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From Magnetic Flux Leakage Measurements
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We present an inversion methodology for defect characterization using the data from magnetic flux leakage (MFL) measurements.
We use a single tangential component of the leakage field as the MFL response. The inversion procedure employs the space mapping
methodology. Space mapping is an efficient technique that shifts the optimization burden from a computationally expensive accurate
(fine) model to a less accurate (coarse) but fast model. Here the fine model is a finite-element method (FEM) simulation, while the coarse
model is based on analytical formulas. We achieve good estimation of the defect parameters using just a few FEM simulations, which
leads to substantial savings in computational cost as compared to other optimization approaches. We examine the efficiency of the pro-
posed inversion technique in estimating the shape parameters of rectangular and cylindrical defects in steel pipes. Our results show good

agreement between the actual and estimated defect parameters.

Index Terms—Crack sizing, magnetic flux leakage (MFL), magnetic inverse problems, space mapping optimization.

I. INTRODUCTION

HE magnetic flux leakage (MFL) technique plays an
Timportant role in the nondestructive evaluation (NDE) of
buried oil and gas pipelines in order to find metal-loss regions
usually caused by corrosion, fatigue, etc. The size and shape
of the defects can be obtained by studying the distribution of
the MFL output signal. After the leakage field is measured, an
inverse problem must be solved so that the shape characteristics
of the flaw, such as width, length, and depth can be estimated.
The correct assessment of this information is vital in order to
determine critical regions in the pipelines.

The MFL inversion techniques often use an iterative approach
where a forward model calculates the leakage field for a given
set of defect parameters (illustrated in Fig. 1).

Three major groups of forward models are commonly used.
The first group involves numerical simulations typically based
on the finite-element method (FEM) [1]-[3]. These models
provide accurate results but the drawback is that they are
computationally very demanding. The second group consists of
closed-form analytical formulas for defects of certain canonical
shapes [4]-[7]. These models typically utilize magnetic poles
or a dipolar charge on the defect walls. They are very fast
but less accurate and versatile due to the assumptions made
in deriving the analytical formulas [5], [7]. The third group
of forward MFL models is based on artificial neural networks
for two-dimensional (2-D) and three-dimensional (3-D) flaws
[8]-[12]. These models are fast but are limited to the region in
parameter space for which the neural network is trained.

The availability of the forward models based on FEM sim-
ulations [1]-[3] and the analytical formulas [4]-[7] prompts
us to employ space mapping (SM) optimization in the defect
parameter estimation from MFL data. SM exploits in an iter-
ative manner the two models: an expensive or “fine” model
which is very accurate but expensive or time-consuming, and
the so-called “coarse” model, which is less accurate but cheaper
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Fig. 1. Flowchart of a conventional iterative procedure for MFL inversion.
H,oa is the field calculated by the forward model. Hi,, is field measured
by Hall effect sensors after subtracting the applied field. € is the termination
criterion.

or faster to evaluate [13]-[17]. Provided that the misalignment
between the fine and coarse model is not severe, SM-based algo-
rithms typically provide excellent results after only a few eval-
uations of the fine model. They are far more efficient than the
direct optimization of the fine model alone. The fine model data
is utilized in the SM algorithm to update the coarse model itera-
tively during the optimization process and to create the so-called
surrogate model. Thus, SM optimization allows us to benefit
from the accuracy of the FEM simulations as a fine model and
the speed of the analytical formulas as a coarse model. Based
on this scheme, one can significantly reduce the CPU time nec-
essary to characterize the defect parameters.

Here, defect characterization using SM-based optimization is
performed for two common types of defects in pipelines—rect-
angular and cylindrical defects. The results of parameter estima-
tion for some sample defects demonstrate the efficiency of the
SM-based optimization as a reliable and fast inversion method,
especially in comparison with classical methods performing di-
rect optimization of the FEM model.

II. MAGNETIC FLUX LEAKAGE MEASUREMENT

MFL tools use permanent magnets to magnetize the pipe’s
wall to near saturation flux density. If the wall’s thickness is
reduced by the presence of a defect, a higher fraction of the
magnetic flux leaks from the wall into the air inside and outside
the pipe. This leakage flux is detected by a Hall sensor and is
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Fig. 2. Dipolar representation of defect: (a) rectangular, (b) cylindrical.

used to estimate the shape and size of the defect. Fig. 2(a) shows
the MFL setup for the detection and evaluation of a rectangular
crack with length [, width w, and depth d. Fig. 2(b) shows a sim-
ilar illustration of a cylindrical defect with radius R and depth
D. In this work, we monitor the y-component of the magnetic
field as the MFL response.

