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 Abstract—Efficient space mapping (SM) modeling of 
microwave devices assuming a tight limit on the number of fine 
model evaluations is discussed. The proposed method exploits a 
two-stage modeling procedure. The standard space mapping 
surrogate enhanced by a functional approximation layer using 
coarse-mesh EM simulation data is created in the first stage. This 
surrogate model is then updated in the second stage through 
space-mapping-based matching to the fine-mesh EM simulation 
responses at a limited number of base locations (designs). It is 
demonstrated that the proposed approach improves modeling 
accuracy in comparison to the standard SM method with no 
extra fine model evaluations required to set up the model. 

Index Terms—Computer-aided design (CAD), EM modeling, 
space mapping, surrogate modeling, functional approximation. 

I. INTRODUCTION 
Fast and accurate models of microwave structures and 

devices are crucial in microwave engineering to perform tasks 
such as design optimization and statistical analysis. Demand 
for efficient models is particularly growing nowadays as 
microwave engineering relies more and more on computer-
aided design. On the other hand, in creating such models we 
encounter the serious problem of the accurate evaluation of 
microwave structures that normally require CPU-intensive 
full-wave EM simulations.  

There is a large group of functional approximation 
techniques that can be used to create fast surrogate models, 
including radial basis functions [1], kriging [2], fuzzy systems 
[3], and neural networks [4], [5], the latter probably being the 
most popular and successful approach in this group. In order 
to achieve good modeling accuracy, all of these methods 
require, however, a large amount of data obtained through 
massive EM simulations. Moreover, the number of data pairs 
necessary to ensure sufficient accuracy grows exponentially 
with the number of the design variables. 

Another important modeling technique is space mapping 
(SM) [6], [7]. Space mapping constructs a surrogate model of 
a high fidelity CPU-intensive “fine” model by an 
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enhancement of a computationally cheap “coarse” model 
through some auxiliary (usually linear) mappings. The 
parameters of these mappings are adjusted so that the 

surrogate matches the fine model as well as possible at limited 
numbers of base points (designs). Because the coarse model is 
supposedly physics-based, we hope that the matching will also 
be good over the whole region of interest. 

It has been shown that the accuracy of the standard SM is 
almost independent of the amount of fine model data, i.e., 
increasing the number of base points over some limit 
(depending on SM mappings used in the surrogate model) has 
little or no influence on accuracy. Therefore, various 
combinations of SM with functional approximation techniques 
have been proposed [8]-[10] that retain the main advantages of 
space mapping and ensure increasing modeling accuracy if the 
amount of the available fine model data is also increasing. 
Although these approaches also suffer from the exponential 
dependence of the number of base points on the number design 
variables, the modeling accuracy of SM combined with 
functional approximation is better than the accuracy of purely 
functional models for an equivalent amount of training data. 

Here, we consider a technique that allows improvement of 
modeling accuracy without increasing the number of base points, 
or equivalently, the number of high-fidelity EM simulations. Our 
technique is based on utilizing an “intermediate”, coarse-mesh 
EM-based model. The data from this model is used to set up an 
initial surrogate exploiting both SM and functional 
approximation. This surrogate is subsequently enhanced by the 
standard SM approach with the model parameters being 
extracted through a small number of fine model base points. It is 
demonstrated that the resulting surrogate model exhibits better 
accuracy than the standard SM model, and the computational 
cost of creating both models is similar. 

II. STANDARD SPACE MAPPING MODELING 

Let Rf : Xf → Rm, Xf ⊆ Rn, and Rc : Xc → Rm, Xc ⊆ Rn, denote 
the fine and coarse model response vectors. For example, Rf(x) 
and Rc(x) may represent the magnitude of a transfer function at 
m chosen frequencies. Let XR ⊆ Xf be a region of interest where 
we want enhanced matching between the surrogate and Rf. 
Here, XR is an n-dimensional interval in Rn with center at 
reference point x0 = [x0.1 … x0.n]T ∈ Rn and size δ = [δ1 … δn]T 
[7]. Let XB = {x1, x2, …, xN} ⊂ XR be the base set, such that the 
fine model response is known at all points xj, j = 1, 2, …, N. 
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Let : m
s R pX X R× →R  be a generic SM surrogate model 

where Xp is a parameter domain. For any given base set XB the 
standard surrogate model Rs.SM is defined as 

