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Abstract: Implicit space mapping is one of the latest developments in space mapping (SM) technology. Its
advantage is that the variables (the so-called preassigned parameters) used to adjust the surrogate model to
have it match the fine model are typically separate from the design variables. Also, implicit space mapping
offers greater flexibility in creating and enhancing surrogate models. Still, choosing the proper model as well
as the right set of preassigned parameters – both being critical for the performance of the space mapping
algorithm – is an open problem. Here, the authors apply suitable assessment techniques that help in
automatically making the right selection of the model and, consequently, its associated parameters. The
assessment is embedded into the SM algorithm so that the choice of the most suitable model is performed
before each iteration of the algorithm. Our approach is verified using several microwave design optimisation
problems. The authors also present a modified version of the adaptive SM to improve performance. Our
examples are repeated using the modified adaptive SM and compared with the basic adaptive SM.
1 Introduction
Since the space mapping concept [1–5] was first developed,
it has been successfully applied to microwave engineering
design problems as well as in other engineering fields (e.g.
[6–18]). Space mapping allows for efficient optimisation of
expensive or ‘fine’ models by means of the iterative
optimisation and updating of the so-called ‘coarse’ models,
less accurate but cheaper to evaluate. In the microwave area,
fine models are often based on full-wave electromagnetic
simulations, whereas coarse models may be physically based
circuit models. Much research has been carried out on
various aspects of space mapping and related approaches
[3–5, 19–28].

It should be emphasised that the coarse model being
physically based is a key factor for the success of space
mapping, particularly because space mapping is capable of
yielding satisfactory designs after a few fine model
evaluations. Many other surrogate-model-based methods
Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
i: 10.1049/iet-map.2009.0080

Authorized licensed use limited to: McMaster University. Downloaded on
[29–34] exploit a functional surrogate that is created by
direct approximation of the available fine model data, and
therefore cannot compete with space mapping in terms of
computational efficiency.

Among the developments in the art of space mapping,
implicit space mapping [3, 7] is probably the simplest
technique to implement. Its most characteristic feature is
that the surrogate model parameters that are used to
match the fine model are different from the design
variables, although they are still typically physically based,
for example dielectric constant and the height of the
substrate. These parameters are normally selected and
their values fixed early in the modelling and design
process. The effects on the responses of microwave
components of varying the values of these parameters may
be as significant as those achieved by varying the
optimisable parameters. Preassigned parameters, also
known as implicit space mapping parameters, can also be
introduced as synthetic parameters with no direct
361
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counterparts in the fine model; however, it is still advisable
to keep them physically based (e.g. small inductors or
capacitors that enhance the flexibility of a circuit-
equivalent-based coarse model). Another advantage of
implicit space mapping is that, unlike input space
mapping [1, 4], it does not affect the domain of the
surrogate model, which may be important in the case of
constrained optimisation. Implicit space mapping has
been demonstrated to work both in the design [3, 7, 35,
36] and modelling [37, 38] arenas.

An open problem in space mapping optimisation, which is
especially visible in implicit space mapping, is the proper
selection of the coarse model and/or the corresponding set
of parameters. With a large number of possible ways of
choosing from already existing preassigned parameters and/
or introducing synthetic parameters it is not clear
beforehand which coarse model and/or set of parameters
would most suit a given design problem. A wrong selection
of coarse model and preassigned parameters may result in
poor performance of the implicit space mapping algorithm
[25, 26, 28, 36]. In particular, the algorithm may be unable
to find a satisfactory solution or may exhibit slow
convergence, which would make the optimisation process
very expensive. Although engineering experience helps in
the coarse model selection process, it does not guarantee
success because the dependence between a model’s
desirable features (such as its approximation/generalisation
ability) and its topology and/or parameters is normally
complicated.

Here, we employ certain assessment methodologies that
allow us to estimate the ability of the coarse model to
match the fine model and to detect possible under- or
over-flexibility that should be avoided in order to obtain a
reasonable trade-off between the approximation and
generalisation properties of the surrogate model. Given
the design problem and the set of candidate coarse
models, a suitable model is selected based on the values of
properly designed quality factors associated with each
candidate.

