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Space Mapping With Adaptive Response Correction
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Abstract—Output space mapping is a technique introduced to
enhance the robustness of the space-mapping optimization process
in case the space-mapped coarse model cannot provide sufficient
matching with the fine model. The technique often works very well;
however, in some cases it fails. Especially in the microwave area
where the typical model response (e.g., �� ) is a highly nonlinear
function of the free parameter (e.g., frequency), the output space-
mapping correction term may actually increase the mismatch be-
tween the surrogate and fine models for points other than the one
at which the term was calculated, as in the surrogate model op-
timization process. In this paper, an adaptive response correction
scheme is presented to work in conjunction with space-mapping
optimization algorithms. This technique is designed to alleviate the
difficulties of the standard output space mapping by adaptive ad-
justment of the response correction term according to the changes
of the space-mapped coarse model response. Examples indicate the
robustness of our approach.

Index Terms—Engineering optimization, microwave design, re-
sponse correction, space mapping, space-mapping optimization.

I. INTRODUCTION

S PACE mapping has been used for solving difficult opti-
mization problems in the microwave area for more than a

decade [1]–[4]. This methodology is founded on the idea of the
optimization of expensive or “fine” models by means of the it-
erative optimization and updating of so-called “coarse” models
which are less accurate, but cheaper to evaluate. Provided that
the misalignment between the fine and coarse model is not sig-
nificant, space-mapping-based algorithms typically provide ex-
cellent results after only a few evaluations of the fine model. A
similar idea is shared by other surrogate-model-based methods
[5]–[11]; however, many of them do not use a simplified phys-
ically based coarse model: a functional surrogate is created by
direct approximation of the available fine model data.

Space mapping is widely used in the optimization of mi-
crowave devices [1]–[3], [12]–[16], where fine models are
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often based on full-wave electromagnetic simulations, whereas
coarse models may be physically based circuit models. Re-
cently, space-mapping techniques have been applied to design
problems in a growing number of areas (e.g., [17]–[19]).

A number of papers cover different aspects of space map-
ping, including the development of new algorithms [2], [3], [20],
[21], space-mapping-based modeling [22]–[24], neuro-space-
mapping [25]–[28], theoretical foundations [20], [29], [30], etc.

One of the recent developments in space mapping is the
so-called output space mapping [29], [31] in which the
space-mapping surrogate model is created by enhancing the
coarse model using a correction term, typically additive or
multiplicative, that allows us to obtain a perfect matching
between the fine model and a surrogate at the current iteration
point. If sensitivity information is employed, the correction
term can be constructed in such a way that the surrogate model
matches the fine model with respect to response and first-order
derivatives. If equipped with a trust region method [32], the
output space-mapping algorithm with the surrogate satisfying
first-order consistency conditions can be shown to converge to
a local optimum of the fine model [20], [33]. Different versions
of output space mapping have been described in the literature,
e.g., [4], [20], [29].

Typically, output space mapping improves the performance
of the space-mapping algorithm when applied as an auxiliary
mapping. If the range of the coarse model is substantially dif-
ferent from the range of the fine model, output space mapping
is practically mandatory to make the space-mapping algorithm
perform reasonably well.

Unfortunately, in some cases output space mapping does not
work as expected. Especially in the microwave area, the typ-
ical model response, e.g., the parameter, is a highly non-
linear function of the free parameter (typically the frequency of
the input signal). In particular, the response may contain sharp
minima corresponding to zeros of the transfer function of the
underlying device. In such cases, the output space-mapping cor-
rection term may actually increase the apparent mismatch be-
tween the surrogate and fine model for points other than the one
at which the term was calculated, i.e., during the process of sur-
rogate model optimization. It may also severely deform the sur-
rogate model response (see Section II for examples). As a con-
sequence, the performance of the space-mapping algorithm may
be degraded both with respect to the quality of the final solution
as well as the computational cost of the optimization process.

