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A possible mathematical formulation of the
practical problem of computer-aided design of
electrical circuits and systems and engineering
designs in general subject to tolerances on the k
independent parameters is proposed. An automated
scheme is suggested starting from arbitrary
initial acceptable or unacceptable designs and
culminating in designs which under reasonable
restrictions are acceptable in the worst case

sense. It is proved that if the region of points

in the parameter space for which designs are both
feasible and acceptable satisfies a certain
condition (less restrictive then convexity) then
no more than 2k points, the vertices of the
tolerance region, need to be considered during
optimization.

Introduction

An extremely important practical problem,
and yet one which does not appear to have
received a great deal of relevant and rigorous
analysis in the area of electrical circuit and
system design or engineering design in general is
the problem of optimal design subject to
tolerances. Recently published work!=5 has
yielded some practical insight into the nature
of the problem. Indeed, it immediatelv suggests
the possibility of formulating the complete
worst case design of circuits and systems as a
nonlinear programming problem.

An automated scheme would start from an
arbitrary initial acceptahle or unacceptable
design and under anpropriate restrictions stop at
an acceptable design which is optimum in the worst
case sense for specified tolerances. The most
suitable objective function to be minimized would
also seem to be one that best describes the cost
of fabrication of the circuit or system, as
suggested by some authors,

It is the purpose of this paper to propose
possible formulations and to discuss this problem
generally, It is not claimed that a complete
solution has been obtained. However, a number of
interesting objective functions (more appropriate-
ly, perhaps, cost functions) have been investiga-
ted.

Many types of objective functions can be
formulated. A number of variations on the sum of
the inverses of the absolute tolerances or the
sum of the inverses of the tolerances relative to
respective nominal parameter values can be
obtained. Furthermore, the nominal parameter
values may or may not be variable. The relative
merits of these and other functions which attempt
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in some way to maximize the size of the region of
possible designs, namely, the tolerance regionm,
are discussed.

For the purpeses of this paper, it is
assumed that the parameter tolerances can be
independently specified. Furthermore, it is
assumed that the design parameters and tolerances
can be continuously varied. The tolerance
region, in this case, will be defined by simple
upper and lower bounds on the parameters. The
region will, of course, contain an infinite
number of acceptable designs, assuming that it
is a subregion of the intersection of regions of o
acceptable and feasible designs. - It is proved ;
that if this region satisfies a certain condition
(less restrictive than convexity) then only the
(finite) number of vertices of the tolerance
region need to be investigated.

Feasible and Acceptable Designs

A wide range of design problems can be
formulated as nonlinear programming problems.
One usually defines a scalar objective function
U(Q),where
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represents the k independent design parameters.
Design constraints can be assembled into a
column vector %(x) and the problem stated as
finding $ such that

U($) = min U($) @
D =mn vy
where

A
R. = {8lg(®) > 0} (3)

For the purposes of the present discussion
let us assume that two kinds of constraint
functions are present, ones that determine the ;
feasibility of a design designated gg($) and ones
that determine the acceptability of 'a “design
designated 53( ). We will therefore define a
feasible region of points Rg as

Re & {¢]g; 2 0} %)

and an acceptable region of points R, as



R, & (glg, 2.0} (5)

Thus, R, = Rffﬁ‘Ra. It is assumed that all sets
are nonempty. Note that R, not necessarily a
subset .of Rg. : ‘ .

