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Abstract—We introduce a tuning space-mapping technology for
microwave design optimization. The general tuning space-map-
ping algorithm is formulated, which is based on a so-called tuning
model, as well as on a calibration process that translates the
adjustment of the tuning model parameters into relevant updates
of the design variables. The tuning model is developed in a fast
circuit-theory based simulator and typically includes the fine
model data at the current design in the form of the properly
formatted scattering parameter values. It also contains a set of
tuning parameters, which are used to optimize the model so that
it satisfies the design specification. The calibration process may
involve analytical formulas that establish the dependence of the
design variables on the tuning parameters. If the formulas are not
known, the calibration process can be performed using an auxil-
iary space-mapping surrogate model. Although the tuning space
mapping can be considered to be a specialized case of the standard
space-mapping approach, it can offer even better performance
because it enables engineers to exploit their experience within the
context of efficient space mapping. Our approach is demonstrated
using several microwave design optimization problems.

Index Terms—Computer-aided design (CAD), engineering opti-
mization, space mapping, surrogate models, tuning.

I. INTRODUCTION

S PACE MAPPING is a widely recognized technique for
optimization of expensive functions, also called “fine”

models (typically implemented with CPU-intensive electro-
magnetic (EM) simulators), through iterative optimization and
updating of the surrogate models, which are built using cheaper
“coarse” models [1]–[6]. The coarse model, although less
accurate, is still required to describe the fine model behavior
relatively well, in which case, the space-mapping algorithm
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typically provides satisfactory results after only a few evalua-
tions of the fine model. Space mapping was originally applied
in microwave engineering [7]–[11], but it has already proven its
success in many other areas (e.g., [12]–[15]). Space mapping
belongs to a broader family of surrogate-model-based opti-
mization methods [16]–[21]; however, its distinctive feature is
that the surrogate model is created through a physically based
coarse model, but not by direct approximation of the available
fine model data.

A number of papers cover different aspects of space map-
ping, including the development of new optimization algorithms
[2]–[5], space-mapping-based modeling [22]–[24], neuro space
mapping [25]–[28], theoretical foundations [4], [29], [30], etc.

The concept of tuning, also widely used in microwave
engineering [31], [32], can be considered within the scope of
the space-mapping approach. In our new tuning space-map-
ping algorithm, the surrogate model’s role is taken by a
so-called tuning model, which is constructed by introducing
circuit-theory based components (e.g., capacitors, inductors, or
coupled-line models) into the fine model structure, and param-
eters of these circuit components are chosen to be tunable. In
each iteration, the tuning model is updated and optimized with
respect to the tuning parameters. This process takes little CPU
effort as the tuning model is typically implemented within a
circuit simulator. With the optimal tuning parameters thus ob-
tained, a calibration is needed to transform these tuning values
into an appropriate modification of the design variables, which
are then assigned to the fine model. The calibration process
may involve analytical formulas (if a functional dependence
of the design variables on the tuning parameters is known
explicitly) or it may require an auxiliary model, typically a fast
space-mapping surrogate. The tuning space-mapping iteration
is repeated until the fine model response is sufficiently close
to the design target. The structure of the tuning model, as well
as a proper selection of the tuning elements, is crucial to the
performance of the overall optimization process.

Approaches based on the idea of tuning space mapping have
been proposed and applied in the microwave and RF arena,
though they are not explicitly formulated in the space-mapping
nomenclature. Rautio [31] introduced the tuning method devel-
oped by EPCOS for low-temperature co-fired ceramic (LTCC)
design and stated that it is an effective technique that can be used
for any RF design. Swanson [32] successfully applied the port
tuning strategy to various microwave circuits such as combline
filters.

In this paper, we give a formal description of our novel tuning
space-mapping optimization algorithm that iteratively updates
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Fig. 1. Concept of the tuning model.

and optimizes a so-called tuning model in conjunction with a
calibration procedure which translates the adjustments of the
tuning parameters into relevant adjustments of the design vari-
able values. The special case of this method, based on a space-
mapping surrogate-model calibration, has been introduced in
[33]. Here, we put the tuning space-mapping technique in a
more general setting that also allows analytical calibration. We
discuss the relation of the tuning space mapping to the stan-
dard space-mapping approach, provide its intuitive explanation
through a simple microstrip line optimization problem, as well
as discuss some practical issues of our method. Its robustness
is demonstrated using several microwave design optimization
problems.