A. Analytical Models to Predict MFL Response

In all analytical expressions for the MFL signal [4]-[7], it is
assumed that the crack is filled with homogeneously distributed
magnetic dipoles, i.e., that the surface density of the magnetic
charge has a constant value along the crack walls.

Edwards and Palmer [4] presented analytical solutions for the
leakage field of a surface-breaking crack as a function of the
applied magnetic field strength, the permeability, and the crack
dimensions. Also, they approximated the MFL response for a
semi-elliptical surface-breaking cavity by an equivalent rectan-
gular slot with constant polarity o, positive poles on one face
(o0s = 40), and negative poles on the other (65 = —0). Then,
the differential charge element d,, in a position (z,y,z) pos-
sesses a charge proportional to its area [4]

dy = oydyd.. (1

The magnetic field H is calculated at all observation points by
integrating the magnetic field due to all charge elements d,,:

u-f [ 52
473

(z,2)€S

T @

where S is the surface of the crack wall and r is the distance
vector from the point of integration to the point of observation.
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Similar to the previous analytical expressions for surface-
breaking cracks, a dipolar magnetic charge model has been de-
veloped for cylindrical pit defects [5]. As shown in Fig. 2(b),
half of the cylinder wall develops positive magnetic charge den-
sity +o while the other half has negative charge density —o.
The angle  is measured from the positive x-axis to an element
of magnetic charge, d,,. The differential element d, has coordi-
nates (Rcosf, Rsinf, z) and a charge proportional to its area

[5]
d, = o Rdyd.. 3)

The magnetic field H is calculated using the same integral as in
(2) but over a circular wall S.

It has been shown that the simplifying assumptions made
in deriving the analytical expressions, especially neglecting
the local variations in the magnetization and the permeability
around the crack mouth, lead to errors in calculating the leakage
field. This indicates that the distribution of the magnetic dipoles
o along the crack depth are in fact not constant [5]-[7].

B. FEM Simulations to Predict MFL Response

In MFL-type NDE, we deal with a highly nonlinear system
involving a permanent magnet and steel. The Maxwell’s equa-
tions in a nonlinear permanent-magnet system lead to [21]

VXVxA=pu(J+VxM) “

where p9,J, and A are the permeability of vacuum, the cur-
rent density, and the magnetic vector potential, respectively. The
magnetization M is a nonlinear function of B = V x A.. There-
fore, the nonlinear equation (4) is solved iteratively.!

A nonlinear structural FEM using Maxwell v. 11 [22] is used
for simulating the 3-D magnetic field around and inside a sur-
face crack in a steel slab. Fig. 3 shows the model geometry.
Steel_1010 is selected from the simulator’s library as the ma-
terial type for the steel slab.

In order to decrease the computational time and still maintain
good accuracy, a simplified model of the magnetizer is used.
The steel slab is magnetized with two parallel magnets (Fig. 3).
NDFe35 is selected as the magnet material. It magnetizes the
steel plate in the y-direction (Fig. 3) with a coercivity such that
the operating point is in the knee area of the B—H curve for
Steel_1010. This is desirable because it leads to the maximum
signal-to-noise ratio for obtaining the leakage crack signal [21].

Some additional boundary conditions are set to enforce the
magnetic field inside the metal to be parallel to the y-axis. These
boundary conditions are: (a) zero normal component of the mag-
netic field to all faces of the magnetizers except the faces which
are parallel to the x-z plane; (b) zero tangential components of
the magnetic field at the faces of the magnetizers which are par-
allel to the z-z plane; (c) zero normal component of the mag-
netic field at the faces of the steel which are parallel to the y-z
plane.

Itis worth noting that the results of the simulated MFL signals
using similar methodology and their corresponding measured
signals for rectangular cracks have been presented in [23]. They
show good agreement.

lThroughout, we denote 3-D field vectors in bold, while matrices and column
vectors are in bold italics.
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Fig. 3. 3-D view of the simulated model in Maxwell v. 11: (a) structure; (b)
FEM mesh on the surface of the metal slab with enforced refinement of elements
in the region around the crack.

