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Abstract-We describe an improvement of a recent space
mapping (SM) modeling approach that uses variable weight
coefficients (SM-VWC). Our modification alleviates the main
drawback of SM-VWC: the computational overhead related
to a separate parameter extraction required for each
evaluation of the surrogate model. In our new procedure, the
output SM parameters of the surrogate model are obtained
by solving a regression problem instead of being determined
in the parameter extraction process. This dramatically
reduces the evaluation time of the surrogate model.
Moreover, the modeling accuracy of the modified technique
is even better than the accuracy of the original SM-VWC
approach. Examples demonstrate the robustness of our
approach.

Index Terms-Computer-aided design (CAD), EM
modeling, space mapping, surrogate modeling.

I. INTRODUCTION

Accurate and computationally efficient models of
microwave components and devices are crucial in many
areas such as signal processing, wireless communications
and biomedical engineering. Full-wave EM simulations of
microwave structures offer high accuracy at the cost of
CPU effort, which is undesirable from the point of view of
direct statistical analysis and design.
The space mapping (SM) [1]-[3] and neuro-space-

mapping concept [3]-[6] address this issue by replacing
the CPU-intensive EM-simulation-based "fine" model
with a computationally cheap surrogate model. The
surrogate model is constructed by composing a fast
''coarse" model usually a circuit equivalent of a
microwave structure with suitable auxiliary mappings.
The standard SM modeling methodology [5] provides

reasonable accuracy while using a small amount of fine
model data. Increasing the amount of fine model data has,
however, little or no effect on the accuracy due to
parameter extraction being independent of the evaluation
point of the surrogate [7].
SM modeling with variable weight coefficients (SM-

VWC) [7] provides better accuracy, but at the expense of
the computational overhead related to a separate
parameter extraction required for each evaluation of the
surrogate. This limits potential applications of the method.

In this paper, we present a modification of the SM-
VWC approach, where some of the space mapping

parameters are computed by solving a linear regression
problem using a set of simple analytical formulas. A
regression has a local character (focused on a current
evaluation point of the surrogate model) by exploiting the
variable-dependent weight factors as in [7]. Therefore, a
separate parameter extraction process for each evaluation
of the surrogate model is avoided. We demonstrate that
the modeling accuracy of the new technique is better than
the accuracy of the original SM-VWC approach with
substantially lower computational cost.

II. STANDARD SPACE MAPPING MODELING. SPACE
MAPPING WITH VARIABLE WEIGHT COEFFICIENTS

Let Rf: Xf- Rm, Xf -c R, and R: Xc- Rm, Xcc R"
denote the fine and coarse model response vectors. Let
XR C Xf be region of interest where we want an enhanced
matching between the surrogate and the fine model. Here,
XR is an n-dimensional interval in Rn with center at
reference point x° = [xo.1 ... x0.n]T e Rn and size
/6= [36 . jTn] [5]. Let XB {X,x, .. ., xN} c XR be the
base set, such that the fine model response is known at all
points x', j= 1, 2, ...,N. Let :XRXX oRm be a

generic SM surrogate model where Xp is a parameter
domain. For any given base set XB the standard surrogate
model RSSM is defined as

RSh e(x) = RSr(X, Pe)
where

pj= argmin Rf(x)-jRS(Xk,P)l
EzpX= (2)

A variety of SM surrogate models is available [1]-[4].
The model often used in practice (e.g., [5]) takes the form
of RS (X,Pp)= RS (X, A, B, C) = A * RC (B *X +C) and employs
both input and output SM. Note that the parameter
extraction process (2) is independent of the evaluation
point x of the surrogate model. This is the primary reason
for which the modeling accuracy of the model (1)-(2) is
barely dependent on the number of the base points N.
The space mapping with variable weight coefficients

(SM-VWC) [7] uses the parameter extraction defined as
p = argmin> =wk(x)| Rf(x )-Rs(x,p)II (3)

where
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ex<p 11xx

j=l c-<2

with c > 0 being a control parameter, usually set to 1, and
A being a characteristic distance of the base set defined as

n

A =nAN11nN =1,, (5)

The SM-VWC model, RSSM-VWC, is defined as in (1),
with the parameter extraction (2) replaced by (3)-(5).

It has been demonstrated that SM-VWC gives better
accuracy than the standard SM model, and the modeling
error can be made as small as required if the base set is
sufficiently dense [7]. The drawback of SM-VWC is that
each evaluation of the surrogate model (1), (3)-(5)
requires a separate parameter extraction, which results in a

substantial computational overhead, particularly when a

coarse model is evaluated using a circuit simulator.