It should be mentioned that Section II contains a general and
detailed theory of the tuning space mapping technique. How-
ever, the concept and value of this approach can be captured by
considering the examples of Section III. The interested reader
can refer to Section II in order to find a rigorous description of
the algorithm, as well as some important implementation de-
tails.

II. TUNING SPACE MAPPING

A. Principle of the Tuning Space-Mapping Approach

We are concerned with the following optimization problem:

(1)

where denotes the response vector of a fine model
of the device of interest, is a merit function (e.g., a minimax
function or a norm), is a vector of design parameters, and
is the optimal solution to be determined; in (1) empha-
sizes the fact that we are looking for the argument that realizes
the minimum of a function in question, here, .

The tuning space-mapping approach is an iterative optimiza-
tion procedure that assumes the existence of a so-called tuning
model , which is less accurate, but computationally much
cheaper than the fine model. contains relevant fine model
data (typically a fine model response) at the current iteration
point and tuning parameters (typically implemented through cir-
cuit elements inserted into tuning ports). The tunable parameters

are adjusted so that the model satisfies the design specifica-
tions. The conceptual illustration of the tuning model is shown
in Fig. 1.

A certain relation (not necessarily analytical) between the pa-
rameters of the model and the design variables is assumed
so that the new design is obtained by translating the adjusted
parameters of into the corresponding design variable values
using this very relation.

B. Formulation of the Tuning Space-Mapping Algorithm

The tuning space-mapping algorithm produces a sequence
of points (design variable vectors) . The it-
eration of the algorithm consists of two steps: optimization of
the tuning model and a calibration procedure. First, the current
tuning model is built using fine model data at point .
In general, because the fine model has undergone a disturbance,
the tuning model response may not agree with the response of
the fine model at even if the values of the tuning parameters

are zero so that these values must be adjusted to, say, in
order to obtain alignment as follows[33]:

(2)

In the next step, we optimize to have it meet the design
specifications. We obtain the optimal values of the tuning pa-
rameters as follows [33]:

(3)

Having , we perform the calibration procedure to determine
changes in the design variables that yield the same change in the
calibration model response as that caused by .

The calibration, denoted here as , can be formally defined
as

(4)

where is the new design determined by the current de-
sign , the optimal tuning parameters from (3), and the
alignment tuning parameters from (2).

The calibration process can be generally written as

(5)

and describes the relation between the design and tuning param-
eters. In particular, denotes the vector of the design parame-
ters that corresponds to a change of the tuning parameters from

to with being the initial values of the design parameters.

C. Calibration Process

Calibration can be realized in three possible ways.
Direct Calibration: This is the simplest calibration method

where the relation between the design variables and the tuning
parameters is assumed to be an identity function, i.e., we have

. This calibration method can be
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useful if the tuning components are closely related to the el-
ements of the microwave structure represented by the design
variables (e.g., microstrip line models as tuning elements and
actual microstrip line lengths as design variables).

Analytical Calibration: In some cases there is a formula
that establishes an analytical relation between the design vari-
ables and the tuning parameters so that (5) is realized simply by
applying this formula. For example, the calibration formula may
be just a linear function so that ,
where is a real vector and denotes a component-wise mul-
tiplication.

Equivalent Circuit Calibration: In many cases, however, such
a formula is not known and calibration is performed using an
auxiliary model , here called a calibration model [33]. Sim-
ilar to is also assumed to be computationally cheap. Nor-
mally, is dependent on three sets of variables: design param-
eters, tuning parameters (which are actually the same parame-
ters as the ones used in ), and space-mapping parameters that
are adjusted using the usual parameter extraction process [4]
in order to have model meet certain matching conditions.
Typically, the model is a standard space-mapping surrogate
(i.e., a coarse model composed with suitable transformations)
enhanced by the same or corresponding tuning elements as the
model .