The paper is organised as follows. In Section 2 we recall
the formulation of the implicit space mapping optimisation
algorithm and discuss some practical issues related to a
proper choice of preassigned parameters in the surrogate
model. In Section 3 we describe an adaptive implicit space
mapping algorithm that selects a surrogate model out of a
set of candidate models based on their estimated
approximation and generalisation properties. In Section 4
we present experimental results and compare the
performance of the adaptive algorithm with the
performance of the original implicit space mapping
algorithm using each candidate surrogate model. A
modification of the adaptive algorithm that improves the
quality of the final solution found by the space mapping
optimisation process is discussed in Section 5.
2
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2 Implicit space mapping
optimisation
2.1 Implicit space mapping optimisation
algorithm

Our goal is to solve the following problem

x�f [ arg min
x

U (Rf (x)) (1)

where Rf [ Rm denotes the response vector of a fine model of
the device of interest. It might be, for example the modulus of
the transmission coefficient jS21j evaluated at m different
frequencies. U is a given scalar merit function, for example
a norm, or a minimax function with upper and lower
specifications. Vector x�f is the optimal design to be
determined.

Let Rc [ Rm denote the response vector of the coarse
model that describes the same object as the fine model: less
accurate but much faster to evaluate. We assume that Rc

depends on the two sets of parameters: (i) design variables
x, the same as in the fine model; and (ii) preassigned
parameters xp, that is parameters that are used to adjust the
coarse model and match it to the fine model. Preassigned
parameters can be parameters that are normally fixed in the
fine model during the optimisation process, such as
dielectric constants or thickness of the substrate, but they
can be freely changed in the coarse model. Preassigned
parameters can also be synthetic parameters that are
introduced into the coarse model in order to increase its
flexibility, even if they do not correspond to any physical
parameter in the fine model. An example would be a small
capacitor introduced between coupled lines in the
microstrip filter model.

We consider an optimisation algorithm that generates
a sequence of points xðiÞ; i ¼ 1; 2; . . ., such that

x(iþ1)
¼ arg min

x
U (Rc(x, x(i)

p )) (2)

where

x(i)
p ¼ arg min

xp

kRf (x(i))� Rc(x(i), xp)k (3)

Thus, the values of the preassigned parameters are updated in
each iteration of the implicit space mapping algorithm in
order to obtain the best possible match with the fine model
at the current design. The next design is the optimal
solution of the current surrogate model. Initial values of the
preassigned parameters xp

(0) are normally the same as the
corresponding parameters in the fine model or are set to
zero for synthetic parameters.
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
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Figure 1 Implicit space mapping surrogate model

a Traditional, single-coarse-model approach
b Adaptive implicit space mapping: the surrogate model is selected out of the set of candidate models using suitable performance criteria
In order to improve the performance of the implicit space
mapping algorithm, an output space mapping correction
term [4] can be used to enhance the coarse model so that
formula (2) is replaced by

x(iþ1)
¼ arg min

x
U (Rc(x, x(i)

p )þ DR(i)) (4)

where

DR(i)
¼ Rf (x(i))� Rc(x(i), x(i)

p ) (5)

The overall surrogate model Rcðx; xðiÞp Þ þ DRðiÞ satisfies a
zero-order consistency condition with the fine model, that is
we have Rc(x(i), xp

(i))þ DR(i) ¼ Rf(x(i)), which, in general,
improves the ability of the space mapping algorithm to find
a fine model optimum with better accuracy [4].

Convergence properties of the space mapping algorithm
can be improved by using the trust region method [39, 40],
in which the surrogate model optimisation is restricted to
the neighbourhood of the point x(i) so that (2) is replaced by

x(iþ1)
¼ arg min

x,kx�x(i)k�d(i)
U (Rc(x, x(i)

p )) (6)

where d(i) denotes the trust region radius at iteration i, which
is updated at every iteration using classical rules [39]. The
trust-region-based version of (4) is

x(iþ1)
¼ arg min

x,kx�x(i)k�d(i)
U (Rc(x, x(i)

p )þ DR(i)) (7)

2.2 Coarse models and preassigned
parameters

It is well known [25, 26, 28] that the performance of space
mapping algorithms heavily depends on the quality of the
ET Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
oi: 10.1049/iet-map.2009.0080

Authorized licensed use limited to: McMaster University. Downloaded on
coarse model utilised in the optimisation process and the
type of mapping involved to create the surrogate model.
Normally, a suitable choice of the coarse model and space
mapping type is problem dependent and requires both
knowledge of the problem and engineering experience,
although there are some methods available (e.g. [25, 26])
that allow us to make this choice automatic to some
extent. Another issue is that the convergence of the space
mapping algorithm is not guaranteed in general [28]. It
is also dependent on a proper choice of the coarse model
and the space mapping surrogate.

