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Abstract: It follows from both theoretical results and practical observations that the coarse model is one of the
most critical components of the space mapping optimisation process, affecting both the algorithm’s ability of
finding a high-quality design, and its computational complexity. A good coarse model should be a good
representation of the fine model and, at the same time, it should be computationally cheap. The first
property not only ensures the quality of the final design but also good convergence properties of the
algorithm, so it also affects the computational complexity of the optimisation process through reducing the
number of fine model evaluations required to find the solution. The second property ensures that the
overhead related to parameter extraction and surrogate optimisation is small or even negligible. This study
discusses techniques for creating computationally cheap and reliable coarse models. The approaches the
authors present include interpolated models, multi-coarse-model techniques and the use of built-in
capabilities of the coarse model simulator. The authors provide examples involving microwave design
optimisation problems.
1 Introduction
Automated design optimisation of radio frequency and
microwave structures faces the substantial obstacle of the
high computational cost of the objective function, typically
evaluated using full-wave electromagnetic simulators. Cheap
sensitivity data are normally unavailable; consequently, direct
optimisation is usually computationally prohibitive. So-
called surrogate-based optimisation methods [1–4] may
alleviate these problems. Here, the direct optimisation of the
original, computationally expensive structures (‘fine’ models)
is replaced by the iterative optimisation and updating of
significantly cheaper surrogate models.

A notable example of surrogate-based optimisation is space
mapping (SM) [5–10], a technique originally developed to
deal with time-intensive design problems in microwave
engineering, now increasingly popular in other arenas [11–14].
Here, the surrogate is built on an underlying physically
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based ‘coarse’ model of the respective structure. The coarse
model addresses the same physical phenomena as the fine
model but in a simplified way (for example, lumped element
circuit equivalent against full-wave electromagnetic model).
This facilitates good alignment between the fine model and
the space mapping surrogate using a modest amount of fine
model data, as well as exploiting the excellent prediction
capability of the surrogate. These advantages are not enjoyed
by functional surrogate modelling techniques such as
polynomial approximation, radial basis functions or kriging
[15–17], which is probably why surrogate-based
optimisation methods exploiting functional surrogates, for
example, [1, 4, 18] have not been widely adopted in
microwave engineering so far.

Substantial effort has been devoted to improving the
efficiency of space mapping optimisation through new
algorithms and new space mapping surrogate model types
[6–8, 19, 20], improving the convergence properties of the
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space mapping algorithms [21, 22], as well as designing
assessment methods allowing automatic or semi-automatic
selection of the surrogate model type for a given design
problem [23–25]. Still, the quality of the underlying coarse
model is probably the most important factor determining
the performance of a space mapping algorithm. The coarse
model should be as good a representation of the fine model
as possible but also significantly less expensive than the fine
model [6, 7, 23]. Under such conditions, the space
mapping algorithm can reach a satisfactory solution after a
few fine model evaluations without significant overhead
related to operations on the coarse/surrogate model.

Available coarse models are often cheap but inaccurate, for
example, a circuit equivalent of the microwave structure, or
accurate but expensive, for example, a structure evaluated
using the same simulator as the fine model but with a
coarser mesh. In the first case, the space mapping
optimisation process suffers from the overhead of excessive
fine model evaluations needed to find a good solution, or the
process may even fail to find a satisfactory solution. In the
latter case, the cost of solving the parameter extraction and
surrogate optimisation sub-problems may be comparable
with the cost of fine model evaluation, or may even
determine the total cost of the space mapping optimisation.

In this paper, we review and contrast recently published
methods of creating computationally cheap and reliable coarse
models that allow us to take full advantage of the space
mapping concept. The paper is organised as follows. In
Section 2 we recall the concept of space mapping and discuss
the role of coarse model in the optimisation process. In Section
3 we discuss the interpolated coarse models technique [26],
multi-coarse-model space mapping [27] and some software
techniques based on built-in optimisation capabilities of the
coarse model simulator [28]. All of these approaches have been
incorporated in our Space Mapping Framework (SMF) system
[29]. Their performance is illustrated using microwave design
optimisation problems. Section 4 concludes the paper.

2 Space mapping optimisation:
formulation and practical issues
In this section we formulate the space mapping optimisation
algorithm and examine factors determining its performance.
We also discuss the importance of the computational
complexity and accuracy of the underlying coarse model.