. ( ) ( , )s SM s=R x R x p  (1) 
where 

1
arg min || ( ) ( , ) ||

p

N k k
f skX =∈

= −∑p
p R x R x p  (2) 

A variety of SM surrogate models is available [6], [7]. The 
model often used in practice (e.g., [7]) takes the form of 

( , ) ( , , , ) ( )s s c= = ⋅ ⋅ +R x p R x A B c A R B x c  and employs both 
input and output SM. Note that the parameter extraction 
process (2) is independent of the evaluation point x of the 
surrogate model. This is the primary reason for which the 
modeling accuracy of the model (1)-(2) is barely dependent on 
the number of the base points N. 

III. MULTI-FIDELITY SPACE MAPPING MODELING 

In this paper we propose a multi-fidelity SM-based modeling 
technique that allows us to improve modeling accuracy without 
increasing the number of fine model evaluations. 

Let Rf-c denote the response of the intermediate fidelity 
model, typically a model evaluated using the same EM solver 
as the fine model Rf but with a coarser mesh. We assume that 
Rf-c is more accurate than the coarse model Rc but not as 
computationally expensive as the fine model. 

Our technique is based on (i) setting up an initial surrogate 
Rs.init that is a good representation of the intermediate model 
Rf-c, and (ii) enhancing Rs.init using the standard SM modeling 
approach and a limited number of fine model responses.  

 

A. Initial Surrogate Model 
The initial surrogate model Rs.init is defined as  

. .1 1( ) ( , ) ( )R x R x p R x= +s init s  (3) 
where 

1

1
1 1 .1 1 11

arg min || ( ) ( , ) ||
p

p R x R x p−=
= −∑N k k

f c b s bk
 (4) 

Here, .1Rs  is a generic SM surrogate model (cf. Section II), 
11 2

1 1 1 1{ , , ... , }x x x= ⊂N
B b b b RX X  is the base set, and R  is a 

functional model that approximates the differences between  
Rf-c and .1Rs  at all base points.  

In this paper, R  is implemented using radial basis function 
(RBF) interpolation [1], [10]. Let Rf-c(x) = [Rf-c.1(x)  ...  Rf-

c.m(x)]T and   .1 .1.1 .1.( ) [ ( ) ... ( )]R x x x= T
s s s mR R . R  is defined as 
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where || . || denotes the Euclidean norm. The parameters λk.j 
are calculated so that they satisfy 

1,2,...,k k k mΦ = =λ F  (6) 
where λk = [λk.1  λk.2  ...  λ k.N]T,  
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and Φ is an N×N matrix with elements 
(|| || / )i j

ij φ γΦ = −x x  
 

(8) 
1/
1 1

[2 /( )]γ δ
=

= ∑nn
ii

nN  is a normalization factor (an average 

distance between the base points). Here, we use a Gaussian 
basis function defined as 

2

( ) 0 0crr e r cφ −= ≥ >  
 

(9) 
 

B. Space Mapping Enhancement of the Initial Surrogate 
The final surrogate model Rs is defined as the standard SM-

based enhancement of Rs.init, i.e., 
.2 2( ) ( , )R x R x p=s s  (10) 

where 
2

2
2 2 .2 2 21

arg min || ( ) ( , ) ||
p

p R x R x p
=

= −∑N k k
f b s bk

 (11) 
Here, .2Rs  is a generic SM surrogate model that can be the 
same or different than .1Rs  and 21 2

2 2 2 2{ , , ... , }x x x= ⊂N
B b b b RX X  

is the base set.  
 

C. Practical Issues 
The functional approximation layer R  is used in (3) to 

ensure that Rs.init is a good representation of Rf-c. In particular, 
unlike the standard SM, RBF model (5)-(8) guarantees that 
the modeling error ||Rs.init(x) – Rf-c(x)|| is as small as required 
over XR provided that the number of base points N1 is 
sufficiently large. On the other hand, the accuracy of the 
combined SM-RBF model (3) is much better than the 
accuracy of the stand-alone RBF model [10]. 