In this paper, we propose an adaptive response correction
scheme, which is designed to alleviate the difficulties of the
standard output space mapping and improve the overall perfor-
mance of the output space mapping. Our technique is based on
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the adaptive adjustment of the response correction term. The
adjustment is related to the changes of the space-mapped coarse
model response, which occur during the optimization of the sur-
rogate. More specifically, the model response will be normally
shifted, “squeezed” and/or “expanded” in frequency during the
optimization process where we adjust the design parameters
in order to have the model meet the design specifications. The
output space-mapping correction term is kept constant (i.e.,
independent of the design variables) during the surrogate model
optimization according to the standard approach. According to
the adaptive response correction approach the correction term
is being modified to make it change in frequency in the same
way as the space-mapped coarse model response is changing.
This technique is based on the assumption that the frequency
responses of both the fine and space-mapped coarse model
responses are modified in a similar way when the respective
models are subjected to the same modification of the design
parameters.

The robustness of the adaptive response correction method is
demonstrated using microwave design optimization problems.

II. ADAPTIVE RESPONSE CORRECTION

A. Motivation

Let , , and ,
denote the response vectors of the fine and coarse models of

a given microwave device, respectively. denotes the set of real
numbers. Components of and may be evaluations of the

parameter at different frequencies. In particular, we may
have , where

is a component of corresponding to frequency
; denotes the vector of design parameters of the device.
The space-mapping optimization algorithm produces a se-

quence of points , , where represents
values of the design parameters (also called design variable
vector) at iteration ; is an optimal solution (design)
of the so-called surrogate model . Typically, is the
optimal solution of the coarse model. The surrogate model
at iteration , is based on the coarse model and certain
auxiliary mappings. Typically, output space mapping is used

on top of other space-mapping types. We shall use symbol
to denote the space-mapped coarse model at iteration , i.e., the
coarse model composed with space mapping (or composition
of more mappings if necessary; however, excluding the output
space mapping that will be considered separately). For the
sake of example, consider input space mapping, in which case

, where and are mapping
parameters obtained though parameter extraction [20]; is
an matrix, while is an vector.

The standard output space-mapping technique [29] assumes
that the surrogate model is defined as

(1)

with

(2)

Fig. 1. Geometry of the wideband bandstop microstrip filter [34].

Fig. 2. Coarse model of the wideband bandstop filter (Agilent Technologies’
ADS).

This definition ensures a zero-order consistency condition be-
tween the fine model and the space-mapping surrogate at ,
i.e., .

Consider the following example: the wideband bandstop mi-
crostrip filter [34] shown in Fig. 1. The design parameters are

. The fine model is simulated
in FEKO [35]. The coarse model is the circuit model im-
plemented in Agilent Technologies’ Advanced Design System
(ADS) [36] (Fig. 2).

The design specifications are

dB for GHz GHz

dB for GHz GHz

dB for GHz GHz.

For this problem we use the input-space-mapped coarse

model defined as , where vector

is obtained using parameter extraction. On top of , we use
standard output space mapping, as defined in (1), (2).

Fig. 3 shows the fine and space-mapped
coarse model responses at the starting point

mm (the
coarse model optimal solution). Fig. 4 shows the response of
the initial surrogate model at the starting point and at
its optimal solution . We can observe that is
substantially distorted around 6 GHz, which is a consequence
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Fig. 3. Wideband bandstop filter: fine model (solid line) and space-mapped
coarse model (dashed line) responses at ��� .

Fig. 4. Wideband bandstop filter: initial surrogate model response��� ���� �
(solid line), optimized surrogate model response��� ���� � (dashed line), and
standard space-mapping correction term ��� (dotted line).

of the fact that the output space-mapping correction term
(shown in Fig. 4 as a dotted line) is a vector (independent
of the design variables ) with a sharp maximum around
6 GHz, while it is seen that the surrogate model optimization
process tends to move the central zero of the filter into higher
frequencies. In other words, the distortion due to the correction
term is a source of difficulty in the surrogate model
optimization process.

The fine model specification error at is 2.7 dB. Due
to the above-mentioned problems, space-mapping optimization
finds a solution with corresponding specification error 1.1 dB,
which is rather poor as the minimax optimum for this problem
is about 2 dB. The number of fine model evaluations required
to find the solution (excluding evaluation at ) is 8.

B. Adaptive Response Correction: Concept

In order to avoid the problems highlighted above, we propose
the following adaptive response correction technique. The sur-
rogate model at any iteration point is defined as

(3)

where is the response correction term dependent on
the design variables . As we still want to maintain a perfect

Fig. 5. Wideband bandstop filter: fine (solid line) and space-mapped coarse
model (dashed line) responses at a certain point (design variable vector), as well
as fine (solid line with circle markers) and space-mapped coarse model (dashed
line with circle markers) responses at a different point.