III. SPACE MAPPING OPTIMIZATION

Space mapping (SM) is a recognized engineering optimiza-
tion methodology that encompasses a number of efficient ap-
proaches [13]-[18]. The main idea behind SM is that the di-
rect optimization of an accurate but computationally expensive
high fidelity or “fine”” model of interest is replaced by the iter-
ative optimization and updating of a so-called “coarse” model
(Iess accurate but much cheaper to evaluate). An example of a
fine model would be a device analyzed using an electromag-
netic simulator; the coarse model might be a circuit equivalent of
the device evaluated using a conventional circuit simulator. Pro-
vided that the misalignment between the fine and coarse models
is not significant, SM-based algorithms typically provide excel-
lent results after only a few evaluations of the fine model. In con-
trast, direct optimization typically requires dozens or hundreds
of evaluations and often fails to provide acceptable results.

Let Ry : Xy — R™ denote the response vector of the fine
model of a given device, where Xy C R™. Our goal is to solve

T; = argznelglf U(Rs(x)) Q)

where U : R™ — Ris a given objective function. In many engi-
neering problems, we are concerned with the so-called minimax
objective function: if we denote the fine model response compo-
nents by Ry = [R¢1 ... Ry.,,|7, the lower specification vector
by Ry = [R;1 ... R;.,]7, and the upper specification vector by
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R, = [Ry1...Ry.m]7", then we require that Ry; < R, ; for
i€ l,and Ry; > R ;fori € I;,where I;, I, C {1,2,...,m}.
The minimax objective function is given by

U(Rf) = max {max(Rf_i — Ruz), max(Rl_i — Rf_i)} .
i€y, i€l;
(6)

In some problems, U can be defined by a norm, i.e.,
U(Rys) = ||[Rf — Rspecl| (7)

where Ropec = [Repec. - - - Rspee.m|” 18 the target response.
We consider the fine model to be expensive to compute and
solving (5) by direct optimization to be impractical. Instead,
we use surrogate models, i.e., models that are supposed to be
good local representations of the fine model and computation-
ally cheap, hence suitable for iterative optimization. According
to the SM approach, the surrogate is built based on the coarse
model as well as some auxiliary mappings. The mapping pa-
rameters are adjusted during the so-called parameter extrac-
tion process in order to reduce misalignment between the fine
model and the surrogate. The process of updating the surrogate
model is performed iteratively using the fine model data accu-
mulated during the optimization process. We consider an opti-
mization algorithm that generates a sequence of points z® 4 =
0,1,2,..., and a family of surrogate models RS , so that

Y = arg min U(RY (z)). (8)

Let R, : Xy — R™ denote the response vector of the coarse
model that describes the same object as the fine model but is less
accurate and much faster to evaluate. Let R, be a generic SM
surrogate model, i.e., the coarse model composed with suitable
SM transformations. At iteration ¢ the surrogate model Rgz) is
defined as

R (z) = Ry(z,p") ©)

where

P =argmin ¥ wi x|Rs(z®) — Ro(=™,p)||  (10)
P k=0

is a vector of model parameters and w; j, are weighting factors.
Typically, we put w; . = 1 for all 7 and k.

A variety of SM surrogate models is available [17], [18].
One of the most popular approaches is the so-called input SM
[13], in which the generic SM surrogate model takes the form
R,(z,p) = R,(z,B,c) = R.(B - x + c). Another popular ap-
proach is the so-called output SM where the surrogate model
is defined as R (z,p) = Ri(z,d) = R.(x) + d, where d
is a correction term accounting for the difference between the
fine and coarse model responses at iteration 7, so that d? =
R;(z") — R.(z"). In other words, this output SM ensures
zero-order consistency between the fine model and the surro-
gate [24]. In practice, basic mappings are often combined to-
gether in order to create more involved surrogate models. Fig. 4
illustrates the combination of the input and output space map-
ping approaches.

The choice of SM surrogate type is normally problem depen-
dent. Some methods of assessing the surrogate model as well as
the techniques for automatic selection of the surrogate model for
a given optimization problem can be found in [25] and [26]. In
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many cases, including this paper, a suitable model can be found
using the following approach: (i) start with the simplest model
(e.g., shift-based input space mapping with only parameter c);
(ii) perform parameter extraction; (iii) check the matching be-
tween the surrogate and the fine model; (iv) if the matching is not
sufficient (which can be examined visually by observing model
responses), add degrees of freedom and go back to (ii). The
model verification may be performed at the starting point so that
no extra fine model evaluations are necessary. Also, over-flexi-
bility of the surrogate model should be avoided because it nor-
mally degrades its generalization capabilities [26].