The number of base points N2 is normally much smaller 
than N1 because the idea of multi-fidelity modeling is based 
on the assumption that Rs.init is already a much better 
representation of the fine model than the coarse model, and 
also because we want to keep the number of fine model 
evaluations necessary to set up the surrogate model small. 

For the purpose of numerical comparison with the standard 
SM model Rs.SM, we will use N2 = N so that the cost of setting 
up models Rs.SM and Rs is the same in terms of the number of 
fine model evaluations. 

III. VERIFICATION EXAMPLES 
A. Third-Order Chebyshev Bandpass Filter [11] 

Consider a third-order Chebyshev bandpass filter [11] 
(Fig. 1). The design parameters are x = [L1 L2 S1 S2]T mm. 
Other parameters are: W1 = W2 = 0.4 mm. The fine model Rf is 
simulated in Sonnet em [12] with a fine grid of 0.2 mm × 
0.02 mm. The coarse model Rc, Fig. 2, is implemented in 
Agilent ADS [13]. The coarse-mesh model Rf-c is simulated in 
Sonnet em using a coarse grid of 2 mm × 0.2 mm. Simulation 
times for models Rf, Rf-c and Rc are 10 minutes, 14 seconds 
and a few milliseconds, respectively. 
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For this example, the region of interest is defined as 
x0 = [14 14 0.6 0.6]T mm δ = [2 2 0.2 0.2]T mm, which is quite 
a large deviation (±15% for lengths and ±33% for spacing).  

The standard SM surrogate Rs.SM has been set up using N = 9 
base points allocated according to the star distribution [7]. The 
model uses an SM surrogate of the form A·Rc(B·x + c). 

The multi-fidelity model Rs is set up as follows. The initial 
surrogate Rs.init uses an SM surrogate of the form 

.1 ( )R A R B x c= ⋅ ⋅ +s c . The base set XB1 has N1 = 34 = 81 points 
allocated as a uniform grid of density 3 with points at the 
corners, edges and faces of the region of interest. Note that the 
total evaluation time of Rf-c corresponds to less than two 
evaluations of the fine model. The final surrogate model Rs is 
defined using the same SM type, i.e., 

.2 ( )R A R B x c= ⋅ ⋅ +s c
. 

The base set XB2 is the same as XB, in particular, N2 = N, i.e., 
the number of fine model evaluations necessary to set up Rs is 
the same as for Rs.SM. 

The modeling accuracy has been verified using 50 test 
points allocated randomly in the region of interest. Table I 
shows the average and maximum modeling error. Here, we 
use the relative error measure ||Rf(x) – Rsurr(x)||/||Rf(x)|| 
expressed in percent, where Rf(x) and Rsurr(x) denote the fine 
and the respective surrogate model response at a given test 
point x (i.e., Rsurr(x) is either Rs.SM(x) or Rs(x)). 

As indicated in Table I, the modeling error of the new 
multi-fidelity surrogate is almost two times smaller than the 
error of the standard SM model and the number of fine model 
evaluations, 9, is the same for both models. 

It should be emphasized that the error values in Table I are 
very low considering the small number of fine model 
evaluations. This error level cannot be achieved by any of the 
existing functional approximation techniques using such a 
small number of base points (here, 9). 

Figure 3 shows the error plots |Rf(x) – Rsurr(x)| versus 
frequency for the standard SM surrogate and the new multi-
fidelity model. Figure 4 shows the fine model response and 
the surrogate model responses at one of the test points. 

B. Double Folded Stub Filter [14] 

Consider a double folded stub (DFS) bandstop filter [14] 
(Fig. 5). The design parameters are x = [L1 L2 S]T mil; W is set 
to 5 mil. The fine model Rf is simulated in Sonnet em [12] 
with a fine grid of 1 mil × 0.2 mil. The coarse model Rc, 
Fig. 6, is implemented in Agilent ADS [13]. The coarse-mesh 
model Rf-c is simulated in Sonnet em using a coarse grid of 
5 mil × 1 mil. Simulation times for models Rf, Rf-c and Rc are 
11 minutes, 22 seconds and a few milliseconds, respectively. 