Fig. 6. Wideband bandstop filter: standard output space-mapping correction
terms corresponding to responses shown in Fig. 5.

match between the fine model and the space-mapping surrogate
at , must satisfy

(4)

The idea behind the adaptive response correction is to account
for the difference between the space-mapped coarse model re-
sponse at and at and to modify the correction term ac-
cordingly with the initial correction taken as a reference. In
particular, we want to modify the initial correction term in

such a way that this modification reflects changes to during
the process of surrogate model optimization. If the response of

shifts or changes its shape with respect to frequency, the
response correction term should track these changes.

As an illustration, consider Fig. 5, which shows the fine and
space-mapped coarse model responses for the wideband band-
stop filter (Section II-A) at two different points. It is seen that
the general relation between the mapped coarse model response
and its corresponding fine model response is preserved (e.g.,
the center minimum of the mapped coarse model response is
at a higher frequency than the corresponding minimum for the
fine model). Fig. 6 shows the standard output space-mapping
correction terms corresponding to the responses shown in
Fig. 5. As we can observe, the relation between these terms
as functions of frequency is similar to the relation between the
space-mapped coarse model responses so that proper tracking

Authorized licensed use limited to: McMaster University. Downloaded on April 7, 2009 at 11:04 from IEEE Xplore.  Restrictions apply.



KOZIEL et al.: SPACE MAPPING WITH ADAPTIVE RESPONSE CORRECTION 481

of coarse model changes helps determine necessary changes to
the output space-mapping correction terms.

In our implementation, the tracking of the coarse model re-
sponse changes is realized through a proper mapping that de-
scribes the shape relations between two coarse model responses
and updates the response correction term so that the initial and
current correction terms correspond to the same (frequency-
based) relationship as the initial and current coarse model re-
sponses. A rigorous description and technical details of this
process are given below.

Let us assume without loss of generality that the
components of correspond to the model eval-
uations (e.g., ) at different frequency points,
i.e., . For example, we have

, where
is a component of corresponding to frequency

. Let be an interpola-
tion/extrapolation function such that interpolates
the response defined on onto and extrapolates

onto and . In particular,
is the evaluation of the interpolated/extrapolated response
at frequency . In this paper, we use implemented as piece-
wise cubic splines (interpolation part) and linear extrapolation
(extrapolation part).

The core of the adaptive response correction is a mapping
. is established

at iteration in such a way that the difference between

, i.e., the space-mapped coarse model response at

and , i.e., interpo-
lated/extrapolated through onto and evaluated
at frequencies is
minimized. Here, denotes the space-mapped coarse model
domain. will be referred to as mapped frequency.

In general, may differ from , re-
spectively. If the response of the model is not a constant
function of frequency around , one may need to
allow the mapped frequencies to exceed the interval

in order to make the good alignment between and

possible. For example, if

is larger than at and both are decreasing functions
of frequency around , the only way to make it possible to

align with at would
be to allow so that and

at would refer to for
frequencies smaller than . In practice, we may want to set

to be slightly smaller than ( to be slightly larger
than ).

The vector is nothing but

scaled with respect to frequency in order to be as

similar to as possible in a given sense. In other words,
mapping is supposed to be defined in such a way that
mapped frequency reflects the shape change of the
space-mapped coarse model response at with respect to its
original shape at . For the sake of consistency with condi-
tion (4), should be equal to , i.e., the mapped
frequency should be the same as the original frequency at .

Having the mappings and , we can define the response
correction term as follows:

(5)
The reason for using function is the fact that the entire

process requires information about and

at frequencies different from the original evaluation
frequencies .

In the following sections, we describe two realizations of the
mapping . Other possible realizations will be dealt with
elsewhere.

C. Mapping F Implementation: Realization 1

This realization is suitable for problems in which the coarse
model response is rather smooth as a function of frequency (i.e.,
without sharp local minima and maxima) and such that the range
of the response (as a function of frequency) does not change
much with .