These problems are even more visible in the case of
implicit space mapping. The reason is that the number of
possible ways of choosing from already existing preassigned
parameters and/or introducing synthetic parameters is
virtually unlimited. Engineering experience can help in this
process; however, it does not guarantee success. It seems
that a much better way is through suitable assessment
methodologies that not only estimate the ability of the
surrogate model to match the fine model but can detect
possible under- or over-flexibility that is to be avoided in
order to obtain a reasonable trade-off between the
approximation and generalisation properties of the
surrogate model.

Figure 2 Microstrip bandpass filter: geometry [41]
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3 Selecting parameters of the
surrogate model: adaptive space
mapping algorithm
Suppose that we have a set of candidate coarse models
Rc:j; j ¼ 1; 2; . . . ;K , and we want to know which is
suitable for a surrogate model at any given iteration of the
implicit space mapping optimisation algorithm. Each
coarse model has a corresponding set of preassigned

parameters. We will denote by xj
(0) the initial values of

these parameters for model Rc.j. In general, the candidate
models may be different both with respect to the structure
(in particular, they may be different equivalent circuit
realisations of the same microwave structure) and with
respect to the choice of preassigned parameters.

We adopt an adaptive space mapping algorithm [25]. Let

X ðiÞ ¼ {xð0Þ; xð1Þ; . . . ; xðiÞ} be the set of all previous iteration
points found by the space mapping algorithm. At iteration
i, we perform, for each candidate model, extraction of its

parameters using the fine model data at point x(i) as follows

x(i)
p:j ¼ arg min

xp

kRf (x(i))� Rc:j(x(i), xp)k (8)

Now, for each model, we define two quality factors

F (i)
APP:j ¼

kRf (x(i))� Rc:j(x(i), x(0)
j )k

kRf (x(i))� Rc:j(x(i), x(i)
p:j)k

(9)

F (i)
GEN:j ¼

kRf (x(i�1))� Rc:j(x(i�1), x(0)
j )k

kRf (x(i�1))� Rc:j(x(i�1), x(i)
p:j)k

(10)

If i ¼ 0, we only calculate F (i)
APP:j and set F (i)

GEN:j ¼ F (i)
APP:j .

The first factor, F (i)
APP:j , measures the approximation

properties of model Rc.j, because it is the ratio of the
matching error before and after parameter extraction,
calculated for the point that was used in parameter
extraction. The second factor, F (i)

GEN:j , measures the

Figure 3 Microstrip bandpass filter: coarse model (Agilent ADS)

Table 1 Parameters of the candidate models used in the microstrip bandpass filter problem

Candidate
model

Preassigned parameters

Number of
parameters

List of parametersa

Rc.1 2 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:TL3 ¼ 1r:TL4 ¼ 1r:TL5 ¼ 1r:TL6 ¼ 1r:Gap1 ¼ 1r:Tee1 ¼ 1r:Tee2;

H ¼ HTL1 ¼ HTL2 ¼ HTL3 ¼ HTL4 ¼ HTL5 ¼ HTL6 ¼ HGap1 ¼ HTee1 ¼ HTee2

Rc.2 18 1r:TL1; 1r:TL2; 1r:TL3; 1r:TL4; 1r:TL5; 1r:TL6; 1r:Gap1; 1r:Tee1; 1r:Tee2;HTL1;HTL2;

HTL3;HTL4;HTL5;HTL6;HGap1;HTee1;HTee2

Rc.3 10 1r:TL1; 1r:TL2; 1r:TL3; 1r:TL4; 1r:Gap1;HTL1;HTL2;HTL3;HTL4;HGap1

Rc.4 5 1r:TL1; 1r:TL2; 1r:TL3; 1r:TL4;HGap1

Rc.5 6 1r:TL1; 1r:TL2; 1r:TL3; 1r:TL4; 1r:Gap1;HGap1

aSymbols 1r.Elem and HElem refer to the dielectric constant (initial value 9) and substrate height (initial value 0.66 mm) of
element Elem, respectively.
4 IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
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extrapolation (generalisation) properties of model Rc.j,
because it is the ratio of the matching error before and after
parameter extraction, calculated for the point that was not
used in the extraction process.