Typically, the starting point z(®) of the SM optimiza-
tion algorithm is a coarse model optimal solution, i.e.,
(0 = argmin{z : U(R.(z))}.

The SM optimization algorithm flow can be described as
follows:

Step 1) Choose the proper coarse model as well as space

mapping surrogate type. Set z = 0.

Step 2) Evaluate the fine model to find R (z(").

Step 3) Obtain the surrogate model RS’) using (9) and (10).

Step 4) Given z(®) and Rgi), obtain (¢t 1) using (8).

Step 5) If the termination condition is not satisfied go to

Step 2); else, terminate the algorithm.

Step 3) is the parameter extraction and it plays a crucial role
in establishing the surrogate model. Usually, the algorithm is
terminated when convergence is obtained or when the user-de-
fined maximum number of iterations is exceeded.

IV. INVERSION PROCEDURE BASED ON SM OPTIMIZATION

In this work, we estimate the shape parameters of rectangular
and cylindrical defects using SM-based optimization. In case
of crack-like rectangular defects, we assume that the width of
the crack is very small compared to its length and depth such
that the variation of the MFL signal with the width is negligible.
Therefore, the inversion problem is a two-variable optimization
problem for the length [ and the depth d, i.e., z = [l d]T. In
the case of cylindrical defects, the parameters of interest are the
radius R and the depth D. The inversion problem is again a
two-variable optimization problem, i.e., z = [R D]T. Fig. 5
illustrates the flowchart of the SM-based optimization for esti-
mating the parameters of interest. FEM simulations serve as the
fine models and the analytical formulas given by (1)—(3) imple-
mented in Matlab [27] serve as the coarse model. We use the
SMEF system [28], [29] to perform the SM optimization.
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Fig. 5. Flowchart of space mapping optimization.

The termination condition for the SM algorithm has the fol-
lowing form:

2t — 20

, (11)
[l

where || - || is the ly-norm, and where (9,5 = 0,1,..., is the
sequence of solutions produced by the SM algorithm, and ¢ is a
small user defined constant.

V. RESULTS

Results of various simulation tests are presented here to assess
the accuracy and the computational efficiency of the proposed
inversion technique based on SM optimization. For this purpose,
two rectangular cracks and two cylindrical pits are examined.
Tables I and II show the parameter values of these defects. The
target MFL responses for all cases are the y-component distri-
butions of the magnetic field monitored at a distance of 3.5 mm
above the surface of the metal. These are produced using FEM
simulations. We assume that the search regions for the param-
eter values are restricted within the following ranges: (a) for
rectangular cracks, 5 mm </ < 65mmand 0.1 mm < d < 4.5
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TABLE I
LENGTH AND DEPTH FOR THE RECTANGULAR CRACKS

Crack Length, / Depth, d

name
Crackl

(mm)

2.5

(mm)

15
35

1.5

Crack2

TABLE II
RADIUS AND DEPTH FOR THE CYLINDRICAL PITS

/ N
R
R
/ I///II/II
R

Depth, D

Radius, R

Pit name
Pitl

10108 ] Suless

(mm)
4
2

(mm)
3
5

Pit2

0.5mm < R < 10 mm and

mm; and (b) for cylindrical pits,

0.5mm< D <4

mim.

5

It should be noted that the performance of a space mapping
algorithm depends on the similarity between the fine model and

the coarse model, which can be expressed in rigorous mathe-

d (m)

matical terms (e.g., [18]). Unfortunately, it is difficult to verify
whether this similarity is sufficient or not for a given problem

because of the lack of fine model data. Therefore, it is beneficial
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to ensure as good alignment between the coarse and fine model

as possible beforehand. In our case, as the maximum amplitudes

3000 -

10108] SuIjeos

The surface describes the coefficient which multiplies the
coarse model response to match the corresponding fine model
response within the search region. We construct this surface

models are substantially different, we use a scaling surface to

of the MFL distributions obtained from the coarse and the fine
align them.

using the coarse and fine model responses for a set of five sample

defects and defining four quadrant subsurfaces. These points are

(=
(=

R (m)

selected so that they roughly cover the whole 2-D parameter

space of interest. Fig. 6

shows the construction of the scaling

3, and 4) defined by

s

2

surface from 4 quadrant subsurfaces (1,

Fig. 6. (a) Constructing the scaling surface from four quadrant surfaces and
five points (defects). (b) Illustration of scaling surface for rectangular cracks.