The mapped frequency is defined as

(6)

where are scaling
coefficients determined as

(7)
while are basis functions.
Optimization problem (6), which is readily solved by MATLAB,

has the following constraints: a) ,
i.e., scaling function is monotonic; b)

; and c) , i.e., we need to ensure
that is a monotonic function of within its range
in . In this paper, we use a third-order polynomial
scaling, i.e., we have and . Typi-
cally is slightly smaller than (e.g., by 10%–20%), and

is slightly larger than .

D. Mapping F Implementation: Realization 2

This realization is suitable for problems in which the coarse
model response contains clearly defined characteristic frequen-
cies, e.g., sharp minima corresponding to zeros of the transfer
function.

Let and
be the sets of characteristic fre-

quencies of and , respectively. The mapped
frequency is defined as an interpolation function
such that . In this
paper, we implement using cubic splines. If there is a

different number of characteristic frequencies for and

, both and are adjusted using an auxiliary
algorithm in order to maintain the correspondence between the
two sets. In order to have the mapped frequency well
defined on , we typically set and

. However, if there is a difference between
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TABLE I
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE

WIDEBAND BANDSTOP MICROSTRIP FILTER

Excludes the fine model evaluation at the starting point.

and at , then it is better to set to

in order to ob-

tain a better overall match between

and . A similar adjustment can be done for .
In addition to frequency scaling, there is the possibility of

scaling the response correction term with respect to its ampli-
tude, also based on the response change of the space-mapped
coarse model. In this paper, however, we do not use this ap-
proach.

It should be noted that, although we assumed that the model
response components are related through a free parameter, such
as frequency, the adaptive response correction technique should
work even if such a relation is not explicitly stated. One can
consider the response component indices as values of the “free”
parameter.

III. EXAMPLES

A. Wideband Bandstop Filter

As a first example, we again consider the wideband bandstop
filter described in Section II. We optimized this filter using the

input-space-mapped coarse model
and the adaptive response correction technique of Section II.
We used Realization 2 of the scaling function as the filter
response contains three clearly defined characteristic points.
Table I shows the optimization results, as well as a comparison
with the standard output space mapping. Note that the quality
of solution found with the adaptive response correction is better
than the one obtained with the standard method. The number
of fine model evaluations required to find the solution is also
substantially smaller for the adaptive correction technique.

In order to understand the performance of the adaptive
response correction technique, consider Fig. 7 showing the
response of initial surrogate model at the starting point
and at its optimal solution . We can observe that, in contrast
to the standard output space mapping (cf. Fig. 4),
is not significantly distorted, which is because the response

correction term is modified to reflect the change of

with respect to . Fig. 8 shows the correction terms
and . Fig. 9 shows the plot

of the scaling function . The fine model response
at the design found by the space-mapping algorithm with the
adaptive response correction is shown in Fig. 10.

B. Capacitively Coupled Dual-Behavior Resonator Filter

Our second example is a second-order capacitively coupled
dual-behavior resonator microstrip filter [37] shown in Fig. 11.

Fig. 7. Wideband bandstop filter: surrogate model response ��� ���� � (solid
line) and optimized surrogate model response ��� ���� � (dashed line). Plots
obtained for the adaptive response correction method.

Fig. 8. Wideband bandstop filter: correction terms��� ���� ���� � (solid line),
and ��� ���� ���� � (dashed line). Plots obtained for the adaptive response cor-
rection method.

Fig. 9. Wideband bandstop filter: scaling function � ���� � �� (solid line).
Plot obtained for the adaptive response correction method. The identity function
plot is shown as a dashed line.

The design parameters are . The fine model
is simulated in FEKO [35]. The coarse model is the cir-

cuit model implemented in Agilent Technologies’ ADS [36] and
shown in Fig. 12. The design specifications for the filter are

dB for GHz GHz

dB for GHz GHz

dB for GHz GHz.

For this problem, we use the input-space-mapped coarse

model enhanced by a frequency
space mapping in which the coarse model is evaluated
at a frequency different than the fine model according
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Fig. 10. Wideband bandstop filter: fine model response at the design found by
the space-mapping optimization algorithm with the adaptive response correction
(Realization 2).

Fig. 11. Geometry of the capacitively coupled dual-behavior resonator mi-
crostrip filter [37].

