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Abstract—Convergence is a well-known issue for standard
space-mapping optimization algorithms. It is heavily dependent
on the choice of coarse model, as well as the space-mapping trans-
formations employed in the optimization process. One possible
convergence safeguard is the trust region approach where a surro-
gate model is optimized in a restricted neighborhood of the current
iteration point. In this paper, we demonstrate that although formal
conditions for applying trust regions are not strictly satisfied for
space-mapping surrogate models, the approach improves the
overall performance of the space-mapping optimization process.
Further improvement can be realized when approximate fine
model Jacobian information is exploited in the construction of the
space-mapping surrogate. A comprehensive numerical compar-
ison between standard and trust-region-enhanced space mapping
is provided using several examples of microwave design problems.

Index Terms—Computer-aided design (CAD), electromagnetic
(EM) optimization, microwave design, space mapping, trust-region
methods.

I. INTRODUCTION

S PACE-MAPPING technology is exploited both in mi-
crowave engineering and other areas [1]–[16] to deal with

computationally expensive objective functions.
The main idea behind space-mapping optimization is to shift

the optimization burden from an expensive “fine” (or high-fi-
delity) model to a cheap “coarse” (or low-fidelity) model by it-
eratively optimizing and updating a surrogate model, which is
built using the coarse model and available fine model data. If the
coarse model is a sufficiently accurate representation of the fine
model, space-mapping optimization may yield a satisfactory so-
lution after only a few fine model evaluations. This enjoys a
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substantial advantage over other techniques in terms of compu-
tational cost, such as direct optimization of the fine model using
gradient-based methods. The idea of surrogate-based optimiza-
tion is also exploited by other researchers [17]–[20], although
many of them construct a surrogate model by direct approxima-
tion of the fine model data with no underlying physically based
coarse model.

Probably the most serious issue for standard space mapping
is convergence, depending on the similarity between the fine
model and the space-mapping surrogate [3], [21]. Also, because
the zero- and first-order consistency conditions [17] between the
fine and surrogate models are not necessarily satisfied (i.e., the
surrogate model may not match the fine model with respect to
value and first-order derivative at any given iteration points), and
subsequent iterations are accepted regardless of objective func-
tion improvement, there is no guarantee that the specification
error will be reduced from iteration to iteration. In fact, after
a few successful iterations, the space-mapping algorithm may
produce a design that is worse than ones found so far [22].

Given an optimization problem, the convergence properties
and overall performance of the space-mapping algorithm can be
improved to some extent by a proper choice of the coarse model
and the space-mapping surrogate [21], [23]. On the other hand,
given the models and the mapping type, good algorithm perfor-
mance (measured by convergence and final design quality) is not
guaranteed and has to be verified experimentally by executing
the optimization process.

Trust-region methodology [24] can be used to amend the
convergence properties of space-mapping algorithms [23],
[25]. Formally, using trust-region methods with space-mapping
algorithms is not well justified because first-order consistency
[17] between the fine model and space-mapping surrogate
does not usually hold, and, therefore, trust-region methods for
space mapping become heuristic rather than rigorous. More
specifically, first-order consistency guarantees fine model
objective function improvement provided that the trust-region
radius is small enough [26]. Using trust-region methods in
the space-mapping algorithm is justified by the fact that a
physics-based surrogate model reflects the general features of
the fine model so that their local behavior is similar. Never-
theless, the objective function improvement is not guaranteed
regardless of how small the trust region is. First-order con-
sistency can be enforced in the space-mapping surrogate by
explicit use of sensitivity information [3]; however, this in-
creases the overall cost of the space-mapping optimization
process.

In this paper, we expand a systematic treatment of the trust-
region-enhanced space-mapping algorithms originated in [22],
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where we gave a heuristic explanation of why the trust region
actually works with space-mapping algorithms, as well as pro-
posed a modification of the trust-region-enhanced space-map-
ping algorithm, which uses an approximate fine model Jaco-
bian to enhance the surrogate model. Here, alternative ways of
creating surrogate models exploiting the fine model Jacobian
estimation are described. Also, additional in-depth analysis of
the trust-region-based space-mapping algorithms is presented.
In particular, an analytical argument is given to support the ex-
pected performance improvement for the algorithm using the
approximated fine model Jacobian.

