substantially
remove the mismatch between the fine and surrogate models.

For comparison purposes we performed direct optimization of the fine model using
the Matlab fminimax method (Matlab™ 2005). We also performed SM optimization
with the surrogate model s̄2 and the warm start of the algorithm in which all the test
points used in the model assessment are employed to create the initial surrogate model
for the SM algorithm. Table 4 compares of the computational complexity of the direct
optimization and SM optimization without and with the warm start as well as the
computational effort of the assessment procedure itself. The total SM optimization
time including surrogate model assessment is substantially smaller than the direct
optimization time. The savings is 93.5%. By reusing the fine model data obtained
during the assessment phase we can additionally save three fine model evaluations
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Fig. 10 Bandpass filter with
two transmission zeros: fine
model response at the solution
found by the SM algorithm with
the surrogate model s̄2

Table 4 Bandpass filter with two transmission zeros: comparison of computational complexity for direct
and space mapping optimization

Procedure Number of fine Objective function Total execution

model evaluations value [dB] time*

Direct optimization 245 −1.69 102 hours 3 min

Surrogate model assessment 5 N/A 2 hours 15 min

SM optimization 12 −1.79 5 hours 12 min

Surrogate model assessment + 17 7 hours 27 min

SM optimization

SM optimization with warm start 9 −1.58 4 hours 1 min

Surrogate model assessment + 14 6 hours 16 min

SM optimization with warm start

*Total execution time includes the total fine model evaluation time and all the overhead related to parameter
extraction and surrogate optimization

and reduce the total execution time by 1 hour and 11 minutes. The savings with
respect to direct optimization is 94.5%. The value of the objective function is slightly
worse though.

5 Conclusions

We have formulated quality factors that allow us to predict the performance of a space
mapping optimization algorithm that uses a particular surrogate formulation. These
quality factors are derived from convergence results for a general space mapping op-
timization algorithm. They are based on a set of test points and aim at estimating
whether or not a given combination of coarse/fine model and space mapping formu-
lation is likely to satisfy convergence conditions. They can be used to compare differ-
ent coarse models as well as different space mapping types to suggest a combination
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that may be suited to a given problem. The examples we have provided illustrate our
approach and indicate its usefulness.

Acknowledgements The authors would like to thank the referees of this paper for observations that
significantly improved its presentation.
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