Fig. 12. Coarse model of the capacitively coupled dual-behavior resonator mi-
crostrip filter (Agilent Technologies’ ADS).

to the affine mapping . Both and
are found at iteration using parameter ex-

traction. The starting point is the coarse model optimal solution
mm. Fig. 13 shows

the coarse and fine model responses at . The fine model
specification error at equals 7.8 dB.

Fig. 13. Capacitively coupled dual-behavior resonator microstrip filter: coarse
(dashed line) and fine (solid line) model response at the starting point ��� .

TABLE II
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE

CAPACITIVELY COUPLED MICROSTRIP FILTER

Excludes the fine model evaluation at the starting point.

Fig. 14. Capacitively coupled dual-behavior resonator microstrip filter: fine
model response at the design found by the space-mapping optimization algo-
rithm with the adaptive response correction (Realization 1).

Space-mapping optimization was performed three times

using the space-mapped coarse model with: 1) the stan-
dard output space mapping (1), (2); 2) Realization 1 of the
adaptive response correction technique of Section II; and
3) Realization 2 of the adaptive response correction method.

Table II shows the optimization results for the three methods.
The quality of the solution found with the adaptive response
correction (both for Realization 1 and Realization 2) is better
than the quality of the solution obtained with the standard output
space mapping. The number of fine model evaluations required
to find the solution is smaller for the adaptive correction tech-
nique. It also follows from the results shown in Table II that Re-
alization 1 of the adaptive response correction is slightly more
suitable for our filter than Realization 2. Fig. 14 shows the fine
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Fig. 15. Geometry of the low-pass elliptic microstrip filter [38].

Fig. 16. Coarse model of the low-pass elliptic microstrip filter (Agilent Tech-
nologies’ ADS).

model response at the final solution found by the space mapping
with Realization 1 of the adaptive response correction.

C. Two-Section Low-Pass Elliptic Filter

Our last example is a two-section low-pass elliptic microstrip
filter [38] shown in Fig. 15. The design parameters are

. The fine model is simulated in
Sonnet em [39] using a 0.02 mm 0.02 mm grid size. The
coarse model is the circuit model implemented in Agilent
Technologies’ ADS [36] and shown in Fig. 16. The design spec-
ifications for the elliptic low-pass filter are

dB for GHz GHz

dB for GHz GHz.

For this problem, we use the input-space-mapped coarse

model , where is obtained at
iteration using parameter extraction.

The starting point is the coarse model optimal solution
mm. Fig. 17 shows the coarse

and fine model responses at . The fine model specification
error at equals 6.4 dB.

We performed the space-mapping optimization of the
low-pass elliptic filter twice, first using the input-space-mapped

Fig. 17. Low-pass elliptic filter: coarse (dashed line) and fine (solid line) model
response at the starting point ��� .

TABLE III
SPACE-MAPPING OPTIMIZATION RESULTS FOR THE

LOW-PASS ELLIPTIC MICROSTRIP FILTER

Excludes the fine model evaluation at the starting point.

Fig. 18. Low-pass elliptic filter: fine model response at the design found by the
space-mapping optimization algorithm with the adaptive response correction
(Realization 2).

coarse model together with the standard output space mapping,
and then using the mapped coarse model with the adaptive
response correction method. We used Realization 2 as the filter
response contains two clearly defined characteristic points
(transfer function minima) and the response is almost constant
at the beginning of the considered frequency range.

Table III shows the optimization results. In this case, the
quality of the solution obtained using the standard output space
mapping is slightly better than the quality of solution found
with the adaptive response correction in terms of specification
error value. However, the algorithm with the adaptive response
correction requires only three fine model evaluations to find the
solution.

Fig. 18 shows the fine model response at the final solution
found by the space mapping with Realization 1 of the adaptive
response correction.
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IV. CONCLUSION

An adaptive response correction scheme has been presented.
The adjustment of the response correction term is related to the
changes of the space-mapped coarse model response, which
occur while optimizing the space-mapping surrogate model.
This allows us to alleviate the difficulties of the standard
output space mapping that uses a design-variable-independent
correction term, which may result in serious distortion of the
surrogate model response, and, consequently, deterioration of
the performance of the space-mapping algorithm. The robust-
ness of our technique is demonstrated using several microwave
design optimization problems.
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