
 

Trust-Region-Based Convergence Safeguards for Space Mapping 
Design Optimization of Microwave Circuits 

 
 Abstract—Convergence is a well-known issue for space 

mapping (SM) optimization algorithms. One possible 
convergence safeguard is the trust region (TR) approach where 
the surrogate model is optimized in a restricted neighborhood of 
the current iteration point. We demonstrate that although formal 
conditions for applying trust regions are not strictly satisfied for 
SM surrogate models, TR improves the stability and convergence 
properties of the SM optimization process. Further improvement 
can be realized when approximate fine model Jacobian 
information is exploited in the construction of the SM surrogate. 

Index Terms—Computer-aided design (CAD), EM optimization, 
space mapping, trust-region methods. 

I. INTRODUCTION 
Space mapping (SM) has proven to be one of the most 

efficient design optimization methodologies in microwave 
engineering to date [1]-[4]. It avoids direct optimization of a 
CPU-intensive “fine” model by shifting the optimization 
burden to a cheap and physically-based “coarse” model.  

A serious issue for SM algorithms is convergence, which 
depends on the similarity between the fine model and the SM 
surrogate [2]. Trust-region (TR) [5] is one of the possible 
approaches that can be used to amend the convergence 
properties of SM algorithms. Formally, using TR with space 
mapping is not correct because the first order consistency [6] 
between the fine model and SM surrogate does not usually hold. 
Still, as observed, TR may work well with SM algorithms [4]. 

Here, we present a systematic treatment of TR-enhanced 
SM algorithms, give a heuristic explanation of why TR 
actually works with SM, as well as propose a modification of 
the TR-SM algorithm, which uses an approximate fine model 
Jacobian to enhance the surrogate model. Several microwave 
design problems verify our work. 
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fine model of the device of interest; U : Rm
 → R is a given 

objective function, e.g., minimax [1].  
Direct optimization of the fine model is replaced by an 

iterative procedure generating a sequence of points x(i) ∈ Xf, 
i = 0, 1, 2, …, and a family of surrogate models 
Rs

(i) : Xs
(i) → Rm, Xs

(i) ⊆ Rn, i = 0, 1, …, so that 
( )( 1) ( )arg min ( )i i

sU+ =
x

x R x  (2) 
Let Rc : Xc → Rm, Xc ⊆ Rn, denote the response vectors of 

the coarse model that describes the same object as the fine 
model: less accurate but much faster to evaluate. Surrogate 
models Rs

(i) in (2) are constructed as follows: 
( ) ( )( ) ( , )i i
s s=R x R x p  (3) 

where : m
s sX R→R  is a generic SM surrogate model which is 

Rc composed with some suitable SM transformations, and 
Xs ⊆ Xc × Xp, with Xp being the parameter space of these 
transformations. A vector of SM parameters, p(i), is obtained 
using the parameter extraction procedure 

( ) ( ) ( )
0

arg min || ( ) ( , ) ||ii k k
f sk =

= −∑p
p R x R x p  (4) 

An example of a generic SM model is an input SM of the 
form x → Bx + c, where ( , ) ( , , ) ( )s s c= = ⋅ +R x p R x B c R B x c . 
A variety of other SM surrogates can be found in [1], [2], [4]. 

As the algorithm (2)-(4) accepts a new design x(i+1) regardless 
of the Rf specification error improvement, convergence of the 
SM algorithm is not guaranteed [2]. Moreover, as the perfect 
matching between the Rs

(i) and Rf at x(i) is not ensured, there is 
no guarantee for the SM algorithm to locate the fine model 
optimal solution [2]. Excellent results reported in the literature 
[1]-[4], obtained with SM, are due to carefully chosen coarse 
models and properly selected SM type. 