The calibration process with the model is as follows. We
first adjust the space-mapping parameters of the calibration
model to obtain a match with the fine model response at

(6)

The calibration model is then optimized with respect to the de-
sign variables in order to obtain the next iteration point

(7)

Note that we use in (6), which corresponds to the state
of the tuning model after performing the alignment procedure
(2), and in (7), which corresponds to the optimized tuning
model [cf. (3)]. Thus, (6) and (7) allow us to find the change of
design variable values necessary to compensate
the effect of changing the tuning parameters from to .

There are a number of other possible approaches. A notable
example is a mixed procedure, where an analytical calibration
is performed with respect to some of the tuning parameters,
while the rest of the parameters are calibrated using a calibra-
tion model as in (6) and (7).

D. Relation to Standard Space Mapping

The standard space mapping [4] is formulated as

(8)

where is a surrogate model at iteration with space-
mapping parameters obtained from the following parameter
extraction process:

(9)

with being weighting factors [4].
To reveal the relationship between tuning space mapping and

standard space mapping, we assume that the general calibration
function (5) is invertible with respect to its second argument

for any fixed first and third arguments ( and , respec-
tively). At the th iteration, given that and are, respectively,
fixed at and , we have the “inverted” calibration func-
tion as

(10)

Using (10), we can substitute in with a function of
and . Thus, we can define a surrogate model as

(11)

where acts as the surrogate model parameters (equivalent
to in (8)), while is a constant at the th iteration. By
substituting (10) into (2), we can determine as follows:

(12)

Through comparing (8) with (11) and (9) with (12), we can
clearly recognize tuning space mapping as a specialized case
of standard space mapping. To be more specific, (12) is a spe-
cial case of (9) with for , and for

, i.e., tuning space mapping uses only the
last iteration point in the parameter extraction procedure. Fur-
thermore, (11) shows that the tuning model is simply a special
type of surrogate model. At the same time, tuning space map-
ping allows greater flexibility in terms of the surrogate model,
which may, in general, involve any relation between the tuning
parameters and design variables.

It should be noted that the tuning space-mapping method ex-
ploits both the standard space-mapping optimization, classical
circuit theory, and EM theory, as well as practical experience.
For example, in a physics-based simulation according to clas-
sical EM theory, design parameters such as physical length and
width of a microstrip line can be mapped to a “tuning compo-
nent” such as an inductor or capacitor. The calibration process
then transfers the tuning parameters to physical design param-
eters, which can be achieved by taking advantage of classical
theory and engineering experience.

E. Illustration of the Tuning Space-Mapping Algorithm

In order to illustrate and clarify our tuning space mapping
algorithm, we use a simple example of a microstrip transmission
line [31]. The fine model is implemented in Sonnet em [34]
(Fig. 2), and the fine model response is taken as the inductance
of the line as a function of the line’s length. The original length
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Fig. 2. Original structure of microstrip line in Sonnet.

Fig. 3. Microstrip line under test after being divided and with the inserted
co-calibrated ports.

Fig. 4. Microstrip line design problem. (a) Tuning model for direct calibration
method. (b). Tuning model for analytical and equivalent circuit calibration.

of the line is chosen to be mm (400 mil) with a
width of 0.635 mm. We use a cell size of 0.01 0.635 mm. A
substrate with thickness mm and is used.
Our goal is to find a length of line such that the corresponding
inductance is 6.5 nH at 300 MHz. The Sonnet em simulation at

gives the value of 4.52 nH, i.e., nH.
We use the tuning space mapping algorithm of Section II-B.

The tuning model is developed by dividing the structure in
Fig. 2 into two separate parts and adding the two tuning ports,
as shown in Fig. 3. A tuning element (e.g., a small inductor or
a microstrip line segment) is then inserted between these ports.
Note that the new version of Sonnet em allows so-called co-cal-
ibrated ports [34]. The ports allow an “infinitesimal” gap (nor-
mally one cell size wide) to be inserted into a microwave struc-
ture. A pair of such ports can then be mounted on the edges of
the gap. The multiport structure is then simulated electromag-
netically in Sonnet em and then connected in the circuit simu-
lator. The partition and gap are compensated by Sonnet em so
that the impact on the simulation results is negligible.