The objective function is usually set up so
that a feasible solution is obtained at an
interior point of the acceptable region, and as
far as possible, in some sense, from its boundary.
The reasoning behind this is the hope that when
the design is fabricated, inevitable errors in
the design parameters might, nevertheless, yield
an acceptable design. It is this flexibility
which can be expleited in the optimization of
tolerances. Often

U(g) = - min g; () (6)
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where the index set I; relates to constraints
defining Ry. It follows then that

Ry = (3103} < 0} e)

Tﬁe Tolerance Region

Given a mominal poiunt Q? and o set of non-
negative talerances £ where

(8)
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we can define a region of possible designs Ry as

A o_. o = '
Rt a {21‘*1 £y S by < Ogtey, 171,2,... .k} (%)
or, equivalently,

A - o = = :
R, 2 {21% by + tyegs ~lgegel, 1=1,2,...,k} (10)

Obviously, depending on the location of $° and
the value of £ Ry may or.may not be a subset of

Ree

The tolerance problem is beginning to take
shape - R¢ should be placed inside Re in 'some
optimalvmannervby adjusting 6° and £ to optimal
values ¢® and €. A serious development, however,
is that ‘all polnts ¢ ¢ Ry must satisfy B2 Q.
We have, effectively, to deal with an infinite
number of constraints.

For any given point $© we can view the
functions g(4) with respect to ¢ as follows. We
let the origin of the ¢ space correspond to ¢°
(translation). We thed corisider all the possible
linear parameter transformations suggested by the
transformation matrix (magnification and
reflection)
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namely, from (10),
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A
for -1 < tg < 1, i=1,2,...,k.

Two-dimensional examples of allowable
tolerances in the tolerance space corresponding
to particular comstraints and particular nominal
points in the parameter space are shown in Fig. 1.

A Theorem

For obvious reasons it is impractical to
consider an infinite number of constraints. In
order to make the problem tractable a number of
simplifying assumptions could be made to try to
obtain a solution to the problem with reasomable
computational effort.

It can be shown that if R, is convex then®>7
ti € R, for i = 1,2,...,n 12)
implies that

n i .
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for all Ay satisfying
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A, 20 1i=1,2,...,n
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Given, for example, a finite number of points Q}\
in a finite-dimensional Euclidean space it is
easy to visualize that the 1 are vertices of a
polytope (the intersection of a fin¥te number of
closed ha*fspaces) and that ¢ is any interior or
boundary pnint. If Rc 1s itself a polytope (all
constraints linear) it is clearly convex.

Rt is a polytope with 2k vertices. Let the
ith vertex be denoted Qi and let
i o % k k
= ¢%c+2 ¥ u,(1)e,u, € R for i=1,2,...,2 (15)
2 Qq,jglj %5 ¢ Re :
where
Bps Mgy eeois Wy € {0,1} 16y

must satisfy (see Table I)

379




e

ko a4
1=14+ J u ()2 an
g=1 3

and where the k-element vectors 23 are given by

1 1] 0
AlO 1 A1 0
I I CE X O DI o R
0 0 1
Table I. The numbering scheme for the vertices
of Rt'
1 (D) szi? P3(1)vf""ﬁ(i?, Z LN
1 0 0 0 0 0
N
2 1 iA:'o 79 0 61%1
3 "v 0 R 0 ’ >0 €58y -
4 1 1 0 0 c1:1+€222
5.0 010 ey
6 1 0 1 0 6131+c323
7 0 1 1 0 5232+e3gs
8 1 1 ; ] €8 r+5232+e3g3
kg 1 1 1 ¢
) 47
Using (12)-(14),
o 2k k
g = ¢°-g+2 Zl(xi .2.1 jegu) e Ry (19)

if Ry is convex and the vertices of Rg are ;
elements of Res Equation (19) generates the set _
Rt. Therefore, R (CCR¢. See Fig, 2(a).

It Willlnow"be shpyﬁ‘that the assumption
that R, is convex is unnecessarily restrictive.

Theorem

If the vertices of Rt are in R then RtC:R
if, for all j=1,2,...,k,

a (j)

g "%a*“"éj"“c o an
implies that
. +x(2(j)*)ek C (21)
for all A satisfying )
0sis1 (22)

See, for example, Fig. 2(b).’