2.1 Formulation of space mapping

Let Rf(x) denote the response vector of a fine model
corresponding to a design variable vector x. In the
microwave arena, Rf(x) may represent the magnitude of a
transfer function of a filter at a given set of frequencies.
The optimisation problem is formulated as follows

x�f ¼ arg min
x

U (Rf (x)) (1)
4
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where U is a given merit function, for example, a norm or a
minimax function [6]; x�f is an optimal fine model design to
be found.

A space mapping optimisation algorithm generates a
sequence of approximate solutions to problem (1), denoted
as x(i), i ¼ 0, 1, 2, . . ., and a family of surrogate models
Rs

(i), so that we have

x(iþ1)
¼ arg min

x
U (R(i)

s (x)) (2)

Let Rc denote the response vector of the coarse model that
represents the same object as the fine model: less accurate but
much faster to evaluate. Surrogate models are constructed
from the coarse model so that the misalignment between Rs

(i)

and the fine model is minimised. Rs
(i) is defined as [25]

R(i)
s (x) ¼ �Rs(x, p(i)) (3)

where �Rs is a generic space mapping surrogate model, that is,
the coarse model composed with suitable transformations,
whereas

p(i)
¼ arg min

p

Xi

k¼0

wi:kkRf (x(k))� �Rs(x(k), p)k (4)

is a vector of model parameters and wi.k are weighting factors; a
common choice of wi.k is wi.k ¼ 1 for all i and all k.

Various space mapping surrogate models are available
[6–8]. They can be roughly categorised into four groups:
(i) models based on a (usually linear) distortion of coarse
model parameter space, for example, input space mapping
of the form �Rs(x, p) ¼ �Rs(x, B, c) ¼ Rc(B � xþ c) [6]; (ii)
models based on a distortion of the coarse model response,
for example, output space mapping of the form
�Rs(x, p) ¼ �Rs(x, d) ¼ Rc(x)þ d [7]; (iii) implicit space
mapping, where the parameters used to align the surrogate
with the fine model are separate from the design variables,
that is, �Rs(x, p) ¼ �Rs(x, xp) ¼ Rc:i(x, xp), with Rc.i being
the coarse model dependent on both the design variables x
and so-called preassigned parameters xp (for example,
dielectric constant, substrate height) that are normally fixed
in the fine model but can be freely altered in the coarse
model [30]; (iv) custom models exploiting parameters
characteristic to a given design problem; the most
characteristic example is the so-called frequency space
mapping �Rs(x, p) ¼ �Rs(x, F) ¼ Rc:f (x, F) [6], where Rc.f is
a frequency-mapped coarse model, that is, the coarse model
evaluated at frequencies different from the original
frequency sweep for the fine model, according to the
mapping v! f1þ f2v, with F ¼ [ f1 f2]T.

The basic space mapping types are usually combined, for
example, the surrogate model employing both input, output
and frequency space mapping types would be as follows:
�Rs(x, p) ¼ �Rs(x, c, d , F) ¼ Rc:f (xþ c, F)þ d . The rationale
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
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for this is that a properly chosen mapping may significantly
improve the performance of the space mapping algorithm;
however, the optimal selection of the mapping type for a
given design problem is not trivial [23–25].

The space mapping optimisation algorithm flow can be
described as follows:

Step 1: Set i ¼ 0; choose the initial design solution x(0);

Step 2: Evaluate the fine model to find Rf(x(i));

Step 3: Obtain the surrogate model Rs
(i) using (3) and (4);

Step 4: Given x(i) and Rs
(i), obtain x(iþ1) using (2);

Step 5:. If the termination condition is not satisfied go to Step
2; else terminate the algorithm;

Typically, x(0) ¼ arg minfx:U(Rc(x))g, that is, it is the
optimal solution of the coarse model: the best initial design
normally available. We usually terminate the algorithm
when it converges (that is, kx(i) 2 x(i21)

k is smaller than
some user-defined value) or when the maximum number of
iterations (or, more often, the number of fine model
evaluations) is exceeded.

2.2 Coarse model and performance of the
space mapping optimisation algorithm

If the surrogate model is a sufficiently good representation of the
fine model [23], the space mapping algorithm typically requires
a few fine model evaluation to yield a satisfactory solution,
substantially less than the number of fine model evaluations
reported for any other method. Direct optimisation typically
requires dozens or even hundreds of model evaluations for
typical microwave engineering design problems. However, we
should not expect the final solution found by space mapping
to be a local optimum of the fine model unless, for example,
first-order consistency conditions between the surrogate and
fine models are ensured and convergence safeguards such as
trust region methods are used [7].