At iteration i, we select the coarse model based on the
combined quality factor

F (i)
j ¼ aF (i)

APP:j þ (1� a)F (i)
GEN:j (11)

In particular, we set

Rc(x, x(i)
p ) ¼ Rc:jmax

(x, x(i)
p:jmax

) (12)

where

jmax ¼ arg max
j[{1,2,...,K }

F (i)
j (13)

A good surrogate model exhibits high values for both F (i)
APP:j

and F (i)
GEN:j , however, we consider generalisation properties as

even more important than approximation properties because
F (i)

GEN:j indicates the capability of modelling the fine model
outside the points at which the surrogate was created. Also,
this factor indicates potential over-flexibility of the
surrogate model. Therefore, in practice, we use small values
of a (e.g. a ¼ 0.1) [25]. In general, the value of a could be
determined by some kind of heuristic procedure, however,
we keep a fixed throughout the algorithm here.

Fig. 1 illustrates the difference between the traditional
space mapping approach and adaptive implicit space
mapping algorithm in terms of setting up and selecting the
surrogate model.

Table 2 Results of implicit space mapping optimisation of
the microstrip bandpass filter

Surrogate
model

Specification error at
final solution (dB)

Number of fine
model evaluations

Rc.1 þ1.3 7

Rc.2 þ0.1 6

Rc.3 21.2 8

Rc.4 21.0 6

Rc.5 20.9 8

adaptive
algorithm

21.2 8
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
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The implicit space mapping algorithm with automatic
selection of the coarse model can be summarised as follows:

Step 0: Set the starting point x(0); Choose the candidate
coarse model set {Rc:1, . . . , Rc:K } with initial values of the

preassigned parameters x(0)
j for the jth model; Set i ¼ 0;

Evaluate Rf at x(0);

Step 1: Calculate the quality factors F (i)
APP:j and F (i)

GEN:j ,

j ¼ 1, . . . , K , as in (8)� (10); Calculate the combined

quality factors F (i)
j , j ¼ 1, . . . , K , as in (11);

Step 2: Select the current model index jmax ¼ arg max
j[{1,...,K }

F (i)
j

Step 3: Obtain the new design x(iþ1)
¼ arg min

x

U (Rc:jmax
(x, x(i)

p:jmax
));

Step 4: Evaluate Rf at x(iþ1);

Step 5: Set i ¼ iþ 1;

Step 6: If the termination condition is not satisfied go

to Step 1; else terminate the algorithm: (14)

Note that the adaptive algorithm (14) does not require any
extra fine model evaluations because the coarse model
assessment is based on already existing fine model data.
Additional computational effort concerns the coarse model

Figure 4 Microstrip bandpass filter: initial solution (dashed
line), and final solution (solid line) found using the adaptive
implicit space mapping algorithm

Table 3 Surrogate model evolution for the microstrip
bandpass filter problem

Iteration number Surrogate model F(i)
jmax

F(i)a

1 Rc.3 90.1 59.5

2 Rc.3 289.3 81.8

3 Rc.4 36.5 22.9

4 Rc.4 29.5 19.4

aFðiÞ ¼ K 21 P
j¼1
K Fj

(i) is the average combined quality
factor
365
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only, and because we assume that the coarse model evaluation is
significantly cheaper than the fine model evaluation, this
additional effort should not substantially affect the total
execution time of the optimisation algorithm.

4 Verification examples
In this section we verify the performance of the adaptive
implicit space mapping algorithm and compare it with the
performance of the space mapping algorithm using a fixed
surrogate model. We use three examples of microwave
design optimisation problems.

4.1 Microstrip bandpass filter [41]

Consider the microstrip bandpass filter [41] (Fig. 2). The
design parameters are x ¼ [L1 L2 L3 L4 g]T. The fine model
6
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is simulated in FEKO [42], the coarse model is the
circuit model implemented in Agilent ADS [43] (Fig. 3).
The design specifications are jS21j � 220 dB for
4.5 GHz � v � 4.7 GHz and 5.3 GHz � v � 5.5 GHz
and jS21j � 23 dB for 4.9 GHz � v � 5.1 GHz. The initial
design is the coarse model optimal solution x(0) ¼ [6.784
4.890 6.256 5.28 0.0956]T mm (specification error þ24 dB).