B. Trust-Region Enhanced SM Algorithm 
A trust region (TR) approach [5] can be used to improve the 

convergence properties of the SM algorithm. In particular, the 
surrogate optimization process (2) can be constrained to a 
neighborhood of x(i), defined as ||x – x(i)|| ≤ δ(i), as follows 
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II. SPACE MAPPING WITH TR CONVERGENCE SAFEGUARDS 
A. Standard SM Algorithm 

The microwave design optimization problem is defined as  
( )* arg min ( )f U= fx

x R x  (1) 

where Rf : Xf → Rm, Xf ⊆ Rn, denotes the response vector of a 
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( )( ) ( )

( 1) ( )

,|| ||
arg min ( )

i i

i i
sU

δ

+

− <
=

x x x
x R x  (5) 

where δ(i) is a TR radius at iteration i. The TR radius is 
reduced if the improvement of the fine model objective 
function is not sufficient, i.e., if (U(Rf(x(i+1))) – U(Rf(x(i)))) / 
(U(Rs

(i)(x(i+1))) – U(Rs
(i)(x(i)))) is too small, or if 

U(Rf(x(i+1))) ≥ U(Rf(x(i))), in which case the new design is 
rejected. We use the standard TR radius updating rules [5]. 

If, for all i = 0, 1, 2, …, the surrogate model satisfies the 
zero- and first-order consistency conditions of the form 

( ) ( ) ( )( ) ( )i i i
s f=R x R x  (6) 

 

( )
( ) ( )( ) ( )i

fs

i i= RR
J x J x  (7) 

where J denotes the Jacobian of the respective model, then, 
under mild assumptions concerning smoothness of the models, 
algorithm (5) is convergent to the local fine model optimum  [7]. 
The fundamental reason is that (6) and (7) ensure that 
U(Rf(x(i+1))) < U(Rf(x(i))) if the TR radius is sufficiently small. 

Unfortunately, (6) and (7) are not necessarily satisfied by the 
SM surrogate model. In particular, the SM optimization process 
may get stuck at some point as the reduction of the TR radius 
δ(i) does not bring any improvement of the fine model objective 
function, which results in the termination of the algorithm.  

On the other hand, an important prerequisite of SM is that 
Rc is physically-based so that the surrogate model reflects the 
general features of Rf; in particular, the local behavior of both 
models is similar. This, in combination with the multi-point 
parameter extraction (4) ensures that (6) and (7) may be 
satisfied approximately. Moreover, condition (6) can be easily 
enforced by means of the output SM [1] using the surrogate 

( ) ( ) ( )( ) ( , )i i i
s s= +R x R x p d  (8) 

with p(i) obtained by (4) and  
( ) ( ) ( ) ( )( ) ( , )i i i i

f s= −d R x R x p  (9) 
Numerical results presented in Section III demonstrate that 

a TR-enhanced SM algorithm with output SM (8) and (9) 
exhibits improvement over the standard SM algorithm. 
C. Improved Trust-Region Enhanced SM Algorithm 

The SM algorithm can be further improved if condition (7) 
is satisfied. This can be realized with the following model: 

( ) ( ) ( ) ( ) ( )( ) ( , ) ( )i i i i i
s s= + + −R x R x p d E x x  (10) 

where SM parameters p(i) are obtained with (4), vector d(i) is 
computed according to (8), whereas  

( )
( ) ( ) ( )

( , )
( ) ( )i

f s

i i i
⋅

= −R R p
E J x J x  (11) 

Model (11) explicitly uses Rf sensitivity information, which 
is computationally prohibitive if the Jacobian is to be 
evaluated using finite differences. Another option is adjoint 
sensitivity [8], but it is not yet commercially available. 

Here, we exploit an approximation of the term E(i) obtained 
using a Broyden update [9]. Jacobians of Rf and the SM 
surrogate are estimated jointly as follows: 

( ) ( )
. f s

i i
−= B R RE J  (12) 

where 

( )( ) ( 1) ( ) ( )
.( ) ( 1)

. . ( ) ( )
f s

f s f s

i i i i T

i i
i T i

−
−−

− −

− ⋅ ⋅
= +

B R R

B R R B R R

f J h h
J J

h h
,  i = 1, 2,  … (13) 

with ( ) ( ) ( ) ( ) ( 1) ( 1) ( )( ( ) ( , )) ( ( ) ( , ))i i i i i i i
f s f s

− −= − − −f R x R x p R x R x p , 

h(i) = x(i) – x(i–1), and (0)
. ×− = 0

f s m nB R RJ .  