As mentioned in Section 2.1, the surrogate model is normally
a composition of the coarse model and certain (usually linear)
mappings selected from a large number of available setups.
Work has been done to ease the selection process for a given
design problem [23–25]. However, regardless of the mapping
choice, coarse model accuracy is what principally affects the
performance of the space mapping design process.

We can quantify the quality of the surrogate model through
rigorous convergence conditions [7, 23]. These conditions,
although useful for developing more efficient space mapping
algorithms and automatic surrogate model selection
techniques, cannot usually be verified because of the limited
amount of data available from the fine model. In practice,
the most important criterion for assessing the quality or
Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
i: 10.1049/iet-map.2009.0198

Authorized licensed use limited to: McMaster University. Downloaded o
accuracy of the coarse model is still visual inspection of the
fine and coarse model responses at certain points and/or
examining absolute error measures such as kRf(x) 2 Rc(x)k.

The coarse model affects the performance of the space
mapping algorithm in two ways. The first stems from
accuracy. Coarse model accuracy (more generally, the
accuracy of the space mapping surrogate [23]) is the main
factor that determines the efficiency of the algorithm in
terms of finding a satisfactory design. The more accurate
the coarse model, the smaller the number of fine model
evaluations necessary to complete the optimisation process.
If the coarse model is insufficiently accurate, the space
mapping algorithm may need more fine model evaluations
or may even fail to find a good quality design.

The second important characteristic is evaluation cost. It is
essential that the coarse model be significantly
computationally cheaper than the fine model because both
parameter extraction (4) and surrogate optimisation (2)
require large numbers of coarse model evaluations. Ideally, the
evaluation cost of the coarse model should be negligible when
compared to the evaluation cost of the fine model, in which
case the total computational cost of the space mapping
optimisation process is merely determined by the necessary
number of fine model evaluations. If the evaluation time of
the coarse model is too high, say, larger than 0.1%–1% of the
fine model evaluation time, the computational cost of
surrogate model optimisation and, especially, parameter
extraction, start playing important roles in the total cost of
space mapping optimisation and may even determine it.

We summarise this discussion as follows. To ensure
efficiency of the space mapping optimisation process, the
underlying coarse model should be accurate and
computationally cheap. These requirements are usually
complementary. Coarse models based on analytical formulas
are the fastest but also inaccurate whereas coarse models
based on circuit equivalents are more accurate yet
computationally more expensive. Accurate coarse models can
be obtained when the same simulator is used to evaluate
both the fine and coarse models, with the coarse model
simulated using a coarse mesh. In such cases, however, the
evaluation cost of the coarse model is usually rather high
necessitating special measures to reduce the relative
computational overhead of the parameter extraction and
surrogate optimisation (see, for example, [31]).

3 Improved coarse models for
efficient space mapping
optimisation
In this section we discuss methods of creating fast, accurate
coarse models that can be successfully applied in the
microwave arena. We aim at decreasing the cost of the
original coarse models with no or minor degradation of
their accuracy through certain interpolation techniques
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(Section 3.1) or employing the optimisation capabilities of
the coarse model simulator (Section 3.3) or at improving
the accuracy of the existing models without increasing the
computational cost (Section 3.2).

3.1 Interpolated coarse models

We assume here that the original coarse model, which is
accurate but too expensive to be efficiently used in a space
mapping algorithm directly, is evaluated on a relatively
coarse simulation grid and then interpolated to obtain a
response for off-grid values. The resulting interpolated
coarse model is fast, requires a small number of evaluations
of the original coarse model to be established and retains,
to some extent, the accuracy of the original model [26].

We let Rc:X! Rm, X # Rn, be an original coarse model
typically evaluated by the same simulator as the fine model,
but using a coarse mesh. Let G be a grid G(l) ¼ {[z1l1 z2l2

. . . znln]T: zi [ Z, i ¼ 1, . . .,n}, where l¼ [l1 l2. . . ln]T is
an user-defined grid size and Z denotes the set of integers; n
is the number of design variables. Grid G divides Rn into
hypercubes with points y [ G(l) being corners of these
hypercubes. For each y [ G(l) we define c( y) ¼ [ y1þ l1/
2 y2þ l2/2. . .ynþ ln/2]T as the centre of the corresponding
hypercube, and denote by H( y) the hypercube itself. Fig. 1
shows an example of the grid and hypercubes for n ¼ 2.

With each y [ G(l) we associate a base set XB( y), which
is a set of points located in the hypercube with centre c( y).
We will denote by RB( y) a set of responses of the original
coarse model Rc evaluated at points from XB( y).