The filter was optimised using the adaptive implicit SM
algorithm of Section 3, and the trust region approach to
improve convergence [cf. (6)]. We considered five candidate
models, that is the coarse model of Fig. 3 with five sets
of preassigned parameters as described in Table 1. For
comparison purposes, the standard implicit SM optimisation
was also performed on each candidate model individually. The
optimisation results are summarised in Table 2. Table 3 shows
Figure 5 Responses of the fine model (solid line) and the surrogate model (dashed line) for the microstrip bandpass filter
example:

a responses at the initial design for Rc.1

b responses at the optimised surrogate model design for Rc.1

c responses at the initial design for Rc.2

d responses at the optimised surrogate model design for Rc.2

e responses at the initial design for Rc.3

f responses at the optimised surrogate model design for Rc.3

Rc.1 shows poor overall matching with the fine model. Rc.2 shows very good approximation but degraded generalisation capability. Rc.3

exhibits both good approximation and generalisation capabilities
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
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the actual sequence of candidate models selected in subsequent
iterations of the algorithm. The number of iterations does not
correspond to the number of fine model evaluations shown in
Table 2 as there may be more than one fine model evaluation
per iteration because of the trust region approach. Fig. 4
shows the fine model response at the initial solution x(0) and
at the final design obtained using our adaptive algorithm,
x(4) ¼ [6.337 4.884 6.212 4.857 0.097]T mm (specification
error 21.2 dB). The space mapping algorithm was terminated
if one of the following conditions was satisfied: (i)
kx(i) 2 x(i21)

k , 1023 or (ii) the trust region size, d(i) , 1023.

The results shown in Table 2 indicate that the
algorithm working with the adaptive model selection
performs as good as the best algorithms using a fixed
surrogate model. Note that some of the SM algorithms
with fixed model failed to find an acceptable solution. In

Figure 6 Open-loop ring resonator bandpass filter:
geometry [44]
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
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particular, this applies to the simplest model Rc.1 (only
two preassigned parameters) and to the most complex
model Rc.2 (18 preassigned parameters). This confirms
that a proper selection of the set of preassigned
parameter is not obvious.

Fig. 5 shows the fine model response and the surrogate
model response (after the parameter extraction) at the
initial design, and the optimised surrogate model response
as well as the corresponding fine model response for the
candidate models Rc.1, Rc.2 and Rc.3. We can observe that
model Rc.1 exhibits poor overall matching with the fine
model. Model Rc.2 shows a very good match at the initial
design, however, there is a significant discrepancy at the
optimised design of this surrogate. This indicates that
model Rc.2 is over-flexible: the large number of parameters
degrades its generalisation capabilities. Model Rc.3, on the
other hand, demonstrates both good approximation and
generalisation capability.

4.2 Open-loop ring resonator bandpass
filter [44]

Consider the open-loop ring resonator bandpass filter [44]
shown in Fig. 6. The design parameters are x ¼ [L1 L2 L3

L4 S1 S2 g]T mm. Other parameter values are W ¼ 0.6 mm
and W1 ¼ 0.4 mm. The fine model is simulated in FEKO
[42]. The coarse model is the circuit model implemented
in Agilent ADS [43] (Fig. 7). The design specifications are
jS21j� 23 dB for 2.8 GHz � v � 3.2 GHz, and jS21j�
Figure 7 Open-loop ring resonator bandpass filter: coarse model (Agilent ADS)
367
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Table 4 Candidate model parameters used in the open-loop ring resonator bandpass filter problem

Candidate
model

Preassigned parameters

Number of
parameters

List of parametersa

Rc.1 2 1r ¼ 1r:TL1 ¼ . . . ¼ 1r:TL8 ¼ 1r:Gap1 ¼ 1r:Gap2 ¼ 1r:Clin1 ¼ . . . ¼ 1r:Clin4;

H ¼ HTL1 ¼ . . . ¼ HTL8 ¼ HGap1 ¼ HGap2 ¼ HClin1 ¼ . . . ¼ HClin4;

capacitor values Cp1 ¼ . . . ¼ Cp6 ¼ 0

Rc.2 6 1r1 ¼ 1r:TL1 ¼ 1r:TL3 ¼ 1r:Clin1; 1r2 ¼ 1r:TL3 ¼ 1r:TL4; 1r3 ¼ 1r:Clin2 ¼ 1r:Clin3

¼ 1r:Gap1 ¼ 1r:Gap2; 1r4 ¼ 1r:TL5 ¼ 1r:TL6; 1r5 ¼ 1r:TL7 ¼ 1r:TL8 ¼ 1r:Clin4;

H ¼ HTL1 ¼ . . . ¼ HTL8 ¼ HGap1 ¼ HGap2 ¼ HClin1 ¼ . . . ¼ HClin4;

capacitor values Cp1 ¼ . . . ¼ Cp6 ¼ 0

Rc.3 10 1r1 ¼ 1r:TL1 ¼ 1r:TL3 ¼ 1r:Clin1; 1r2 ¼ 1r:TL3 ¼ 1r:TL4; 1r3 ¼ 1r:Clin2 ¼ 1r:Clin3