(c) Ilustration of scaling surface for rectangular cracks.

5 defects (points), ', z2, 3, *, and 2°. Each subsurface is de-

fined by three points and linear interpolation/extrapolation for-
mula. Table III shows the cracks that are used to define the four

subsurfaces in Fig. 6. We use the following 2-D inter/extrapola-

tion formula to evaluate the subsurface M at any x:

TABLE III
CRACKS (POINTS) USED TO DEFINE FOUR SUBSURFACES IN FIG. 6

Parameter
Region

Defect vertex
No

Region No

12)

A-x1+B-20+C

T, T2) =

(

where A, B, and C are constants which are computed using
the corresponding three points to define this subsurface.

M

1,2,5

A VI
= R
Y/
=R
vy wy
< <
e
N <t
I
R
8 N
"o
& »
— &2,
o
B
8
(=
<
&
2
2\
o
-

For rectangular cracks, the following points (cracks) are

used to construct the scaling surface: z!

30 47,z =

[50 2.5]T, 2

The sample points in the case of cylindrical pits are

that the described scaling method has been chosen as a tradeoff

2 2.5]7,

’

, ot

8 2.5, 2% = [5 4|7

' =[5 17,2* =

and z°

[5 2.5]T. Fig. 6(b) and (c) illustrates the constructed between the accuracy of the scaling and the computational

cost of extra fine model evaluations required to implement the
scaling. More accurate scaling (e.g., with a quadratic regression

scaling surfaces based on the mentioned points for two type
of defects. Once we have the scaling surface M (z), we use
the scaling factor at each z to adjust the level of the coarse

model response to that of the fine model. It should be noted

model) would require more fine model data, whereas five points

together with a piecewise linear approximation is sufficient for
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TABLE IV
INVERSION RESULTS FOR SM OPTIMIZATION OF INVESTIGATED DEFECTS

Initial point ; Optimal point
Defect ! MRE for ( x°) No ofSM No of Fme.Mode] - MRE for ¥,
(x2) Iterations Evaluations (x;)

Crackl 1738 29 6 7 1>.13 0.8
rac 3.53 248 :
Crack2 3421 33 6 7 311 1.1
rac | 2.46 153 '
Pit1 4131 36 7 8 1 6

it 12.62 | 3.66
Pit2 6071 18 3 4 >00 1.2
it 1170 | 1.95 :

our purposes. The location of the points is not critical, although
a factorial-type distribution of points (cf. [30]) is often used.

We would like to mention that the local alignment between
the fine model and the surrogate can also be ensured using an
output space mapping as explained in Section III. Unfortunately,
when the scaling surfaces are left out and the output space map-
ping is used instead, the algorithm is not able to find satisfac-
tory solutions in our case. The reason is that the output space
mapping surrogate “transfers” the residual (i.e., the difference
between the fine and coarse model at the current iteration point)
to the new surrogate model optimum, which may be misleading
if the overall alignment between the fine and coarse models is
too poor, as it is the case when the scaling surfaces are not used.

Prior to starting the SM optimization, the optimal solution
of the corresponding coarse model is computed. In particular,
the coarse models are directly optimized using the sequential
quadratic programming (SQP) method in Matlab optimization
toolbox [24]. We examined optimal points, z, obtained from di-
rect optimizations of the coarse models when starting from dif-
ferent initial points. The results demonstrated that the optimiza-
tion algorithms converge to unique solutions for all investigated
defects which are [17.38 3.53]7,[34.2 2.46]T,[4.28 2.50]T,
and [6.07 1.70]7 for Crackl, Crack2, Pitl, and Pit2, respec-
tively. A quantitative comparison of the inversion results from
the direct optimization of the coarse model is given in Table IV,
where the mean relative error (MRE) is defined as

€2

) . .
MRE(#) = 3 <|‘”2 2204 |"71$ 7 |> x 100 (13)
1

where z and z denote the actual and solution points,
respectively.

The SM optimization is performed using the input space
mapping surrogate model of the form R, (x,p) = Ry(x,c) =
R.(z + ¢) with the vector ¢ obtained through the parameter
extraction process (10). This particular model has been chosen
because it provides sufficient matching with the fine model, so
that there is no need to exploit more involved models in our
case. We use the termination condition (11) with ¢ equal to
0.01.

