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Abstract: A novel implementation of a space-mapping (SM) algorithm for optimisation of microwave structures
and devices is described. The algorithm uses two techniques to speed up the SM optimisation process: the
evaluation of the fine model is distributed through independent processing of the fine model response
corresponding to consecutive frequency samples using a number of CPUs, and the parameter extraction and
surrogate optimisation sub-problems are solved using built-in optimisation capabilities of the coarse model
simulator. As a result, the optimisation time of microwave structures can be reduced to values comparable to
or smaller than the time necessary for a single fine model evaluation on a single processor. This new
implementation can be applied whenever the fine model is evaluated using a frequency-domain simulator.
The robustness of this algorithm using microwave design optimisation problems is verified. The efficiency is
compared with the standard implementation of the SM algorithm.
1 Introduction
Computer-aided design of electrical networks has been
around since the 1960s [1], with optimisation of microwave
structures and devices introduced in the late 1960s [2] and
the formal electromagnetic optimisation of planar and 3D
structures introduced in the early 1990s [3, 4]. The main
bottleneck in direct optimisation of microwave structures is
the high computational cost of the objective functions that
are normally evaluated using full-wave electromagnetic
simulators. Fast, circuit-theory-based optimisation using
equivalent circuits or analytical or semi-empirical formulas
is not accurate enough for practical purposes and the
designs obtained with these methods normally need tuning
and verification in electromagnetic simulators, although
they can serve as reasonable initial approximations of the
final design.

Space mapping (SM) addresses the issue of optimisation of
expensive functions, also called ‘fine’ models, through iterative
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optimisation and updating of the surrogate models which are
built using cheaper ‘coarse’ models [5–12]. In fact, SM has
been originally developed to deal with design problems in
microwave engineering. Nowadays, it is gaining popularity
in many other engineering areas [13–16].

It is important for the performance of SM algorithms that
the coarse model is physically based, that is, that it describes
the same physical phenomena as the fine model, typically in a
simplified way (e.g. lumped element circuit against full-wave
electromagnetic model). This allows us to obtain good
alignment between the fine model and the SM surrogate
using a small amount of fine model data, as well as an
excellent prediction capability of the surrogate. This feature
is unavailable for functional surrogate modelling techniques
such as polynomial approximation, radial basis functions or
Kriging [17–19], which is probably the reason that
surrogate-based optimisation methods exploiting functional
surrogates [20–23] have not been widely adopted in
microwave engineering so far.
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Substantial research effort has been devoted to improving
the efficiency of SM optimisation. New algorithms and SM
surrogate model types have been introduced [6–8, 24]. The
convergence properties of SM algorithms have been
improved [25, 26]. Assessment methods for automatic or
semi-automatic selection of the surrogate model type for a
given design problem have been presented [27–29], as well
as techniques for creating fast and accurate coarse models
[30–32]. These methods aim either at reducing the
number of fine model evaluations required to find a
satisfactory solution and improving the quality of the final
design in terms of satisfying given design specifications, or
in reducing the computational overhead of solving the two
fundamental sub-problems emerging in the SM algorithm:
parameter extraction and surrogate model optimisation.

In this paper, we present a new implementation of an SM
optimisation algorithm that uses two techniques to speed-up
the SM optimisation process. The first technique is a
distributed evaluation of the fine model through independent
processing of the fine model response corresponding to
consecutive frequency samples using a number of CPUs [33].
It can be applied for fine models evaluated using frequency-
domain simulators. The second technique exploits solving the
parameter extraction and surrogate optimisation sub-problems
using built-in optimisation capabilities of the coarse model
simulator [34]. Both techniques have been incorporated in
the SMF system [35]. The new implementation of the SM
algorithm allows us to reduce the optimisation time of
microwave structures to values comparable or smaller than the
time necessary for single fine model evaluation on a single
processor. The performance of the algorithm is demonstrated
using several microwave design optimisation problems. We
also provide an efficiency comparison with the standard
implementation of the SM algorithm.