¼ 1r:Gap1 ¼ 1r:Gap2; 1r4 ¼ 1r:TL5 ¼ 1r:TL6; 1r5 ¼ 1r:TL7 ¼ 1r:TL8 ¼ 1r:Clin4;

H1 ¼ HTL1 ¼ HTL3 ¼ HClin1;H2 ¼ HTL3 ¼ HTL4;H3 ¼ HClin2 ¼ HClin3 ¼ HGap1

¼ HGap2;H4 ¼ HTL5 ¼ HTL6;H5 ¼ HTL7 ¼ HTL8 ¼ HClin4;

capacitor values Cp1 ¼ . . . ¼ Cp6 ¼ 0

Rc.4 12 1r1 ¼ 1r:TL1 ¼ 1r:TL3 ¼ 1r:Clin1; 1r2 ¼ 1r:TL3 ¼ 1r:TL4; 1r3 ¼ 1r:Clin2 ¼ 1r:Clin3 ¼ 1r:Gap1

¼ 1r:Gap2; 1r4 ¼ 1r:TL5 ¼ 1r:TL6; 1r5 ¼ 1r:TL7 ¼ 1r:TL8 ¼ 1r:Clin4;H ¼ HTL1 ¼ . . .

¼ HTL8 ¼ HGap1 ¼ HGap2 ¼ HClin1 ¼ . . . ¼ HClin4; Cp1; Cp2; Cp3; Cp4; Cp5; Cp6

Rc.5 8 1r ¼ 1r:TL1 ¼ . . . ¼ 1r:TL8 ¼ 1r:Gap1 ¼ 1r:Gap2 ¼ 1r:Clin1 ¼ . . . ¼ 1r:Clin4;H ¼ HTL1

¼ . . . ¼ HTL8 ¼ HGap1 ¼ HGap2 ¼ HClin1 ¼ . . . ¼ HClin4; Cp1; Cp2; Cp3; Cp4; Cp5; Cp6

Rc.6 16 1r1 ¼ 1r:TL1 ¼ 1r:TL3 ¼ 1r:Clin1; 1r2 ¼ 1r:TL3 ¼ 1r:TL4; 1r3 ¼ 1r:Clin2 ¼ 1r:Clin3 ¼ 1r:Gap1

¼ 1r:Gap2; 1r4 ¼ 1r:TL5 ¼ 1r:TL6; 1r5 ¼ 1r:TL7 ¼ 1r:TL8 ¼ 1r:Clin4;H1 ¼ HTL1 ¼ HTL3

¼ HClin1;H2 ¼ HTL3 ¼ HTL4;H3 ¼ HClin2 ¼ HClin3 ¼ HGap1 ¼ HGap2;H4 ¼ HTL5

¼ HTL6;H5 ¼ HTL7 ¼ HTL8 ¼ HClin4; Cp1; Cp2; Cp3; Cp4; Cp5; Cp6

aSymbols 1r.Elem and HElem refer to the dielectric constant (initial value 10.2) and substrate height (initial value 0.635 mm) of
element Elem, respectively
220 dB for 2.0 GHz � v � 2.5 GHz and 3.5 GHz �
v � 4.0 GHz. The initial design is the coarse model
optimal solution x(0) ¼ [39.62 8.412 4.954 4.732 0.253
0.100 1.000]T mm (specification error þ9.7 dB).

The filter was optimised using the adaptive implicit SM
algorithm with the trust region convergence safeguard [cf.
(6)]. We considered six candidate models, that is the coarse
model of Fig. 7 with six sets of preassigned parameters as
described in Table 4. The optimisation using the standard
implicit SM algorithm with the candidate models used as
surrogates was also performed for the sake of comparison.
The termination condition was kx(i) 2 x(i21)

k , 1023 or
d(i) , 1023.

The optimisation results are summarised in Table 5. Fig. 8
shows the fine model response at the initial solution x(0) and
8
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at the final design obtained using our adaptive algorithm,
x(8) ¼ [36.715 6.026 5.683 4.324 0.211 0.100 0.993]T mm
(specification error 21.3 dB).