Let F(., XB, RB) be the function interpolating the data
pairs (XB, RB). F(x) ¼ F(x, XB, RB) denotes the value of
the function F at point x.

For each x [ Rn we define s(x) [ G(l) as s(x) ¼ [l1�

bx1=l1c . . . ln � bxn=lnc]
T, which ‘rounds’ x to one of the

grid points.

We define an interpolated coarse model �Rc as follows

�Rc(x) ¼ F (x, XB(s(x)), RB(s(x))) (5)

The interpolation function F can be realised in various ways.

Figure 1 Grid example for the two-dimensional case [26]
6
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Here, we employ fuzzy systems, a technique successfully used
in the computer-aided design of microwave structures by
other authors (for example, [32–34]). In order to ensure
continuity of the model �Rc our fuzzy-system interpolation
is based on points located at the corners of the hypercubes
defined by the grid G. In particular, we have
XB( y) ¼ fx:x ¼ [ y1þ e1l1 y2þ e2l2 ynþ enln]T,
ei [ f0, 1g, I ¼ 1, 2, . . ., ng. An example of the base set for
n ¼ 2 is shown in Fig. 2. Note that the number of base
points is N ¼ 2n.

We use a fuzzy system with triangle membership functions
and centroid defuzzification [35]. The fuzzy system uses data
pairs (xk, Rk), where xk [ XB( y) and Rk ¼ Rc(xk), k ¼ 1,
2, . . .,N. In our realisation, each interval [ yi, yiþ li],
I ¼ 1, 2, . . .,n, contains only one fuzzy region (that is, the
whole interval). Membership functions for ith variable are
defined as shown in Fig. 3.

Having defined membership functions we need to generate
fuzzy rules from the given data pairs. We use if–then rules of
the form IF xk is in H( y) THEN z ¼ Rk, where z is the
output of the rule. At the level of vector components this means

IF xk
1 is in [y1, y1 þ l1] AND xk

2 is in [y2, y2 þ l2] AND . . .

. . . AND xk
n is in [yn, yn þ ln] THEN z ¼ Rk

(6)

Figure 2 Example of the base set for fuzzy-system
interpolation, n ¼ 2 [26]

Figure 3 Input interval [yi, yiþ li] and the corresponding
membership functions [26]
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
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where xi
k, i ¼ 1, . . ., n, are components of vector xk. In our case

all N rules are conflicting because they have the same IF part but
a different THEN part. However, each rule has a different set of
associated membership functions. In particular, if xj

k ¼ yj then
the membership function associated with component j of the
kth rule is mj.0, otherwise it is mj.1.

Each rule has a degree that is assigned in the following
way. For the rule ‘IF x1

k is in [ y1, y1þ l1] AND x2
k is in

[ y2, y2þ l2] AND . . . . . . AND xn
k is in [ yn, ynþ ln]

THEN z ¼ Rk’, the degree of this rule for any x ¼ [x1

x2. . .xn]T [ H( y), denoted by Dk(x), is defined as

Dk(x) ¼
Yn

j¼1

mj:ek
j
(xj) (7)

where ej
k [ {0, 1}, j ¼ 1, 2, . . ., n, are coefficients in the

following expansion of xk: xk ¼ [ y1þ e1
kl1 y2þ e2

kl2

ynþ en
kln]T, k ¼ 1, 2, . . .,N.

The output of our fuzzy system is determined using
centroid defuzzification

F (x) ¼

PN
j¼1 Dk(x)Rk

PN
j¼1 Dk(x)

(8)

is a realisation of an interpolated coarse model �Rc (1) and can
be written as �Rc(x) ¼ F (x, XB(s(x)), RB(s(x))) since F is a
function of both XB and RB.

For practical aspects of the interpolated coarse models
technique see [26]. We note that to reduce the number of
evaluations of Rc, the interpolated model is implemented as
a database of interpolating functions (8), which is updated
if the coarse model needs to be evaluated. More specifically,
if the evaluation point x belongs to a hypercube for which
the interpolating function is already set, �Rc is obtained as
the value of the interpolating function F corresponding to
this hypercube. Otherwise, F must be first created, then
evaluated, then stored in the database.

Because of the exponential growth of the number of base
points for each hypercube with the number of variables n,
the interpolation method should not be used for n . 4
unless the coarse model is not highly non-linear.