2 Formulation of the SM
optimisation algorithm
We will use the following notation. Let Rf(x) denote the
response vector of a fine model corresponding to a design
variable vector x. In the microwave area, Rf(x) may
represent the magnitude of a transfer function of a
microwave filter at a given set of frequencies. The
optimisation problem is formulated as follows

x�f [ arg min
x

U Rf (x)
� �

(1)

where U is a given merit function, for example, a norm or a
minimax function [2]; xf

� is the optimal fine model design
to be found.

An SM optimisation algorithm generates a sequence of
approximate solutions to problem (1), denoted as x(i),
i ¼ 0, 1, 2, . . . , and a family of surrogate models Rs

(i), so
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that we have

x(iþ1) [ arg min
x

U R(i)
s (x)

� �
(2)

Let Rc denote the response vector of the coarse model that
describes the same object as the fine model: less accurate but
much faster to evaluate. Surrogate models are constructed
from the coarse model so that the misalignment between
Rs

(i) and the fine model is minimised. Rs
(i) is defined as [7]

R(i)
s (x) ¼ �Rs(x, p(i)) (3)

where �Rs is a generic SM surrogate model, that is, the coarse
model composed with suitable transformations, whereas

p(i) [ arg min
p

Xi

k¼0

wi:kjjRf (x(k))� �Rs(x(k), p)jj (4)

is a vector of model parameters and wi.k are weighting factors;
a common choice of wi.k is wi.k ¼ 1 for all i and all k.

There is a number of SM surrogate models available
[6–8], which can be roughly divided into four groups:

i. Models based on a (usually linear) distortion of the coarse
model parameter space, for example, input SM of the form
�Rs(x, p) ¼ �Rs(x, B, c) ¼ Rc(B � xþ c) [5],

ii. Models based on a distortion of the coarse model
response, for example, output SM of the form �Rs(x, p) ¼
�Rs(x, d) ¼ Rc(x)þ d or of the form �Rs(x, p) ¼ �Rs(x, A) ¼
A � Rc(x) [7],

iii. Implicit SM, where the parameters used to align the
surrogate with the fine model are separate from the design
variables, that is, �Rs(x, p) ¼ �Rs(x, xp) ¼ Rc:i(x, xp), with Rc.i

being the coarse model dependent on both design variables
x and so-called pre-assigned parameters xp (e.g. dielectric
constant, substrate height) that are normally fixed in the fine
model but can be freely changed in the coarse model [36] and

iv. Custom models exploiting parameters characteristic to
a given design problem; the most characteristic example
is the so-called frequency SM �Rs(x, p) ¼ �Rs(x, F) ¼
Rc:f (x, F) [6], where Rc.f is a frequency-mapped coarse
model, that is, the coarse model evaluated at frequencies
different from the original frequency sweep for the fine
model, according to the mapping v! f1þ f2v, with
F ¼ [ f1 f2]T.

The SM optimisation algorithm flow can be described as
follows:

Step 1: Set i ¼ 0; choose the initial solution x(0);

Step 2: Evaluate the fine model to find Rf(x(i));
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Step 3: Obtain the surrogate model Rs
(i) using (3) and (4);

Step 4: Given x(i) and Rs
(i), obtain x(iþ1) using (2);

Step 5: If the termination condition is not satisfied go to Step
2; else terminate the algorithm.

Typically, x(0) ¼ arg minfx:U(Rc(x))g, that is, it is the
optimal solution of the coarse model, which is the best
initial design we normally have at our disposal.

Usually, the algorithm is terminated when it converges (i.e.
kx(i) – x(i21)

k and/or kRf(x(i)) – Rf(x(i21))k are smaller than
user-defined values) or when the maximum number of
iterations (or fine model evaluations) is exceeded. If the
surrogate model is a sufficiently good representation of the
fine model [27], the SM algorithm typically requires a few
fine model evaluations to yield a satisfactory solution,
however, we cannot expect the final solution to be a local
optimum of the fine model in general, unless, for example,
first-order consistency conditions between the surrogate
and the fine model are ensured (which requires exploiting
fine model sensitivity data [7]) and convergence safeguards
such as trust region methods are used [7].