In this example, the surrogate model Rc.4 was selected in
all iterations, therefore, the final result and the number of
fine model evaluations are the same for this model and for
the adaptive algorithm. Note, that the surrogate model Rc.5

performs slightly better than the adaptive algorithm,
however, the latter gives much better results than the
average for all six models (around 20.4 dB). Note also that
the space mapping algorithm using the most complicated
model Rc.6 (16 parameters) was not able to find a solution
satisfying the design specifications. Bear also in mind that
this comparison is only meaningful after we perform
optimisation on all the candidate models, which is not
practical in a real situation.
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4.3 Wideband bandstop microstrip
filter [45]

Consider the wideband bandstop microstrip filter [45] shown
in Fig. 9. The design parameters are x ¼ [Lr Wr Lc Wc Gc]

T.
The fine model Rf is simulated in FEKO [42]. The coarse

Table 5 Implicit space mapping optimisation of the open-
loop ring resonator bandpass filter

Surrogate
model

Specification error at
final solution (dB)

Number of fine
model evaluations

Rc.1 20.8 6

Rc.2 20.2 7

Rc.3 þ0.1 16

Rc.4 21.3 13

Rc.5 21.6 9

Rc.6 þ1.1 11

adaptive
algorithm

21.3 13

Figure 8 Open-loop ring resonator bandpass filter: initial
solution (dashed line), and final solution (solid line) found
using the adaptive implicit space mapping algorithm

Figure 9 Wideband bandstop microstrip filter: geometry
[45]
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model Rc is the circuit model implemented in Agilent
ADS [43] (Fig. 10). The design specifications are
jS21j�23 dB for 1.0 GHz � v � 2.0 GHz, jS21j�220 dB
for 3.0 GHz � v � 9.0 GHz and jS21j�23 dB for
10.0 GHz � v � 11.0 GHz. The initial design is the
coarse model optimal solution x(0) ¼ [7.017 0.980 8.653
0.055 0.109]T mm (specification error þ2.9 dB).

The filter was optimised using the standard implicit SM
algorithm as well as the adaptive implicit SM algorithm
with the trust region convergence safeguard [cf. (6)]. Seven
candidate models were considered based on the coarse
model of Fig. 10. Table 6 contains the description of
model parameters. The termination condition was, as
before kx(i) 2 x(i21)

k , 1023 or d(i) , 1023. The
optimisation results are summarised in Table 7. Fig. 11
shows the fine model response at the initial solution
x(0) and at the final design obtained using our
adaptive algorithm, x(3) ¼ [7.327 0.976 7.985 0.059
0.099]T mm (specification error 22.0 dB).

Note, that the surrogate model Rc.4 performs slightly
better than the adaptive algorithm, however, the number of
fine model evaluations required to find the solution is
much larger. Again, we should remember that the real
performance of a candidate model is not known unless an
actual optimisation has been carried out on the model.

5 Modified adaptive implicit
space mapping algorithm
Here, we discuss a modified version of the adaptive implicit
SM algorithm. It is intuitively clear and has been observed
in practice (e.g. [25]) that surrogate models that have too
many parameters, usually allow us to obtain a better match
with the fine model at any given design but may have poor
generalisation capability [26]. Let us recall that the

Figure 10 Wideband bandstop filter: coarse model (Agilent
ADS)
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Table 6 Candidate model parameters used in the wideband bandstop filter problem

Candidate model Preassigned parameters

Number of
parameters

List of parametersa

Rc.1 2 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:TL3 ¼ 1r:Clin1 ¼ 1r:Tee1;

H ¼ HTL1 ¼ HTL2 ¼ HTL3 ¼ HClin1 ¼ HTee1;

other values : Cp ¼ dLr ¼ dWr ¼ dLc ¼ dWr ¼ dGc ¼ 0

Rc.2 4 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:Clin1 ¼ 1r:Tee1; 1r:TL3;

H ¼ HTL1 ¼ HTL2 ¼ HClin1 ¼ HTee1;HTL3;

other values : Cp ¼ dLr ¼ dWr ¼ dLc ¼ dWr ¼ dGc ¼ 0

Rc.3 5 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:Clin1 ¼ 1r:Tee1; 1r:TL3;

H ¼ HTL1 ¼ HTL2 ¼ HClin1 ¼ HTee1;HTL3; Cp;

other values : dLr ¼ dWr ¼ dLc ¼ dWr ¼ dGc ¼ 0

Rc.4 8 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:TL3 ¼ 1r:Clin1 ¼ 1r:Tee1;

H ¼ HTL1 ¼ HTL2 ¼ HTL3 ¼ HClin1 ¼ HTee1;

Cp; dLr; dWr; dLc; dWr; dGc

Rc.5 10 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:Clin1 ¼ 1r:Tee1; 1r:TL3;