As an illustration, we consider the microstrip notch filter with
mitered bends [36] shown in Fig. 4. The design parameters are
x ¼ [Lc Lo Sg]

T mil. Other parameters are W ¼ 30 mil,
H ¼ 10 mil and 1r ¼ 2.2 (loss tangent 0.0009). Fine model
Rf is simulated in Sonnet em [37] with a fine grid of
0.5 mil � 0.5 mil, simulation time 1 h and 34 min (12 points
per frequency sweep). The design specifications are
jS21j � 0.95 for 12.7 GHz � v � 13.0 GHz, jS21j � 0.05
for 13.19 GHz � v � 13.21 GHz and jS21j � 0.95 for
13.4 GHz � v � 13.7 GHz.
Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
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The original coarse model Rc is simulated in Sonnet em
with a grid of 5 mil � 1 mil, simulation time 65 s. Only
being available on a coarse grid, Rc cannot be directly used
for optimisation. Instead, we use �Rc, an interpolated model
(8) based on Rc with grid size l ¼ [5 1 1]T mil. The
optimal solution of this model is x1

(0) ¼ [145 158 8]T mil.
See Fig. 5 for the fine and coarse model responses.

We also use Rc1, the circuit model implemented in Agilent
ADS [38] shown in Fig. 6, evaluation time about 1.5 s. With
its substrate permittivity tuned to 1r ¼ 1.46 this model’s
centre frequency shifts to 13.2 GHz at x1

(0). Without
tuning, the centre frequency of Rc1 is about 11.12 GHz,
causing severe model misalignment and making Rc1

unsuitable for space mapping optimisation. See Fig. 7 for

the responses of Rc1 at x1
(0) before and after the tuning of 1r.

We employed surrogate model Rs(x) ¼ Rc(xþ c)þ d, where
vector c is found using parameter extraction (4), after which d is
the residual vector evaluated by d ¼ Rf(x) 2 Rc(xþ c). We
perform space mapping optimisation twice: using �Rc with

Figure 4 Microstrip notch filter with mitered bends [36]

Figure 5 Microstrip notch filter: the initial fine model
response (solid line) and the coarse model R̄c response
(dashed line) at x1

(0) [26]
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Figure 6 Coarse model Rc1 of the notch filter simulated by Agilent ADS [26]
starting point x1
(0), then Rc1 with starting point x2

(0) ¼ [145 158
9]T, the optimum of the tuned Rc1.

Table 1 shows the results. The final solutions (see Fig. 8)
satisfy the specifications, namely, [145 157.5 8]T mil for �Rc

and [144.5 158 7]T mil for Rc1. The cost of space mapping
optimisation, however, is substantially smaller for the more
accurate �Rc than for Rc1. The evaluation time for the original
coarse model Rc is 65 s, but because our interpolated model
only required 26 evaluations of Rc, the total time for
parameter extraction and surrogate optimisation is 28 min.

Figure 7 Microstrip notch filter: response of the coarse
model Rc1 at x1

(0) without tuning of 1r (dashed line) and
with 1r tuned to 1.46 (solid line) [26]
8
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3.2 Multi-coarse-model space mapping

The interpolated coarse model technique can be effectively
used only when the number n of design variables is small
[26]. We can overcome this drawback through a multi-
coarse-model space mapping algorithm [27], which
assumes two coarse models: Rc1 and Rc2, the first very
cheap but not necessarily accurate, the second expensive but
significantly more accurate. Rc1 could be a circuit
equivalent, Rc2 could be implemented with the same

Figure 8 Microstrip notch filter: the final fine model
response at the solution obtained with space mapping
using the R̄c model (solid line) and the Rc1 model (dashed
line) [26]
Table 1 Space mapping optimisation results for the microstrip notch filter [26]

Coarse
model

Final
specification

error

Number of fine
model evaluationsa

Total
optimisation

time

Total fine model
evaluation time

Total parameter extraction
and surrogate optimisation

time

R̄c 20.006 2 3 h 36 min 3 h 8 min (87%) 28 min (13%)

Rc1 20.02 6 9 h 40 min 9 h 24 min (97%) 16 min (3%)

aIncludes fine model evaluation at the starting point.
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
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simulator as the fine model but using a coarser mesh. We
require that a few evaluations of Rc2 take less time than a
single evaluation of Rf. According to [27], Rc1 is enhanced
using Rc2 with a standard space mapping modelling
technique [39]. Our enhanced model becomes

Rc(x) ¼ A � Rc1(B � xþ c) (9)

with parameters A, B and c determined as

(A, B, c) ¼ arg min
(a,b,g)

XN

k¼1

kRc2(xk)� Rc1(xk, a, b, g)k

(10)

while xk, k ¼ 1, 2, . . ., N, are base points, for example, the
star-distribution [39] with centre at the Rc1 optimum.
Typically, N is between nþ 1 to 2nþ 1. If necessary,
model (9) can be enhanced by other mappings, for
example, a frequency scaling [39].