To improve accuracy of estimate (12) we consider local 
updates using only points satisfying ||x(k) – x(i)|| ≤ C, where C 
is a user-defined threshold value (typically 0.1). 

Obviously, the E term calculated using (12) and (13) does 
not guarantee the exact satisfaction of (7), however, it can be 
shown that the model (10)-(13) ensures the fundamental 
property U(Rf(x(i+1))) < U(Rf(x(i))) for sufficiently small TR 
radius assuming smoothness of the functions involved.  

III. VERIFICATION EXAMPLES 

A. Test Problem Formulation 

Problem 1: Seven-section capacitively-loaded impedance 
transformer [10]. Both “coarse” and “fine” models (Fig. 1) are 
implemented in Matlab. The design parameters are 
x = [L1 L2 L3 L4 L5 L6 L7] T. The design specifications are 
|S11| ≤ 0.07 for 1.0 GHz ≤ ω ≤ 7.7 GHz. 

Problem 2: Second-order capacitively-coupled dual-
behavior resonator microstrip filter [11] (Fig. 2). The design 
parameters are x = [L1 L2 L3 S]T. The fine model is simulated 
in FEKO [12]. The coarse model, Fig. 3, is implemented in 
Agilent ADS [13]. The design specifications are |S21| ≥ –3 dB 
for 3.8 GHz ≤ ω ≤ 4.2 GHz, and |S21| ≤ –20 dB for 
2.0 GHz ≤ ω ≤ 3.2 GHz and 4.8 GHz ≤ ω ≤ 6.0 GHz. 

Problem 3: Third-order Chebyshev bandpass filter [14] 
(Fig. 4). The design parameters are x = [L1 L2 S1 S2]T mm. 
Other parameters are: W1 = W2 = 0.4 mm. The fine model Rf is 
simulated in Sonnet em [15]. The coarse model, Fig. 5, is 
implemented in Agilent ADS [13]. The design specifications 
are |S21| ≥ –3 dB for 1.8 GHz ≤ ω ≤ 2.2 GHz, and |S21| ≤ –
20 dB for 1.0 GHz ≤ ω ≤ 1.6GHz and 2.4 GHz ≤ ω ≤ 3.0 GHz.  

Problem 4: Open-loop ring resonator bandpass filter [16] 
(Fig. 6). The design parameters are x = [L1 L2 L3 L4 S1 S2 g]T 
mm. Other parameter values are: W = 0.6 mm, W1 = 0.4 mm. 
Rf is simulated in FEKO [12]. The coarse model (Fig. 7) is 
implemented in Agilent ADS [13]. The design specifications 
are |S21| ≥ –3 dB for 2.8 GHz ≤ ω ≤ 3.2 GHz, and |S21| ≤ –20 
dB for 1.5 GHz ≤ ω ≤ 2.5 GHz and 3.5 GHz ≤ ω ≤ 4.5 GHz.  

B. Experimental Setup 

For our four test problems we compared performance of the 
standard SM (SMSTD) algorithm (2)-(4), the TR-enhanced SM 
(SMTR) algorithm (5) with the output SM model (8), (9), and 
the TR-enhanced SM (SMTR-B) algorithm using model (10)-
(13). In all cases the algorithm was terminated if one of the 
following conditions was satisfied: ||x(i+1) – x(i)|| < 10-2, 
δ(i+1) < 10-3, or U(Rf(x(i))) – U(Rf(x(i+1))) < 10-2 (SMTR and 
SMTR-B only). 
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Fig. 1. Seven-section capacitively-loaded impedance transformer: “fine” 
model (a) and “coarse” model (b) [10]. 
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Fig. 2. Geometry of the CCDBR microstrip filter [11]. 

 
Fig. 3. Coarse model of the CCDBR microstrip filter (Agilent ADS). 

 
Fig. 4. Third-order Chebyshev bandpass filter [14]. 
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Fig. 5. Coarse model Rc of the third-order Chebyshev filter (Agilent ADS). 
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Fig. 6. Open-loop ring resonator bandpass filter [16]. 
 

 
Fig. 7. Coarse model Rc of the open-loop ring resonator filter (Agilent ADS). 