Fig. 5. Calibration model for the microstrip line design problem.

Tuning Space Mapping Using Direct Calibration: The tuning
model is implemented in Agilent ADS [35] and shown in
Fig. 4(a). The model contains the fine model data at the initial
design in the form of the S4P element (4 being the number of
ports), as well as the tuning element (microstrip line segment).
Due to Sonnet’s co-calibrated ports, a “perfect” agreement
between the fine and tuning model still leaves at a small
value of 0.01 mm.

Next, we optimize the tuning model to meet our target in-
ductance 6.5 nH. The optimized value of the tuning microstrip
length is mm.

Now, we need to perform the calibration step. Here, because
the tuning element is a microstrip line segment, we use a direct
calibration, i.e., we simply assume that

, which gives mm. The fine model response
at obtained by Sonnet em simulation is 6.59 nH. The second
iteration of tuning space mapping gives mm; the
corresponding line inductance reaches our goal of 6.50 nH.

Tuning Space Mapping Using Analytical Calibration: In this
case, the tuning model is implemented in Agilent ADS [35] and
is shown in Fig. 4(b). The model contains the fine model data
at the initial design in the form of the S4P element (4 being the
number of ports), as well as the tuning element (inductor). Due
to Sonnet’s co-calibrated ports, a “perfect” match between the
fine and tuning model responses is obtained with a small value
of .

Next, we optimize the tuning model to meet our target induc-
tance 6.5 nH. The optimized value of the tuning inductance is

nH.
Now, we need to perform the calibration step. In our example,

it is easy to develop an analytical calibration formula because
we can propose a linear dependence between the microstrip
length and the inductance of the tuning element . The
proportionality coefficient is equal

mm nH mm nH . Thus, we have
, which gives mm.

The fine model response at obtained by Sonnet em simula-
tion is 6.51 nH, which is already acceptable. After another two
iterations, the tuning space mapping gives mm;
the corresponding line inductance is again 6.50 nH.

Tuning Space Mapping Using Equivalent Circuit Calibra-
tion: Again, we use the tuning model shown in Fig. 4(b). The
calibration is now based on an equivalent circuit space-map-
ping surrogate model. Agreement between the fine and tuning
model responses gives an of 0.004 nH. We consider the
calibration model shown in Fig. 5 in which the relative perme-
ability (initially 1) of the microstrip element is used as a space
mapping parameter . The value of this parameter is adjusted
using (6) to 1.04 so that the response of the calibration model

Authorized licensed use limited to: McMaster University. Downloaded on April 7, 2009 at 11:07 from IEEE Xplore.  Restrictions apply.



KOZIEL et al.: ACCELERATED MICROWAVE DESIGN OPTIMIZATION WITH TUNING SPACE MAPPING 387

is 4.52 nH at 10.16 mm, i.e., it agrees with the fine model re-
sponse at . Now, we need to obtain the new value of the
microstrip length, which is done according to (7). In particular,
we optimize (length of the line) with the tuning inductance
set to nH to match the total inductance of the cal-
ibration model to the optimized tuning model response, 6.5 nH.
The result is mm; the fine model response at
obtained by Sonnet em simulation is 6.50 nH. There is no need
for a second iteration.

F. Practical Aspects of Tuning Space Mapping

As mentioned in Section I, the structure of the tuning model,
as well as a proper selection of tuning elements are crucial for
the performance of the overall optimization process. With a
properly chosen tuning model, it is possible to obtain excel-
lent results even faster than with the standard space-mapping
approach. It is not uncommon that the design specifications are
satisfied after a single iteration of the tuning space-mapping al-
gorithm. Tuning space mapping appears more physically based
than regular space mapping, and thus, should be readily ac-
cepted by engineers.

Although it is difficult to provide detailed guidelines on de-
signing the tuning and/or calibration model, as both may be
heavily dependent on a particular problem, there are several rec-
ommendations that may be useful.