Table IV summarizes the optimization results. The SM
initial points, which are the optimal points of the coarse

models, are denoted as z}. The table also shows the MRE
for the coarse model (column 3) and the MRE for the fine
model (last column). It is observed that the SM optimiza-
tion converges to the solution after few fine model evalua-
tions. The solutions for Crackl, Crack2, Pitl, and Pit2 are
[15.13 2.48]7, [35.11 1.53]T, [3.09 3.73], and [5.01 1.99]T,
which show MRE values of 0.8, 1.1, 6, and 1.2, respectively,
when compared to the actual parameter values. These errors
demonstrate significant improvement in the parameter estima-
tion when compared with the MRE values obtained for coarse
model optimal points.

Fig. 7 compares the target MFL responses with MFL re-
sponses obtained in optimal points for the coarse models, i.e.,
z, and MFL responses obtained in SM optimal points, i.e., Z ¢,
for all investigated defects.

In order to confirm the efficiency of the SM optimization in
getting fast and accurate results, we compare with direct opti-
mization of the fine model. We choose [30 3]% and [4 2.5]7
as the initial points for Crackl and Pitl, respectively. The solu-
tions via direct optimization of the fine model using SQP con-
verges after 43 and 39 fine model evaluations for Crackl and
Pitl, respectively. The solutions found with the termination con-
dition of (11) with § = 0.01 are [25.9 1.65]7 and [4.29 2.66]T,
respectively. Corresponding values of MRE are 53 and 38, re-
spectively. These large errors demonstrate that the direct opti-
mization leads to the local minima in both cases, which are not
the best solutions available. In contrast, SM optimization actu-
ally converges to the true solutions with the final result being of
much smaller MRE. Also, these results indicate that the direct
optimization of the fine model is far more computationally ex-
pensive than SM optimization.

It should be noted that a single FEM simulation takes
about 1 h of CPU time and 1.2 GB of memory using a
3.2 GHz Pentium 4 processor. This means that the direct
optimization of the fine model requires in excess of 40 h of
CPU time. The direct optimization of the coarse model is
very fast and takes just a few seconds, however, the resulting
solutions are not acceptable in terms of the accuracy (typical
MRE is about 30). Besides, five fine model evaluations (i.e.,
about 5 h of the CPU time) are required to perform the
coarse model scaling. On the other hand, space mapping
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Fig. 7. Comparison of the target MFL response with MFL response obtained at the initial point z}, i.e., coarse model optimal point, for: (a) Crackl,
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(d) Crack2, (f) Pitl, (h) Pit2.

optimization gives excellent results (typical MRE about 1) VI. CONCLUSION

and requires only about 7 h on average. This confirms that In this work, we present a space mapping optimization
SM optimization is an efficient method of performing the method to estimate defect parameters from MFL data. The
inversion procedure in defect characterization. proposed methodology was tested and verified for two common
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types of defects, rectangular cracks and cylindrical pits. The
results demonstrated that there is a dramatic reduction in the
number of fine model evaluations and therefore CPU time
when using space mapping optimization instead of direct fine
model optimization. Also, the results show that the proposed
fast inversion technique features much improved accuracy,
especially when compared to the results obtained using the
analytical models.

Here, we have used simulated MFL signals as the target
responses. In practice, a measured MFL response may be
degraded by mechanical and electronic noise. This may lead
to misalignment between fine model and actual measurements.
Proper denoising of the measured signal has to be employed
prior to solving the inverse problem. Also, uncertainties in
factors such as the B—H curve of the steel pipe, the liftoff
distance of the magnetic sensor, the intensity of the excitation,
etc., have to be considered. Such considerations would amount
to an additional step in the inversion problem where the FEM
simulations are aligned with the measured signal. From our
experience [23], excellent alignment between FEM simulation
and MFL measurements could be achieved with a simple
multiplication of the whole data set by a single scaling (or
calibration) factor. It takes into account the differences in the
excitation sources employed in reality and in the simulations.

Furthermore, the described coarse models based on the an-
alytical formulas are available only for specific types of de-
fects. For arbitrary shape defects, other coarse models like a
lightly-trained neural network or discretization of the defect
shape to small canonical shapes with know coarse models could
be used. This indicates that solving arbitrary shape defects is
more involved and could be considered as our future research
scope.
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