As mentioned in the introduction, there has been a
continuous effort to make SM more and more efficient in
two aspects, that is, reducing the computational complexity
of the optimisation process and improving the quality of
the final design produced by the algorithm. It follows from
the flowchart presented above that the reduction of the
computational cost of the SM algorithm can be obtained
through:

i. Reduction of the number of fine model evaluations,

ii. Reduction of the computational overhead of parameter
extraction and surrogate model optimisation or

iii. Decreasing the evaluation time for the fine model.

The first two goals can be obtained by improving the
convergence properties of the SM algorithm, using more
accurate and computationally cheaper coarse models, as well
as proper selection of the SM type for a given design
problem. All these possibilities have been explored recently
as described in the introduction.

The last goal, described in the next section, can be realised
by a distributed evaluation of the fine model.

3 Distributed evaluation of the
fine model in the SMF system
A distributed evaluation of the fine model has been
implemented within the SMF system, a user-friendly SM
software engine, allowing automated SM optimisation of
microwave devices and circuits [35].
0
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3.1 Architecture of the distributed
model evaluation

Distributed evaluation of the fine model is realised through
independent processing of the fine model responses
corresponding to consecutive frequency samples using a
number of machines. Thus, it can be applied for models
using frequency-domain simulators. Because parallelisation
is implemented internally in the SMF system, it works
regardless of whether the fine model simulator has a multi-
processor analysis capability or not.

Fig. 1 shows the flowchart of the distributed fine model
evaluation [33]. Evaluation is performed by the main SMF
copy and by n distributed evaluation clients (SMFDs)
running on separate processors. Suppose that the fine
model is evaluated at m frequency points, f1, f2, . . . , fm.
This set of frequencies is divided into K sub-bands, B1 to
BK. In particular, the sub-bands may consist of single
frequency samples.

The information about the design variable vector x and
frequency sub-bands is put into a so-called order set.
Orders are picked up and processed by both the main SMF
copy and by the SMFD clients and the results are exported
into the results set, which is periodically checked by the
main SMF program. Once all orders are processed and
the corresponding responses are in the response set, the
complete fine model response is returned.

Figure 1 Flowchart of distributed model evaluation in the
SMF system [33]
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Fig. 2 shows the architecture of the distributed model
evaluation. All the information about the model, including
the data allowing SMF and the SMFDs to prepare
simulator input files, call the simulator and format the
output data as well as the evaluation vector x and frequency
sub-band, is stored in the so-called order files. If SMF
requests model evaluation, a number of order files
corresponding to the number of frequency sub-bands as
described before are generated and copied to a separate
folder accessible by all SMFD clients. SMF and the
SMFD clients pick up available order files and, after
processing them, return the results to a results folder. Each
SMFD client uses a separate working folder for temporary
files. All the folders may reside in a designated directory on
a local network drive or in a file system of a computing
cluster.

Communication between SMF, the SMFDs and the
folders is realised through the SSH protocol. It should
be noted that the described distributed evaluation
implementation has cross-platform capability and it may
involve any number of machines running under Windows
or Linux, both workstations and PCs, at the same time.

3.2 Parallel efficiency of distributed
model evaluation process

In the ideal world, assuming that the main SMF program
and n SMFD clients are used in the distributed model
evaluation process and all of them are running on identical
processors, the computation time should be nþ 1 times
smaller than the evaluation time on a single processor. In
practice, this is never the case because of the following factors:

i. In order to obtain maximum possible efficiency the
number K of frequency sub-bands should be an integer

Figure 2 Architecture of distributed model evaluation in the
SMF system [33]
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multiplier of the number of processors nþ 1, which may
not be the case;

ii. The CPU type and speed, and, consequently, evaluation
time of the order files, may be different for different processors;

iii. There is some overhead related to communication
between SMF and the SMFDs and the designated folders;

iv. There may be additional overhead related to the fact that
some actions which would normally be done once, for
example, meshing of the structure, might be performed for
each frequency sub-band separately by each SMFD client.

The first factor plays the crucial role and the speed-up s
that can be obtained with our method, neglecting factors
(ii), (iii) and (iv), is given by

s ¼
K

K=(nþ 1)
� � (5)

where d.e denotes the ceiling function.