Probably the best way to construct the tuning model at any
given iteration point (design) is to “cut” it in the sense explained
in the microstrip line example of Section II-E, obtain the -pa-
rameters of the resulting multiport structure, and then endow the
element representing these parameters (e.g., the S4P element in
an ADS schematic) with all the necessary tuning elements. This
procedure has been illustrated in Section II-E; more involved
examples are provided in Section III.

The calibration model should actually mimic the structure of
the tuning model so that the multiport structure described in the
previous paragraph is replaced by any reasonable circuit equiv-
alent, while the topology of the tuning part remains unchanged.
In this way, there is a one-to-one correspondence between the
tuning parameters of the tuning model and the ones of the cal-
ibration model. Other realizations are also conceivable, but the
one described above seems the most reasonable. Again, the con-
cept has been explained in Section II-E. The remaining part of
the paper contains more examples.

As mentioned earlier, the choice of tuning parameters re-
quires appropriate knowledge in the field so no general guide-
lines can be given in this respect. The important prerequisite
is, however, that both the tuning model optimization problem
(3) and the calibration process (5) have unique solutions. In the
case of surrogate-based calibration, both the parameter extrac-
tion problem (6) and (7) should also have unique solutions. In
general, this requires that the number of tuning parameters is the
same as the number of design variables. We also recommend
that the number of space-mapping parameters of the calibration
model is preferably the same and not larger than the number of
design variables.

It should be mentioned that at the current stage it is not clear
how to apply the tuning space mapping to tune cross-sectional
dimensions such as microstrip widths or substrate heights. Thus

Fig. 6. Microstrip bandpass filter: physical structure [36].

far, the best way to optimize such parameters is still the standard
space mapping approach.

III. EXAMPLES

A. Microstrip Bandpass Filter [36]

In the first example, we consider the design of a microstrip
bandpass filter [36]. In order to illustrate how tuning elements
are chosen and translated to physical dimensions, we implement
this design problem in two different ways. Two sets of tuning
parameters are chosen to construct the tuning models, and two
alternative analytical calibration methods are demonstrated.

Problem Description: As shown in Fig. 6, and
are the lengths of the microstrip-line sections and is the

gap in the middle between the two central adjacent microstrip
lines. The width is the same for all the lines, as well as for
the input and output microstrip lines, whose length is A sub-
strate with thickness and dielectric constant is used. Both
the dielectric losses and the metallization losses are considered
to be zero.

The design parameters are . Other pa-
rameters are fixed at mm, mm, mm,
and . The design specifications are

dB for GHz GHz
dB for GHz GHz
dB for GHz GHz.

Sonnet’s em is used as an EM simulator to evaluate the fine
model. Agilent Technologies’ ADS provides both tuning model
and optimization tools; its component “ -port -parameter
file” enables simulated -parameters to be imported in Touch-
stone file format from Sonnet’s em.

The essential step is to construct the tuning model. Firstly, in
Sonnet, we divide each microstrip polygon in the middle and in-
sert co-calibrated ports at each pair of adjacent edges. The entire
structure is then simulated in Sonnet’s em and the subsequent
S12P data file is loaded into a 12-port -parameter file com-
ponent in ADS. After that, appropriate circuit components are
chosen and attached onto the corresponding tuning ports of the
12-port -parameter component.

Tuning Space Mapping With Analytical Calibration Method:
We make the most intuitive choice of the tuning elements: cir-
cuit microstrip-line components and a gap component, as shown
in Fig. 7. The lengths of the microstrip-line components and
the spacing of the gap component are our tuning variables, i.e.,

mm.
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Fig. 7. Microstrip bandpass filter: tuning model (Agilent Technologies’ ADS).

Fig. 8. Microstrip bandpass filter: fine model response at the initial design
(solid line) and the response of the optimized tuning model (dashed line).

We choose mm as an
initial guess of the design parameters. The misalignment be-
tween the fine model (Sonnet em) response and the tuning model
response with the tuning parameters set to zero is sufficiently
small so that it can be ignored. Thus, an alignment process is
not necessary and it is obvious that mm.

The optimization process with respect to the tuning parame-
ters is implemented in ADS, which is aimed to satisfy the de-
sign specifications. The tuning parameters obtained with (3) are

mm.
Note that some of the parameters take negative values, which

is permitted in ADS. The tuning optimization result and the re-
sponse of the fine model with the initial guess are shown in
Fig. 8.