Our Rc, defined by (9) and (10), is as computationally
cheap as Rc1, yet almost as accurate as Rc2 in the region
determined by the base points xk. Both coarse models are
taken as physics-based, so we expect a good global match
between Rc1 and Rc2. The enhanced coarse model is then
used in a regular space mapping algorithm.

The algorithm consists of two parts: (i) creating the
enhanced Rc and (ii) regular space mapping optimisation
(cf. Section 2). It can be described as follows [27]:

Step 1: Optimise Rc1 to find x�c1 ¼ arg minfx:U(Rc1(x))g;

Step 2: Choose a base set xk, k ¼ 1, . . ., N;

Step 3: Evaluate Rc2 at base points xk, k ¼ 1, . . ., N;

Step 4: Obtain Rc through parameter extraction (10);

Step 5: Find x(0) ¼ arg minfx:U(Rc(x))g;

Step 6: Set i ¼ 0;

Step 7: Evaluate the fine model to find Rf(x(i));

Step 8: Obtain the surrogate model Rs
(i) using (3) and (4);
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
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Step 9: Given x(i) and Rs
(i), obtain x(iþ1) using (2);

Step 10: If the termination condition is not satisfied set
i ¼ iþ 1 and go to Step 7; else END;

The size of the region for enhancing the coarse model
Rc1 should be selected as small as possible, however,
large enough to make the enhanced model able to satisfy
the design specifications within the region. A good
indication for the region size would be k�ck where
�c ¼ arg minckRc2(x�c1)� Rc1(x�c1 þ c)k (here, x�c1 is the
optimal solution of Rc1). For many problems, 10%–20%
deviation around x�c1 is sufficient.

For illustration consider the third-order Chebyshev
bandpass filter [40] of Fig. 9. Here, the design
optimisation parameters are x ¼ [L1 L2 S1 S2]T mm.
Other parameters are W1 ¼ W2 ¼ 0.4 mm. The fine
model Rf is simulated in Sonnet em [37] with a
fine grid of 0.2 mm � 0.02 mm, simulation time about
25 min. The design specifications are jS21j � 23 dB
for 1.8 GHz � v � 2.2 GHz, and jS21j � –20 dB for
1.0 GHz � v � 1.6 GHz and 2.4 GHz � v � 3.0 GHz.
Rc1 is implemented as a circuit model in Agilent ADS [38]
(Fig. 10), evaluation time about 1.5 s. Rc2 is simulated in
Sonnet em with a coarse grid of 2 mm � 0.1 mm,
simulation time about 1 min.

We performed standard space mapping with Rc1 as well as
with the multi-coarse-model approach. Rc was enhanced as
described in Section 2 using input and frequency space
mapping and the star-distribution base set requiring nine
evaluations of Rc2. The evaluation time for Rc is similar to
that for Rc1, about 1.5 s. Our optimisation process used the
input surrogate Rs(x) ¼ Rc(xþ c) enhanced by frequency
space mapping [39].

Table 2 shows that the multi-coarse-model approach
produces a better solution than standard space mapping for
a smaller number of fine model evaluations. Fig. 11 shows
various responses at the optimal solution of Rc1,
x�c1 ¼ [14.6 15.2 0.56 0.54]T mm. Note that Rc provides a
better match to the fine model than Rc1 and hence better
performance of the algorithm. Fig. 12 shows Rf at the final
solution x� ¼ [14.8 14.8 0.40 0.84]T mm.
Figure 9 Third-order Chebyshev bandpass filter [40]
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Figure 10 Coarse model Rc1 of the third-order Chebyshev filter (Agilent ADS) [27]
6

3.3 Exploiting built-in optimisation
capabilities of the coarse model simulator

Agilent ADS [38] is widely used by the microwave
community as it allows convenient, straightforward creation
of coarse models for relevant devices.

Although the actual Advanced Design System (ADS)
simulation time might be very short (for example, a few
milliseconds), the whole process of evaluating the coarse
model by an optimisation routine repeatedly calling the
simulator whereas solving problems (2) or (4) is much
longer (for example, a few seconds) because of the
additional cost related to preparing the input data, loading
the simulator into memory and so on.