The parallel efficiency 1 is defined as the speed-up divided
by the number of processors [37], that is

1 ¼
s

nþ 1
(6)

For example, if we have 30 sub-bands and 8 processors, the
speed-up is 7.5 and the parallel efficiency is about 94%.

Because of factors (ii), (iii) and (iv), the actual parallel
efficiency is smaller, typically between 60 and 90%. We
assume here that the number of processors is properly
related to the number of frequency samples, that is, the
speed-up s (5) is sufficiently high, for example, 90% and
more.

4 Improving efficiency of solving
parameter extraction and surrogate
model optimisation sub-problems
The method described in Section 3 allows us to reduce the
evaluation time of the fine model, which is the main factor
limiting the speed of SM optimisation. However, if this
evaluation time is being reduced, and the coarse model is
implemented in a circuit simulator that is being called by
an external optimisation routine while solving parameter
extraction (4) and surrogate model optimisation (2), which
is the case in standard implementations of SM algorithms
in the microwave area, the time necessary to solve (2) and
(4), normally negligible, becomes a substantial component
of the total SM optimisation time. Here, we assume that a
coarse model is implemented in Agilent ADS [38]. ADS
can be considered as the primary coarse model evaluator in
the microwave area because it is widely used and it allows
801
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convenient and straightforward creation of coarse models for
many microwave structures and devices.

In this section, we describe the problems related to using
ADS as a ‘black box’ coarse model evaluator in an SM
algorithm and how the built-in optimisation capabilities of
ADS can be exploited to reduce the computational time of
solving the parameter extraction and surrogate optimisation
problems.

4.1 Standard implementation

The standard implementation of the SM optimisation
algorithm assumes that both the parameter extraction and
surrogate model optimisation sub-problems are solved using
appropriate optimisation routines that make calls to the
coarse model simulator each time the coarse model has to
be evaluated. In this work, we use routines provided with
Matlab’s Optimisation Toolbox [39], in particular fmincon
or lsqnonlin in case of parameter extraction, and fminimax
for surrogate optimisation. Each time we invoke an ADS
simulation, CPU clock cycles are consumed on allocating
memory, loading the simulator, verifying license, loading
the input file, parsing the input file, simulating the circuit,
exporting the response etc. Although the circuit simulation
is usually fast for a single design, calling ADS simulation
repeatedly will generate a significant overhead that cannot
be neglected in the SM optimisation process.

Fig. 3 shows the interaction between the optimisation
routine and ADS within the standard implementation of the
SM algorithm. Assuming that the optimisation process
(either parameter extraction or surrogate model optimisation)
requires k evaluations of the coarse model, the total
optimisation time would be k(toþ ts), where to is the
overhead time, and ts is the circuit simulation time for a single
design. In our case, ts is typically a few milliseconds, whereas
to might be as large as a few seconds, so that we have ts , ,to.

Figure 3 Interaction between the optimisation routine and
ADS for the standard implementation of the SM algorithm

Initial/optimised parameters are either SM parameters (in the
case of parameter extraction) or design variables (in the case of
surrogate model optimisation)
Auxiliary data include design specifications, SM formulas and
setup information
ADS is repeatedly called as an external function evaluator with the
coarse model netlist being modified to correspond to the design
currently considered by the optimisation routine
2
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Having in mind that typical surrogate optimisation
requires dozens or hundreds, while parameter extraction
(especially multi-point) sometimes even thousands of coarse
model evaluations, the overhead time may be quite
significant.

4.2 Inside-ADS parameter extraction and
surrogate model optimisation

To reduce the parameter extraction and surrogate
optimisation time we take advantage of the ADS
multipoint simulation and built-in optimisation capabilities
[34]. (ADS implements various optimisation routines,
including Quasi–Newton and minimax, and allows
simulation at multiple designs specified by DAC
components.) In particular, it is possible to solve the whole
parameter extraction and surrogate optimisation sub-
problems inside the ADS simulator. Compared with the
traditional way, the optimisation loop is moved into ADS.
Since the loop is inside ADS, the SM algorithm only
prepares the modified ADS netlist and initiates one call
to ADS for the entire optimisation process. As the
optimisation takes a lot of surrogate model simulations, a
large amount of time is saved.