The calibration process in this example is straightforward: the
optimal values of the tuning parameters are converted to the ad-
justments of the design parameters assuming an identity rela-
tion, i.e., the optimized lengths of the small microstrip compo-
nents are exactly the changes of the lengths of the microstrip
sections in the fine model, and the optimal spacing of the gap
component is directly taken as the adjustment of the gap in the
EM structure. More formally, we assume a calibration formula
of the form , where denotes a
component-wise multiplication. Coefficient vector is defined
as with all , equal to 1.

Fig. 9. Microstrip bandpass filter: fine model response (�� � obtained with
Sonnet em) at the final design.

TABLE I
SONNET EM DESIGN PARAMETER VALUES

OF THE MICROSTRIP BANDPASS FILTER

Fig. 10. Microstrip bandpass filter: alternative tuning model (Agilent Tech-
nologies’ ADS).

After the first iteration, the new design
mm has already

satisfied the design specifications. A better solution
mm is obtained after

the second tuning space-mapping iteration. Fig. 9 shows the
fine model response at . The values of the design variables
are summarized in Table I.

Tuning Space Mapping With Analytical Calibration and Al-
ternative Tuning Model: The basic algorithm and concepts of
tuning space-mapping method are demonstrated in the above
design process. In some cases, however, it is impractical to find
circuit components, whose characteristic parameters can be di-
rectly converted to the dimensions of fine model structures.

To illustrate the case where a nontrivial calibration formula
is required, we again consider our bandpass filter example;
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however, we use the slightly different tuning model shown in
Fig. 10. The only difference with the model in Fig. 7 is the
tuning component for tuning the gap. In ADS, circuit-based
microstrip components are still used to tune the lengths of
the microstrip sections, while a capacitor is used instead of
the gap component to calibrate the gap in the EM structure.
These tuning components are then inserted between the tuning
ports. Correspondingly, the lengths of the microstrip sections
and the capacitance of the capacitor are our tuning variables,
i.e., (lengths in millimeters,
capacitance in picofarads).

The initial design is again set as
mm. In this case, even

though the tuning elements have been inserted using
the co-calibrated ports, there is still some misalignment
between the fine model (Sonnet em) response and the tuning
model response with the tuning elements set to be zero.
Therefore, the alignment process (2) produces nontrivial
values of .
The tuning parameters obtained with (3) are

.
To translate the tuning parameters to design parameters, we

again take a linear calibration formula of the form
, where denotes a component-wise mul-

tiplication with . Here,
relate the changes of the design variables ,
and to the changes of the corresponding tuning parameters,

, and .
This time, we do not assume , but we actually find

the relation between the change of the tuning component and
the change of the corresponding design variable by means of
simple auxiliary experiments.

The values of to were obtained from the setting shown
in Figs. 2–5 with the inductor replaced by the ideal microstrip
component in the ADS model. The simulations of the perturbed
EM microstrip structure are implemented at only a couple of
frequency points in Sonnet em. The corresponding perturbation
of the ADS microstrip model that causes the same change of the
line response is found using the alignment process (2). In the
alignment process, the phase of is chosen as the response,
as this is the parameter that is clearly length dependent. The
obtained value of calibration coefficients is 1.0106. It is close to
1 as expected.

The coefficient , which relates the design variable with
the tuning capacitance , is obtained in the following way.
The initial design is perturbed with respect to by

mm, and the corresponding change of is found
for which the fine model response at the above perturbed design
is matched by the tuning model response at perturbed by

. In our case, pF so that
mm/pF.

The new design obtained with our calibration formula
is mm. Al-
though it satisfies the design specifications, we perform
a second tuning space-mapping iteration, which gives

mm. Fig. 11
shows the fine model response at . The values of the design
variables are summarized in Table II.

Fig. 11. Microstrip bandpass filter: fine model response (�� � obtained with
Sonnet em) at the final design (tuning space mapping with alternative tuning
model).