Proof

Let C denote some point, in general, in-an
£-dimen: ional linear manifold generated by the

first 2 vertices in (15) as
25-* e
& t-e‘kz (Pizuj(i)ejuj) e
with* pi satisfyiug
1t L (24)
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Note that since max i = ZL, ‘we can deduce from
(17) that ; ‘

uy = 0 forj>& (25)
in (15), so that the relevant summation need be
taken only up to: £ and not k.

Assume that ¢p ¢ Rc for all *1 € Rc given in
(15). Now consider

2L pn -
Sp41 = $ € -e+2 D CHDR (De ) ‘ (26)
1 j-l ;
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2£+1
121 Wl SRR i
7y
q 20 1=1,2,...,2% ‘
After some manipulation, we find that
: o 25 . 2 A
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By 4§21
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and ) .
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Hence, (28) becomes :
$39)
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With =0, %L+1=$£ ¢ Re by assumption. If X=1,
$L+1’2£ + 25£+13£+1’ which represents a transla-
tion of the £-dimensional manifold. Thus, $£+1 €
Re by assumption. For 0<i<1l we note 2£+1 € Re if
(20 to (22) hold for i = f£+1.

It is easy to verify that ¢ € R. and,
furthermore, that ¢2 € Re if (20) to (22;\hold for
j=1 and j=2, respectively. It follows by the
foregoing inductive reasoning that $x = ¢, as

defined by (19), is in R¢ under the conditions of
the theorem.

The theorem allows both Fig. 2(a) and 2(b),
but not Fig. 2(c).

Objective Functions -

A number of potentially useful and fairly
well-behaved objective functions which might be
used to represent the cost of a design can be
formulated. In practice, of course, a suitable
modelling problem would first have to be solved
to determine the significant parameters involved
partially or totally in the actual cost. Here,
we will assume that either absolute or relative
tolerances are the main variables; furthermore,
that the total cost 0(20,5) of the design is just
the sum of the cost of the individual components.

It is intuitively reasonable to assume that

[
4"

C(Qo,i) +>¢20 as €~ (32)

C(Qo,g) + « for any €4 > O (33)

Two out of many possible functions which fulfil
these requirements are, for c=0,

o4

c, = lf £ (34)

2 4e1 &1
subject to £2 Q as stated in (8), and

k 63

Cr = 121 g loge E; (35)
subject to )

229 (36)
In both cases

ey 20 1=1,2,...,k (3an

Examples

It is interesting to consider C, and C, for
the different regions R sketched in Fig. 3. We
will let ej=cp=1. Fig. 3(a) depicts a situation
where ¥° will have relatively little variation in
going from C, to Cy. Fig. 3(b) will have
¢ > &) and ¢§ = E5; for Cu, ¢8 > O but for
Cys ¢g = 0 which, physics permitting, indicates
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that one parameter may be "remgved”. It can be
shown that min C, is given by 49 = 0, at ¢9 = 2%,
€1 = 4. Fig. 3(c) allows the possibility of
removing ¢3 if C, is optimized. The minimum cost
is then loge 9. It is easily shown, however,
that to minimize cost ¢j; should not be remgved.
Using Cy in Fig. 3(d) would indicate that ¢g and
¢ may be zero. Using C, in all the cases of
Fig. 3 we would find $°'to be an interior point
of Rq.

A number of
those made above
s&etched in Fig;
4 = 1/¢y and ¢3

corresponding observations to
can be made if, for the cases
3, we took, for example,

= ¢ as parameters.

Conclusions

If, as is usual in the design of circuits
and systems, the optimal design is obtained by
solving an approximation problem, then a fairly
large number of inequality constraints usually
define the acceptable region. For any particular
set of reasonable tolerances one could exploit
the likelihood of the worst case (point most
likely to violate a given constraint) being
predictable by a local linearization or higher-
order approximation of the constraints to greatly
reduce the actual cost of the necessary compu-
tations than is implied by the 2k vertices of the
tolerance region. Further study of these ideas
from a nonlinear programming point of view
should yield more insight into the possible
success or failure of particular tolerance
optimization algorithms that might suggest them-
selves.
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