III. QUICK SM-VWC MODELING

The computational complexity of the SM-VWC method
can be substantially reduced if the x-dependent parameter
extraction (3) is replaced by a standard parameter
extraction process (2) performed for some of the SM
parameters and analytical calculation of the remaining
parameters using the variable weight coefficient principle.

Let us consider the following generic SM model:
Rs(x, p) = Rs(x,A,B,c,d) = A-Rc(B *x+c)+ (6)

where A= diag{al, ..., am}, B is nxn matrix, c is nxl

vector and d= [d, d2 ... dm]T. The model (6) can be
enhanced using the frequency SM and/or implicit SM [5].
Parameters B and c are extracted in the x-independent

process as follows
(B, c) = arg min

N

11| Rf(xk)-Rc (B * x + c) (7)

For the sake of convenience, we shall use the notation
RS.ISM(x) = RC(Bx+c), where B and c are obtained by (7).

Parameters A and d are found by solving a linear
regression problem

A,d N wk(X)|lRf(xk)(A Rsm (xk) 2 (8)

with weighting coefficients Wk determined by (4).
Let us introduce the following notation:

R/(x) =[Rfl(x) Rf2(x) ... R m(x)]T, where Rf1(x) is the jth
component of the vector R/x). Similarly, we will use the
notation Rc.Ism(x) = [RcjsM.1(x) Rc.ISM.2(x) Rc.JSM.m(X)]T-
Problem (8) is then equivalent to m regression problems
rnin>wk=lNk (x) Rf j (xk)-(aj . R (XI ) + d ) 12

wherej = 1, ..., m. The problem (9) can be formulated as

where

min z

.w(x)RR ISM. (xI ) w (x)

(x)RX ISM. (x ) (X)

_R.S . (xN ) _IV

Y] = W( X)RSs M.(xI) ... VWN(X)RS.ISM.(x)
and

zj =[aj dj]T
The least-square solution to (10) is given by

(10)

(1 1)

(12)

(13)

zi (QJT v)i QJT X (14)
The RC.IsM model enhanced by the A and d terms

calculated according to (8)-(14) will be referred to as the
"quick" SM-VWC model (QSM-VWC) and denoted as

RS.QsM_vwc. Note that QSM-VWC retains the properties of
SM-VWC without compromising computational cost. In
particular, parameters A and d are obtained with an

analytical formula based on the weighting factors dependent
on the evaluation point x and the surrogate model
evaluation does not require extraction of parameters based
on the nonlinear minimization procedure as in the original
SM-VWC method (cf. (3)). Also, the parameter c in the
QSM-VWC model can be easily optimized using cross-

validation [8], which is rather impracticable for SM-VWC
because of the high computational cost of this process.

IV. EXAMPLES

Here, we compare the standard SM modeling [5] (SM-
Standard), original SM-VWC [7], and the QSM-VWC
method with respect to modeling accuracy as well as the
computational complexity the surrogate model.
A. Test Problem Description
Problem 1: Microstrip right-angle bend [9]. The fine

model, Fig. l(a), is analyzed by Sonnet's em [10]. The
coarse model is an equivalent circuit shown in Fig. l(b).
The design parameters are x [WH r]T. The response

vector consists of reflection coefficient JS11J in the
frequency range of 1 to 31 GHz. The reference point is xo

[25 12 9]T, and the region size is = [6 4 1]T.
Problem 2: Second-order tapped-line microstrip filter

[11] shown in Fig. 2. The fine model is simulated in
FEKO [12]. The coarse model, Fig. 3, is the equivalent
circuit model implemented in Agilent ADS [13]. The
design parameters are x= [L1 g]T . The response vector
consists of transmission coefficient JS211 in the frequency
range 3 to 7 GHz. The reference point is x°= [6.977
0.060]Tmm and the region size is 6 = [2 0.03]T mm.
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Fig.1. The microstrip right-angle bend [9]: the fine model (a) and the
coarse model (b).
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Fig. 2. Geometry of the second-order tapped-line microstrip filter [11].
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Fig. 3. Coarse model ofthe second-order tapped-line filter (Agilent ADS).

B. Experimental Setup
Table I shows details of the base sets used in our

experiments. The standard SM model (1), SM-VWC, and
QSM-VWC use the generic model (6) enhanced by
frequency SM [5]. Accuracy was tested using 50 test
points randomly distributed in the region of interest. The
error measure used was the relative error 11R/x) -
R,(x)l / IR/x)lI expressed in percent, where R/x) and RS(x)
denote the fine and the respective surrogate model
response at a given test point x (here, RS(x) is either
RSSM(x), RSsMvwc(x), or RS QsMvwc(x)). To reduce the
evaluation time, the parameter extraction process in the
SM-VWC model used a relaxed termination condition and
exploited only those base points that satisfy Wk(X) > 0.01.
C. Results and Discussion

Tables II and III show the modeling error and
evaluation times for the considered surrogate models.
Figs. 4 and 5 show the error plots, i.e., JR(x) -R,(x)l for
the SM-Standard and QSM-VWC for Problems 1 and 2
respectively. Figs. 6 and 7 show the average error versus
characteristic distance A for the considered models.