The netlist originally containing only the coarse model
implementation in the traditional approach, is enhanced by
DAC components importing multiple designs and
corresponding fine model responses, by VAR components
incorporating SM equations and matrices, by optimisation
GOAL components specifying matching goals between
fine and surrogate models, and, finally, by optimisation
engine OPTIM that searches for the optimal solution for
parameter extraction.

Note that netlist modifications required for parameter
extraction and surrogate model optimisation are different as
in the first case we solve a least-square optimisation
problem (4) with respect to the SM parameters and with
the matching error computed at multiple designs at the
same time, whereas in the latter case, we typically solve a
(minimax) problem (2) for a space-mapped coarse model
with respect to the design variables.

Fig. 4 shows the flowchart for executing parameter
extraction (surrogate optimisation) according to the inside-
ADS optimisation approach. The coarse model netlist is
modified only once, and only a single ADS call is required.
Again, assuming that the optimisation process (either
parameter extraction or surrogate model optimisation)
requires k evaluations of the coarse model, the total
optimisation time would be to

0
þ k . ts

0, where to
0 is the

overhead time, and ts
0 is the circuit simulation time for a

modified design. While to
0 and ts

0 are, in general, different
from to and ts, they are of the same order of magnitude
(milliseconds and seconds, respectively), so that the time
savings by exploiting the inside-ADS optimisation are
substantial as shown in Section 5.
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5 Examples
In this section, we consider two examples of microwave
design problems that are solved using three methods: (i) a
standard implementation of an SM algorithm, (ii) an SM
algorithm with distributed fine model evaluation (Section
3) and (iii) the SM algorithm with distributed fine model
evaluation and inside-ADS parameter extraction and
surrogate model optimisation (Section 4).

5.1 Bandpass microstrip filter with open
stub inverter

Consider the bandpass microstrip filter with open stub inverter
[40] shown in Fig. 5. The design parameters are

Figure 4 Inside-ADS parameter extraction and surrogate
optimisation flowchart

Initial/optimised parameters are either SM parameters (in the
case of parameter extraction) or design variables (in the case of
surrogate model optimisation)
Auxiliary data include design specifications, SM formulas and
setup information
ADS is called only once with the coarse model netlist modified to
contain all the data necessary to solve a given sub-problem

Figure 5 Geometry of the bandpass filter with open stub
inverter [40]
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x ¼ [L1 L2 L3 S1 S2 W1]T. The fine model is simulated in
FEKO [41]. The design specifications are jS21j � –20 dB for
1.5 GHz � v � 1.8 GHz, jS21j � –3 dB for 1.95 GHz �
v � 2.05 GHz and jS21j � –20 dB for 2.2 GHz � v �

2.5 GHz, where S21 is the complex transmission coefficient
between the input and output ports. The model response is
the evaluation of jS21j at 41 frequency points uniformly
distributed in the interval 1.5 to 2.5 GHz. This number of
frequency samples was selected to capture the filter response
with sufficient accuracy. The coarse model is the circuit
model implemented in Agilent ADS [38] shown in Fig. 6.
The initial design is the coarse model optimal solution x(0) ¼

[25.00 5.00 1.221 0.652 0.187 0.100]T mm (fine model
specification error þ15.7 dB).

We use the surrogate model of the form �Rs(x, p) ¼
�Rs(x, F , c, d) ¼ Rc:f (xþ c)þ d , which corresponds to input,
frequency [6], and output SM, where Rc.f is the coarse model
evaluated at frequencies different from the original frequency
sweep for the fine model, according to the mapping
v! f1 þ f2 � v, with F ¼ [ f1 f2]T; the output parameter d is
calculated as d ¼ Rf(x)–Rc.f(xþ c) after the extractable
parameters c and F are known. Fig. 7 shows the fine model
response at x(0) (dashed line) as well as the response of the
optimised fine model (solid line) obtained after four SM
iterations (x(4) ¼ [23.64 5.00 1.00 0.742 0.189 0.100]T mm;
specification error is 21.9 dB).