For this example, the region of interest is defined as 
x0 = [90 85 8]T mil δ = [10 10 2] T mil, which is about ±12% 
deviation for lengths and ±25% deviation for spacing.  

The standard SM surrogate model Rs.SM has been set up 
using N = 7 base points allocated according to the star 
distribution [7]. The model uses an SM surrogate of the form 
A·Rc(B·x + c) enhanced by frequency space mapping [7]. 

 
Fig. 1. Third-order Chebyshev bandpass filter [11]. 
 

 
Fig. 2. Coarse model Rc of the third-order Chebyshev filter (Agilent ADS). 

 
TABLE I 

MODELING RESULTS FOR THIRD-ORDER CHEBYSHEV FILTER 
Model Average Error Maximum Error 
Rs.SM 6.5 % 11.1 % 

Rs 3.8 %   7.0 % 
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               (a)     (b) 

Fig. 3. Error plots for the third-order Chebyshev filter: (a) standard SM 
surrogate model Rs.SM, and (b) multi-fidelity surrogate Rs. 
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               (a)     (b) 

Fig. 4. Fine model (solid line) and the surrogate model (circles) response for at 
a selected test point for (a) standard SM surrogate model Rs.SM, and (b) multi-
fidelity surrogate Rs. 
 

The initial surrogate Rs.init uses a surrogate of the form 
.1 ( )R A R B x c= ⋅ ⋅ +s c  enhanced by frequency SM, and the 

base set XB1 has N1 = 53 = 125 points allocated as a uniform 
grid of density 5. The total evaluation time of Rf-c corresponds 
to about four evaluations of Rf. The final surrogate model Rs 
is defined using 

.2 .1=s sR R  and XB2 = XB. 
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Modeling accuracy has been verified using 50 test points 
allocated randomly in the region of interest and the same 
relative error measure as defined in Section III.A. Table II 
shows the average and maximum modeling error. The 
modeling accuracy is 2.5 times better for the new multi-
fidelity surrogate than for the standard SM model. 

Figure 7 shows the error plots |Rf(x) – Rsurr(x)| versus 
frequency for the standard SM surrogate and the new multi-
fidelity model.  

As an application example, the surrogate model was used to 
optimize the DFS filter with respect to the design 
specifications |S21| ≥ –20 dB for 11.5 GHz ≤ ω ≤ 14.5 GHz, and 
|S21| ≤ –3 dB for 6.0 GHz ≤ ω ≤ 9.5 GHz and 16.5 GHz ≤ ω ≤ 
20.0 GHz. Figure 8 shows the fine model responses at the 
starting point, x0 = [90 85 8]T mil (specification error +2.3 
dB), and optimized design xs of Rs, xs = [89 85 6]T mil 
(specification error –0.2 dB). 

 

 
Fig. 5. Double folded stub bandstop filter [14]. 

 
Fig. 6. Coarse model Rc of the double folded stub filter (Agilent ADS). 

 
TABLE II 

MODELING RESULTS FOR DOUBLE FOLDED STUB FILTER 
Model Average Error Maximum Error 
Rs.SM 2.0 % 3.8 % 

Rs 0.8 % 1.9 % 
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Fig. 7. Error plots for the double folded stub bandstop filter: (a) standard SM 
surrogate model Rs.SM, and (b) multi-fidelity surrogate Rs. 
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Fig. 8. Fine model response at x0 = [90 85 8]T mil (dashed line) and at the 
optimal design xs = [89 85 6]T mil of the surrogate model Rs (solid line).  

IV. CONCLUSION 
A new multi-fidelity modeling methodology is presented that 

combines SM with a functional approximation of the coarse-
mesh EM-based model. This combination allows us to reduce 
the modeling error without increasing the number of fine model 
evaluations necessary to set up the surrogate model. 
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