In a standard implementation of the space mapping
optimisation algorithm, both the parameter extraction and
surrogate model optimisation sub-problems are solved using
optimisation routines that call the coarse model simulator
whenever the coarse model has to be evaluated. Here, we
use Matlab’s Optimisation Toolbox [41], in particular
fmincon or lsqnonlin for parameter extraction, and fminimax

Table 2 Results for third-order Chebyshev microstrip filter
[27]

Algorithm Final
specification

error, dB

Number of fine
model

evaluationsa

standard SM
algorithm with
coarse model Rc1

20.4 5

multi-coarse-model
SM algorithm with
models Rc1 and Rc2

21.5 3

aExcludes fine model evaluation at the starting point.
0
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for surrogate optimisation. When we invoke ADS, CPU
clock cycles are consumed on allocating memory, loading
the simulator, verifying the license, loading the input file,
parsing the input file, simulating the circuit, exporting the
response and so on. Whereas circuit simulation may be fast

Figure 11 Third-order Chebyshev filter: the fine model Rf

response (solid line), coarse model Rc1 response (dotted
line) and enhanced coarse model Rc response (dashed
line) at x�c1 [27]

Figure 12 Third-order Chebyshev filter: the final fine model
response at the solution obtained with the multi-coarse-
model algorithm [27]
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for a single design, repeatedly invoking ADS generates a
significant overhead.

Fig. 13 shows the interaction between the optimisation
routine and ADS within the standard implementation of
the space mapping algorithm. For k evaluations of the
coarse model for either parameter extraction or surrogate
optimisation, the total optimisation time would be
k(toþ ts), where to is the overhead time, and ts is the
simulation time for a single design. Here, ts may be a few
milliseconds, whereas to might be as large as a few seconds,
so that we have ts� to.

Since typical surrogate optimisation requires dozens or
hundreds, whereas parameter extraction (especially multi-
point) even thousands of coarse model evaluations, the
overhead may be substantial. The relative overhead may be
even more significant if techniques such as parallel or
distributed fine model evaluations are used that reduce the
evaluation time of the fine model. In such cases, the total
coarse model evaluation time may even dominate the
execution time of the space mapping algorithm.

In [28], both parameter extraction and surrogate model
optimisation are carried out inside ADS using its internal
optimisation capabilities. Because the optimisation loop is
moved into ADS, the space mapping algorithm prepares
only the modified ADS netlist and initiates one call to
ADS for the entire optimisation process, thus saving
significant time.

The netlist is now enhanced by DAC components that
import multiple designs and corresponding fine model
responses, by VAR components incorporating space

Figure 13 Standard implementation of the space mapping
algorithm with ADS

Initial/optimised parameters are space mapping parameters
during parameter extraction and design variables during
surrogate optimisation. Auxiliary data include design
specifications, space mapping formulas and setup data. The
optimisation routine considers ADS an external function
evaluator (repeatedly called) with the coarse model netlist
modified to correspond to the current design
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 4, pp. 453–465
oi: 10.1049/iet-map.2009.0198
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mapping equations and matrices, by optimisation GOAL
components specifying matching goals between fine and
surrogate models, and by optimisation engine OPTIM that
searches for the optimal solution for parameter extraction.

In accordance with the type of optimisation sub-problem
that requires to be solved, netlist modifications for the
parameter extraction step and the surrogate model
optimisation step are different. Fig. 14 outlines the
appropriate inside-ADS optimisation approach. The coarse
model netlist is modified once for a single ADS call. For
any k evaluations of the coarse model, the total
optimisation time would be to

0
þ k.ts

0, where to
0 is the

overhead time, and ts
0 is the circuit simulation time for a

modified design. The to
0 and ts

0 are different from to and
ts, respectively, but are of the same orders of magnitude,
namely, milliseconds and seconds, respectively, hence the
efficiency of inside-ADS optimisation.

Consider the bandpass microstrip filter with open
stub inverter [42] of Fig. 15. The design parameters are

x ¼ [L1 L2 L3 S1 S2 W1]T. The fine model is simulated in
FEKO [43]. The design specifications are jS21j � 220 dB
for 1:5 GHz � v � 1:8 GHz, jS21j � �3 dB for 1:95 GHz�
v � 2:05 GHz and jS21j � �20 dB for 2:2 GHz � v �

2:5 GHz, where S21 is the complex transmission coefficient
between the input and output ports. jS21j is evaluated at 41
frequency points uniformly distributed in the interval 1.5–
2.5 GHz. The coarse model implemented in Agilent ADS
[38] is shown in Fig. 16, with corresponding optimal solution
x(0) ¼ [25.00 5.00 1.221 0.652 0.187 0.100]T mm and
specification errorþ 15.7 dB.