H ¼ HTL1 ¼ HTL2 ¼ HClin1 ¼ HTee1;HTL3

Cp; dLr; dWr; dLc; dWr; dGc

Rc.6 8 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:Clin1 ¼ 1r:Tee1; 1r:TL3;

Cp; dLr; dWr; dLc; dWr; dGc

Rc.7 7 1r ¼ 1r:TL1 ¼ 1r:TL2 ¼ 1r:Clin1 ¼ 1r:Tee1; 1r:TL3;

H ¼ HTL1 ¼ HTL2 ¼ HClin1 ¼ HTee1;HTL3;

Cp; dWr; dWr

aSymbols 1r.Elem and HElem refer to the dielectric constant (initial value 3.38) and substrate height (initial value 0.508 mm) of
element Elem, respectively; symbols dLr, dWr, dLc, dWr and dGc are explained in Fig. 9
Table 7 Results of implicit space mapping optimisation of
the wideband bandstop filter

Surrogate
model

Specification error at
final solution (dB)

Number of fine
model evaluations

Rc.1 20.2 5

Rc.2 21.2 7

Rc.3 þ1.8 10

Rc.4 22.3 15

Rc.5 22.1 7

Rc.6 22.0 7

Rc.7 þ2.8 8

adaptive
algorithm

22.1 7
0
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Figure 11 Wideband bandstop filter: initial solution
(dashed line), and final solution (solid line) found using
the adaptive implicit space mapping algorithm
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Table 8 Results of implicit space mapping optimisation of the three test problems of Section 4: modified against basic version
of the adaptive algorithm

Test problem SM
algorithm

Specification error at final solution
(dB)

Number of fine model
evaluations

bandpass filter (Section 4.1) basic 21.2 8

modified 21.2 8

open-loop ring resonator filter
(Section 4.2)

basic 21.3 13

modified 21.5 12

wideband bandstop filter (Section
4.3)

basic 22.1 7

modified 22.4 15
generalisation capability of the surrogate model is measured
in the adaptive SM algorithm of Section 3 using the
F (i)

GEN:j coefficient defined by (10). In the modified
algorithm discussed here, the number of preassigned
parameters of the surrogate model are taken explicitly into
account while selecting the most suitable model for a given
iteration. More specifically, the index jmax of the candidate
selected to be the surrogate model, originally defined by
(13) is now replaced by

jmax ¼ arg max
j[{1,2,...,K }

�F
(i)

j (15)

where

�F
(i)

j ¼ F (i)
j � f#(Nj) (16)

and Nj is the number of parameters of the jth candidate
model and f# is a user-defined scaling function. In our
numerical experiments we used f#(Nj) ¼ (Nj)

�1=2. This
scaling function favours simpler models, but also allows us
to differentiate between more complex models (i.e. ones
having more preassigned parameters than design variables).
For such models, the values of the combined quality factors
are often very close to each other and the number of
parameters becomes a good way of distinguishing between
otherwise almost equally good models.

Using the modified adaptive implicit SM algorithm we
solved all the problems considered in Section 4. Table 8
shows the results. For the sake of comparison, the results
obtained using the basic version of the adaptive SM
algorithm are also included in the table. It can be observed
that the results obtained with the modified algorithm are
the same or better with respect to the specification error
value than the results of the basic adaptive algorithm. This
confirms the intuition that simpler models (i.e. models
having a smaller number of preassigned parameters) are
expected to have better generalisation capability than more
complex models (provided that all the models exhibit
similar value of the quality factor F (i)

GEN:j and thus cannot
be conclusively distinguished on that basis). However, the
Microw. Antennas Propag., 2010, Vol. 4, Iss. 3, pp. 361–373
i: 10.1049/iet-map.2009.0080
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quality improvement may be at the expense of extra fine
model evaluations as in the case of the bandstop filter.
Thus, the choice of the algorithm variant should be
determined by the trade-off between the required quality of
the final solution and the computational complexity of the
optimisation process.

6 Conclusion
An implicit space mapping algorithm with automatic
selection of preassigned parameters has been presented.
The proposed technique allows us to adaptively select a
coarse model from candidates with different types and
numbers of implicit space mapping parameters. Thus, our
method allows us to avoid a bad choice of the preassigned
parameter set and approach the best performance the
implicit space mapping process could achieve without a
thorough investigation of all candidate models. Its
robustness is verified using several microwave design
optimisation problems.
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