Table 1 shows a comparison of the optimisation time for
the three implementations of the SM algorithm. For the
standard implementation, most of the computational cost
comes from the fine model evaluation (about 36 min per
evaluation on a Pentium D 3.4 GHz processor). The
contribution of coarse model evaluation time because of
solving the parameter extraction and surrogate optimisation
is relatively small.

Our SM algorithm with distributed fine model evaluation
uses 14 processors (1 Pentium D 3.4 GHz for SMF, and 13

Figure 6 Coarse model of the bandpass filter with open
stub inverter (Agilent ADS)
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nodes of the computing cluster containing Dual Core AMD
2 GHz processors and Intel Xeon 3.06 GHz processors for
the SMFDs), which gives a very good speed-up (5) of 13.7
and a parallel efficiency of more than 97% (calculated
assuming that the processors’ speed is the same). The
actual distributed evaluation time is about 3 min 10 s,
which gives a parallel efficiency of about 81%. Out of the
factors indicated in Section 3.2, the principal reason for the
above evaluation time is, in our case, the difference in CPU
speed between the processors (the actual number of
processors of each of the two types indicated above
involved in the evaluation process is unknown because it is
automatically determined by the task scheduler of the
computing cluster).

When the distributed evaluation of the fine model is
exploited, the total fine model evaluation time is reduced
from 181 min to only 16 min. As a result, the
computational cost of solving the parameter extraction and
surrogate optimisation sub-problems is now almost 80% of
the total optimisation cost. The application of inside-ADS
parameter extraction and surrogate optimisation allows
further reduction of the SM optimisation time to only
19 min, which is slightly more than half of the time
necessary to evaluate the fine model on a single processor.

Figure 7 Initial (dashed line) and optimised (solid line) jS21j

against frequency for the bandpass filter with open stub
inverter
I
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To emphasise the advantages of SM over direct
optimisation, we also optimised the filter using Matlab’s
fminimax routine [39], a gradient-based algorithm. This
direct optimisation fails to find the fine model optimum.
The best solution found in 150 fine model evaluations
(some four days of CPU time on a single processor)
corresponds to a specification error of about þ4 dB.

It should also be noted that the difference in solving the
parameter extraction and surrogate optimisation between
the standard implementation and inside-ADS optimisation
is not as large as might be expected by comparing the
simulation time ts and the overhead time to (milliseconds
against a few seconds). This is because the ADS and
Matlab optimisation routines are different, and it is not
possible to access certain control parameters for the ADS
optimisation routines (e.g. only the maximum number of
iterations can be specified as a termination condition). The
number of objective function evaluations necessary to
complete the process is generally larger for ADS than for
Matlab.

5.2 Third-order Chebyshev bandpass
filter

Consider the third-order Chebyshev bandpass filter [42]
shown in Fig. 8. The design parameters are x ¼ [L1 L2 S1 S2

W1 W2]T mm. The fine model Rf is simulated in Sonnet em
[43] with a fine grid of 0.1 mm � 0.02 mm. The design
specifications are jS21j � 23 dB for 1.8 GHz � v �

2.2 GHz, and jS21j � 220 dB for 1.0 GHz � v �

1.6 GHz and 2.4 GHz � v � 3.0 GHz. The model
response is the evaluation of jS21j at 41 frequency points
uniformly distributed in the interval 1.0 to 3.0 GHz. The
coarse model is the circuit model implemented in Agilent
ADS [38] shown in Fig. 9. The initial design is the coarse
model optimal solution x(0) ¼ [14.7 15.3 0.62 0.50 0.20
0.20]T mm (fine model specification error þ7.2 dB).