It is seen that the QSM-VWC model provides even better
accuracy than the SM-VWC model and it is substantially
faster than the latter. In particular, its evaluation time is of
the same order of magnitude as the time for the SM-
Standard and about three orders of magnitude smaller than
the time for the SM-VWC model. Therefore, the QSM-
VWC model can be used for optimization purposes.

TABLE I
BASE SET DATA FOR TEST PROBLEMS 1 AND 2

Test Base Number of Base
(%oblem Set Base SetDescripton Points

XB1 Uniform mesh of density 3 27 2.44
XB2 Uniform mesh of density 4 64 1.83

1 XB3 Uniform mesh of density 5 125 1.47
XB4 Uniform mesh of density 6 216 1.22
XB5 Uniform mesh of density 7 343 1.05
XB1 Uniform mesh of density 3 9 0.68
XB2 Uniform mesh of density 4 16 0.51

2 XB3 Uniform mesh of density 5 25 0.41
XB4 Uniform mesh of density 7 49 0.29
XB5 Uniform mesh of density 9 81 0.23

TABLE II
MODELING RESULTS FOR TEST PROBLEM 1

Base Average Maximum Average Evaluation
Model set Error [%] Error [%] Time* [s]

SM-Standard 0.396 1.010 0.004
SM-VWC XB1 0.341 0.874 6.7
QSM-VWC 0.190 0.640 0.004
SM-Standard 0.386 0.985 0.004
SM-VWC XB2 0.270 0.849 7.8
QSM-VWC 0.123 0.344 0.006
SM-Standard 0.381 0.971 0.004
SM-VWC XB3 0.233 0.786 8.9
QSM-VWC 0.092 0.385 0.012
SM-Standard 0.379 0.674 0.004
SM-VWC XB4 0.171 0.835 10.9
QSM-VWC 0.064 0.204 0.019
SM-Standard 0.373 0.977 0.004
SM-VWC XB5 0.145 0.835 15.5
QSM-VWC 0.036 0.130 0.030
All the models are run in the GUI-based SMF system [14]: the evaluation

time includes the time required to run the auxiliary procedures including
plotting; thus, the above values for SM-Standard and QSM-VWC are only
estimates. They are larger than the actual evaluation times.

TABLE III
MODELING RESULTS FOR TEST PROBLEM 2

Model Base Average Maximum Average Evaluation
set Error [%] Error [%] Time* [s]

SM-Standard 1.580 2.394 0.01
SM-VWC XB1 0.914 2.905 18.8
QSM-VWC 0.627 1.784 0.012
SM-Standard 0.950 2.020 0.01
SM-VWC XB2 0.428 1.062 27.6
QSM-VWC 0.213 0.535 0.014
SM-Standard 0.863 2.017 0.01
SM-VWC XB3 0.363 0.797 33.9
QSM-VWC 0.157 0.471 0.016
SM-Standard 0.812 2.017 0.01
SM-VWC XB4 0.322 0.898 37.8
QSM-VWC 0.106 0.340 0.020
SM-Standard 0.789 2.006 0.01
SM-VWC XB5 0.313 0.781 40.3
QSM-VWC 0.079 0.254 0.026
All the models are run in the GUI-based SMF system [14]: the evaluation

time includes the time required to run the auxiliary procedures including
plotting; thus, the above values for SM-Standard and QSM-VWC are only
estimates. They are larger than the actual evaluation times.
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V. CONCLUSIONS

A new SM-based modeling methodology is presented
which combines the accuracy of space mapping with
variable weight coefficients and the computational
efficiency and simplicity of linear regression models. The
numerical results show that our technique is competitive
with both the standard SM approach and SM-VWC.
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Fig.4. Test problem 1: error plots for the SM-Standard (a) and QSM-
VWC (b) surrogate models with base set XB5 (50 test points).
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Fig.5. Test problem 2: error plots for the SM-Standard (a) and QSM-
VWC (b) surrogate models with base set XB3 (30 test points).
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Fig.6. Test problem 1: average modeling error versus A: SM-Standard (o),
SM-VWC (x), and QSM-VWC (*)
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Fig.7. Test problem 2: average modeling error versus A: SM-Standard (o),
SM-VWC (x), and QSM-VWC (*).
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