Figure 14 Inside-ADS parameter extraction and surrogate
optimisation

The initial/optimised parameters are either space mapping
parameters or design variables according to the sub-problem
considered. Auxiliary data include design specifications, space
mapping formulas and setup data. For each sub-problem, ADS is
called just once with an appropriately modified coarse model
netlist
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Our surrogate model �Rs(x, p) ¼ �Rs(x, F , c, d) ¼ Rc:f (xþ
c)þ d corresponds to input, frequency [39] and output space
mappings, where Rc.f is the coarse model that is evaluated at
frequencies different from the original frequency sweep
obtained from the mapping v! f1 þ f2 � v, with F ¼ [ f1
f2]T, whereas output parameter d is calculated as
d ¼ Rf(x) 2 Rc.f(xþ c) after parameters c and F are extracted.
Fig. 17 shows the fine model response at x(0) and the
optimised fine model response after four space mapping
iterations at x(4) ¼ [23.64 5.00 1.00 0.742 0.189
0.100]T mm. The specification error is 21.9 dB.

Table 3 compares the three implementations of the space
mapping algorithm. For the standard implementation, the
cost is mostly due to fine model evaluation (about 36 min

Figure 15 Geometry of the bandpass filter with open stub
inverter [42]
2
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per evaluation on a Pentium D 3.4 GHz processor). The
relative contribution of coarse model evaluation from
solving the parameter extraction and surrogate optimisation
sub-problems is insignificant.

The same space mapping algorithm was also run with the
distributed fine model evaluation [44] implemented in the
SMF system [29]. This allowed us to reduce each fine
model evaluation to about 3 min. The fine model was
evaluated on a cluster of 14 processors: 1 Pentium D
3.4 GHz and 13 nodes of the computing cluster containing
Dual Core AMD 2 GHz processors and Intel Xeon
3.06 GHz processors. The total fine model evaluation is
reduced from 181 to 16 min and the parameter extraction
and surrogate optimisation sub-problems now cost almost
80% of the total cost.

Figure 17 Initial (dashed line) and optimised (solid line)
jS21j against frequency for the bandpass filter with open
stub inverter [44]
Figure 16 Coarse model of the bandpass filter with open stub inverter simulated by Agilent ADS [44]
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Table 3 Bandpass filter with open stub inverter: optimisation time for the three implementations of the space mapping
algorithm [44]

Space mapping algorithm Total optimisation
time, min

Fine model evaluation
time

Parameter extraction
and surrogate model

optimisation time

Absolute,
min

Relative,
%

Absolute,
min

Relative,
%

standard implementation 241 181 75 60 25

distributed fine model evaluation [44] 76 16 21 60 79

distributed fine model evaluation [44] and
inside-ADS optimisation

19 16 84 3 16
T
o

Our inside-ADS process allows us to reduce the parameter
extraction and surrogate optimisation overhead from 60 min
to about 3 min and the space mapping optimisation time to
19 min. In this case, the total relative cost of evaluating the
coarse model is only 16%, which is exactly what one would
like to see in a well-performing space mapping algorithm.

The difference in solving the relevant sub-problems
between the standard implementation and the inside-ADS
optimisation is not as large as could be expected by
comparing ts with to (milliseconds against a few seconds).
This is because the number of objective function evaluations
necessary to complete the process is generally larger for
ADS than for Matlab (different optimisation routines).

4 Conclusion
We have discussed the importance of the coarse model in the
performance of the space mapping optimisation process.
Various techniques for enhancing the efficiency of space
mapping algorithms by increasing the speed and accuracy
of the underlying coarse model have been reviewed and
illustrated using several microwave design problems. It has
been shown that the combination of a more accurate but
also computationally more expensive coarse model with a
less accurate but computationally cheap circuit-equivalent
coarse model and/or suitable interpolation/approximation
techniques allows us to obtain a reasonable trade-off
between accuracy and the computational cost of the coarse
model, and thus improve the overall performance of the
space mapping optimisation algorithm. On the other hand,
we demonstrated substantial performance improvement by
exploiting the built-in optimisation capabilities of the
model evaluator (here, Agilent ADS) that can be used
instead of the external optimisation routines.
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