We use the surrogate model of the form �Rs(x, p) ¼
�Rs(x, c, d) ¼ Rc(xþ c)þ d , which corresponds to input
and output SM; the output parameter d is calculated as
d ¼ Rf(x)–Rc(xþ c) after the extractable parameter c is
known. Fig. 10 shows the fine model response at x(0)

(dashed line) as well as the response of the optimised fine
model (solid line) obtained after five iterations of the SM
Table 1 Bandpass filter with open stub inverter: optimisation time for the three implementations of SM

SM algorithm Total optimisation
time, min

Fine model
evaluation time

Parameter extraction and
surrogate model optimisation

time

Time
savings

standard implementation 241 181 min (75%) 60 min (25%) –

distributed fine model evaluation 76 16 min (21%) 60 min (79%) 68%

distributed fine model evaluation
and inside-ADS optimisation

19 16 min (84%) 3 min (16%) 92%
ET Microw. Antennas Propag., 2009, Vol. 3, Iss. 5, pp. 798–807
doi: 10.1049/iet-map.2008.0279

July 06,2010 at 20:42:46 UTC from IEEE Xplore.  Restrictions apply. 



IET
do

www.ietdl.org
Figure 8 Third-order Chebyshev bandpass filter: Physical structure [43]
algorithm with distributed fine model evaluation and inside-
ADS optimisation (x(5) ¼ [15.1 14.5 0.54 0.74 0.20
0.60]T mm; specification error is 21.9 dB). It should be
noted that the SM algorithm using the standard
implementation of the parameter extraction and surrogate
model optimisation required four iterations to arrive at the
same solution, which is merely because of the fact that
Matlab and ADS are using different optimisation routines.

Table 2 shows a comparison of the optimisation time for
the three implementations of the SM algorithm. For the
standard implementation, most of the computational cost
comes from the fine model evaluation (about 27 min per
evaluation on a Pentium D 3.4 GHz processor). The
contribution of the coarse model evaluation time because of
solving the parameter extraction and surrogate optimisation
is relatively small.

We use the same computing facility (14 processors) to
execute the SM algorithm with distributed fine model
evaluation. The speed-up (5) is 13.7 and parallel efficiency
is 97% (calculated as if all the processors were the same).

Figure 9 Third-order Chebyshev bandpass filter: Coarse
model (Agilent ADS)
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The actual distributed evaluation time is about 2 min 50 s,
which gives a parallel efficiency of about 68%. As before,
the main reason for that is the difference in CPU speed
between the processors.

Distributed evaluation of the fine model allows us to
reduce the total fine model evaluation time from 135 min
to just 14 min, which results in a 74% reduction of the SM
optimisation time. The relative cost of solving the
parameter extraction and surrogate optimisation sub-
problems increases, however, to almost 70% of the total
optimisation cost. When the inside-ADS parameter
extraction and surrogate optimisation is also exploited, the
total optimisation time can be further reduced to only
20 min (time savings of 88% with respect to a standard

Figure 10 Initial (dashed line) and optimised (solid line)
jS21j against frequency for the bandpass filter with open
stub inverter
Table 2 Third-order Chebyshev bandpass filter: optimisation time for the three implementations of SM

SM algorithm Total optimisation
time, min

Fine model
evaluation time

Parameter extraction and
surrogate model optimisation

time

Time
savings

standard implementation 163 135 min (83%) 28 min (17%) –

distributed fine model evaluation 42 14 min (33%) 28 min (67%) 74%

distributed fine model evaluation
and inside-ADS optimisation

20 17 min (85%) 3 min (15%) 88%
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implementation) even though one extra fine model evaluation
is necessary.

As in the previous example, we attempted direct optimisation
of the filter. Because the fine model is available on a discrete
grid, gradient-based methods cannot be used. Instead, we
used a grid search procedure which yielded a solution
comparable with that found by SM (specification error
21.8 dB), however, the number of fine model evaluations
required is 168 (over three days of CPU time on a single
processor).

6 Conclusion
A computationally efficient implementation of our SM
optimisation algorithm is presented. It exploits the distributed
evaluation of the fine model and solving the parameter
extraction and surrogate optimisation sub-problems inside the
coarse model simulator. Both techniques applied together
allow substantial reduction of the SM optimisation time in
comparison with the standard implementation. The
optimisation process is automated and carried out in our
SMF system. Through microwave design problems we
demonstrate that it is possible to complete the optimisation in
less time than necessary to evaluate the fine model on a single
processor.
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