TABLE II
SONNET EM DESIGN PARAMETER VALUES OF THE MICROSTRIP BANDPASS

FILTER (TUNING SPACE MAPPING WITH ALTERNATIVE TUNING MODEL)

Fig. 12. Second-order tapped-line microstrip filter: physical structure [37].

B. Second-Order Tapped-Line Microstrip Filter [37]

Our second example is the second-order tapped-line mi-
crostrip filter [37] shown in Fig. 12. The design parameters
are . Other parameters are fixed at

mm, mm, mm, , and
loss tangent . The design specifications are

dB for GHz GHz
dB for GHz GHz
dB for GHz GHz.

In this example, the fine model is simulated in Sonnet em, the
tuning model is constructed and optimized in Agilent Technolo-
gies’ ADS. Both the direct and analytical calibration methods
are used to implement the calibration process. To construct the
tuning model, in Sonnet em, we firstly divide the microstrip sec-
tions and the central coupled-line section in the middle and in-
sert co-calibrated ports on the cut-edges. The EM structure with
ports is then simulated and the resulting S14P data file is im-
ported into the 14-port -parameter file component in ADS. Ap-
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Fig. 13. Second-order tapped-line microstrip filter: tuning model in ADS.

Fig. 14. Second-order tapped-line microstrip filter: fine model response at the
initial design (solid line) and the response of the optimized tuning model (dashed
line).

propriate circuit components are chosen and attached onto the
-parameter file component.
In the ADS circuit simulator, small microstrip components

are chosen as the tuning elements to tune the microstrip sections
in the EM model, a coupled-line component is used to optimize
the central coupled-line polygon in Sonnet. In order to tune the
spacing between the coupled lines, we choose two small capac-
itor components and attach them onto the two sides of the cir-
cuit-theory-based coupled-line component. The tuning parame-
ters are thus (lengths in millimeters,
capacitance in picofarads) and the tuning model constructed in
ADS is shown in Fig. 13.

The initial guess is mm. In
this example, when the tuning parameters are zero, the response
of the tuning model is almost the same as the response of the
fine model, thus we can get .

The tuning model is optimized in ADS with respect to the
tuning parameters. The optimal values obtained with (3) are

mm (lengths in mil-
limeters, capacitance in picofarads). The response of the fine
model at the initial guess and the optimized tuning model re-
sponse are shown in Fig. 14.

In the calibration process, the optimized lengths of the small
microstrip components and the small coupled-line component
are directly converted to adjustments in the lengths of the mi-
crostrip sections and coupled-line section in the EM structure
(assuming identity mappings). The spacing between the fine

Fig. 15. Second-order tapped-line microstrip filter: fine model response (�� �
obtained with Sonnet em) at the final design.

TABLE III
SONNET EM DESIGN PARAMETER VALUES OF THE SECOND-ORDER

TAPPED-LINE MICROSTRIP FILTER

model’s coupled-line polygons is adjusted according to the
optimal value of the capacitor using the analytical calibration
method. To implement this analytical calibration, the initial
design is perturbed with respect to by mm,
and the corresponding change of is found for which the
fine model response at the above perturbed design is matched
by the tuning model response at perturbed by , which
is pF. Since the perturbation is very small, we
can assume that there is a linear mapping between the change of
the capacitance and the change of the spacing. The coefficient
is calculated as mm/pF.

The new design obtained after calibration is
mm and this solution

satisfies the design specifications. Fig. 15 shows the fine model
response at . The values of the design variables are sum-
marized in Table III.

C. High-Temperature Superconducting (HTS) Filter

Fig. 16 illustrates the structure of an HTS filter. The
design parameters are the lengths of the coupled-line sec-
tions and the spacing between them, which are shown as

, respectively. The width of all the
sections is mm and the length of the input and
output microstrip-line sections is mm. A substrate
of lanthanum aluminate is used with , height

mm, and loss tangent . The metallization
is considered lossless. The design specifications are

for GHz
for GHz GHz
for GHz.

The tuning model is constructed by dividing the five cou-
pled-line polygons in the middle and inserting the tuning ports
at the new cut edges. Its S22P data file (22 being the number
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Fig. 16. HTS filter: physical structure [38].