C. Results and Discussion 

Table I shows the numerical results. For each problem we 
tried two different surrogate models. Figures 8-11 show the 
initial fine model response (corresponding to the coarse model 
optimal design) and the optimized fine model response for the 
four problems considered and selected SM algorithms. Figure 
12 illustrates the convergence improvement when using 
algorithm SMTR-B for Problem 1. Figure 13 illustrates the 
performance amendment when using algorithm SMTR-B for 
Problem 4. 

 
TABLE I 

SMSTD VERSUS SMTR AND SMTR-B: PERFORMANCE COMPARISON 

Test 
Problem sR  SM 

Algorithm 

Specification Error Number of 
Fine Model 
EvaluationsFinal  Best 

Found 

1 

Rc(B⋅x+c) 
SMSTD +0.0271 –0.0055   21# 
SMTR –0.0078 –0.0078 6 

SMTR-B –0.0091 –0.0091 7 

A⋅Rc(x+c) 
SMSTD –0.0096 –0.0096 6 
SMTR –0.0096 –0.0096 6 

SMTR-B –0.0096 –0.0096 7 

2 

Rc(x,F,I)*,$
SMSTD –1.4 –1.4 10 
SMTR –1.5 –1.5 12 

SMTR-B –1.6 –1.6 12 

Rc(x+c) 
SMSTD –2.4 –2.4 12 
SMTR –2.3 –2.3 11 

SMTR-B –2.5 –2.5 11 

3 

Rc(x+c) 
SMSTD –0.1 –0.1 8 
SMTR –0.1 –0.1 8 

SMTR-B –1.0 –1.0 10 

Rc(x+c,F)*
SMSTD –0.4 –0.7 8 
SMTR –0.7 –0.7 7 

SMTR-B –0.7 –0.7 8 

4 

Rc(x,F)* 
SMSTD +0.6 –0.9   21# 
SMTR –1.2 –1.2 11 

SMTR-B –1.2 –1.2 11 
 

Rc(x,I)$ 
 

SMSTD –1.8 –1.8 12 
SMTR –1.8 –1.8 6 

SMTR-B –1.8 –1.8 8 
# Convergence not obtained; algorithm terminated after 20 iterations. 
* F denotes frequency SM, where the coarse model is evaluated at frequencies 
different from the original sweep according to ω → f1 + f2ω, with F = [f1 f2]T. 
$ I stands for implicit SM [2] with the substrate height and dielectric constants 
used to improve the matching between the surrogate and fine models. 
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Our results indicate the advantages of SMTR and SMTR-B 
over the standard SM algorithm. SMTR ensures convergence 
for all considered cases, and improves performance in terms 
of the specification error corresponding to the optimized 
design for some cases. Algorithm SMTR-B, on the other hand, 
is able to bring, in some cases, further improvement in terms 
of the quality of the final design with little or no extra 
computational overhead. In the cases where the SMSTD does 
well, both SMTR and SMTR-B have little or no effect, which is 
exactly what we require. 

IV. CONCLUSION 
A systematic treatment of trust-region enhanced SM 

algorithms is presented. A performance comparison with the 
standard SM indicates that our trust region approach is a 
suitable tool to improve the robustness of SM algorithms. 
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Fig. 8. Problem 1: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency; optimization using SMTR-B algorithm with the A⋅Rc(x+c) model. 
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Fig. 9. Problem 2: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency; optimization using SMTR-B algorithm with the Rc(x+c) model. 
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Fig. 10. Problem 3: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency; optimization using SMTR-B algorithm with the Rc(x+c) model. 

2 2.5 3 3.5 4

-40

-20

0

Frequency [GHz]

|S
21

|

 
Fig. 11. Problem 4: Initial (dashed line) and optimized (solid line) |S21| versus 
frequency; optimization using SMTR-B algorithm with the Rc(x,I) model. 
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Fig. 12. Problem 1: Convergence plots for SMSTD (o) and SMTR-B (×), both 
using surrogate model Rc(B⋅x+c), versus iteration index. 
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Fig. 13. Problem 4: Evolution of the specification error for SMSTD (o) and   
SMTR-B (×), both using surrogate model Rc(x,F), versus iteration index. 
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