Fig. 17. HTS filter: tuning model (Agilent Technologies’ ADS).

of ports) is then loaded into the -parameter component in Ag-
ilent Technologies’ ADS. The circuit-theory coupled-line com-
ponents and capacitor components are chosen to be the tuning
elements and are inserted into each pair of tuning ports (Fig. 17).
The lengths of the imposed coupled lines and the capacitances
of the capacitors are assigned to be the tuning parameters so that
we have ( in millime-
ters, in picofarads).

The calibration model is implemented in ADS and shown
in Fig. 18. It contains the same tuning elements as the tuning
model. It basically mimics the division of the coupled lines
performed while preparing . The calibration model also
contains six (implicit) space-mapping parameters that will
be used as parameters in the calibration process (6), (7).
These parameters are ,
where and are substrate height (in millimeters) and
dielectric constant of the coupled-line segment of length

Fig. 18. HTS filter: calibration model (Agilent Technologies’ ADS).

Fig. 19. HTS filter: fine model response at the initial design (solid line) and the
response of the optimized tuning model (dashed line).

according to Fig. 16. Initial values of these parameters are
.

The initial design,
mm, is the optimal solution of the coarse model,

i.e., the calibration model with zero values of the tuning param-
eters.

In this example, there is a small misalignment between
the fine model response and the tuning model response
with the tuning elements set to zero, even though the tuning
elements have been inserted using co-calibrated ports. There-
fore, the alignment process (2) gives nontrivial values of

.
Fig. 19 shows the fine model response at the ini-

tial solution, and the response of the optimized tuning
model. The tuning parameters obtained with (3) are

.
Note that some of the parameters take negative values, which
is permitted in ADS.

Now, the calibration process must be performed in order
to find the updated values of the design parameters. First, the
space-mapping parameters are adjusted using (6) to align
the calibration model with the optimized tuning model
for the values of tuning parameters equal . We get

. The new de-
sign mm
is then found using (7). This solution already satisfies the
design specifications; however, we perform a second tuning
space-mapping iteration to improve it further. The final design
is obtained as
mm. Fig. 20 shows the fine model response at . The values
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Fig. 20. HTS filter: fine model response (�� � obtained with Sonnet em) at
the final design.

TABLE IV
SONNET EM DESIGN PARAMETER VALUES OF TUNING

SPACE-MAPPING METHOD FOR THE HTS FILTER DESIGN

Fig. 21. HTS filter: implicit space-mapping coarse model (Agilent Technolo-
gies’ ADS).

of the design variables are summarized in Table IV. Note that
the tuning space-mapping algorithm requires only one iteration
to satisfy the design specifications, and only one additional
iteration to obtain an almost equal-ripple fine model response.

To have a comparison with the novel tuning space-mapping
algorithm, we implement this HTS filter again using implicit
space-mapping method. The fine model is exactly the same as
the one used in the implicit space mapping [2]. Agilent Tech-
nologies’ ADS is selected to be the circuit simulator to construct
the coarse model. As is shown in Fig. 21, the ADS coarse model
consists of empirical models for single and coupled microstrip
transmission lines with ideal open stubs.

The preassigned parameters are heights and dielec-
tric constants of the coupled-line sections in the coarse
model. Thus, the preassigned parameter vector is

. The implicit space-mapping
algorithm requires two iterations to satisfy the design spec-
ification (
mm; mm),
while tuning space mapping requires only one iteration. The

major reason for the effectiveness of the tuning space-mapping
method is that the tuning model comprises information from
the fine model simulation result, while this data is not contained
in the implicit space-mapping coarse model.

IV. CONCLUSION

A novel and efficient technique for microwave design is pre-
sented, which brings together the engineering concept of tuning
with the efficiency of space mapping. We present the formal
description of the tuning space-mapping algorithm and discuss
the calibration procedure, as well as the practical aspects of our
methodology. A simple example illustrating the concept of the
tuning space mapping is provided that explains the construction
of the tuning model and both the analytical and surrogate-based
calibrations. Several microwave design optimization problems
are considered that verify the robustness of the proposed ap-
proach.
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