A comprehensive numerical comparison between the stan-
dard and the three variants of the trust-region-enhanced space-
mapping algorithm is provided based on several examples of mi-
crowave design optimization problems. It is demonstrated that
the trust-region-enhancement indeed improves the robustness
of the space-mapping optimization process with respect to all
performance measures: the quality of the optimized design, the
convergence properties, and the computational cost of the opti-
mization process.

II. SPACE MAPPING WITH TRUST-REGION

CONVERGENCE SAFEGUARDS

A. Standard Space-Mapping Algorithm

Let , denote the response vector
of a fine model of the device of interest. Our goal is to solve

(1)

where is a given objective function, e.g., minimax
[1].

Direct optimization of the fine model is replaced by an itera-
tive procedure generating a sequence of designs ,

, and a family of surrogate models ,
, so that

(2)

Let , denote the response vec-
tors of the coarse model that describes the same object as the
fine model: less accurate, but much faster to evaluate. Surrogate
models in (2) are constructed as follows:

(3)

where is a generic space-mapping surrogate
model, which is composed with some suitable space-map-
ping transformations, and with being the pa-
rameter space of these transformations. A vector of space-map-
ping parameters, , is obtained using the parameter extraction
procedure

(4)

An example of the generic surrogate model is an
input space mapping of the form , where

. A variety of
other space-mapping surrogates can be found in [1]–[4], [27].

B. Robustness Issues

As the algorithm (2)–(4) accepts a new design regard-
less of the specification error improvement, convergence of
the space-mapping algorithm is not guaranteed [1]. Moreover,
as a perfect match between and at is not ensured
(with respect to value and/or first-order derivatives), there is no
guarantee for the space-mapping algorithm to locate the (local)
fine model optimal solution [21].

Existing theoretical results for algorithm (2)–(4) or some of
its sub-classes provide convergence conditions, which are, how-
ever, difficult to verify beforehand [3], [21]. Moreover, condi-
tions for convergence are typically different from conditions for
convergence to the fine model optimal solution (i.e., its first-
order stationary point) [21]. This is because fine model sen-
sitivity information is not utilized by current space-mapping
algorithms.

Excellent results reported in the literature [1]–[13], obtained
with space-mapping algorithms, are largely dependent on care-
fully chosen coarse models and properly selected space-map-
ping type. No safeguard is offered in the standard space map-
ping for a not-so-well-selected coarse model or/and a mapping
type.

C. Trust-Region Enhanced Space-Mapping Algorithm

A trust-region approach [24] can be used to improve the
convergence properties of the space-mapping algorithm. In
particular, the surrogate optimization process (2) can be con-
strained to a neighborhood of , defined as ,
as follows

(5)

where is a trust-region radius at iteration . The trust-re-
gion radius is reduced if the improvement of the fine model
objective function is not sufficient, i.e., if

is too small,
or if , in which case the new de-
sign is rejected. Typically, the standard trust-region radius up-
dating rules [24] are used.

If, for all , the surrogate model satisfies the
zeroth- and first-order consistency conditions of the form

(6)

(7)

where denotes the Jacobian of the respective model, then,
under mild assumptions concerning smoothness of the models,
algorithm (5) is convergent to the local fine model optimum
[26]. The fundamental reason is that (6) and (7) ensure that

if the trust-region radius is suf-
ficiently small.

Unfortunately, (6) and (7) are not necessarily satisfied by the
space-mapping surrogate model. In particular, the space-map-
ping optimization process may get stuck at some point as the
reduction of the trust-region radius does not bring any im-
provement to the fine model objective function, which results
in termination of the algorithm. In other words, the trust-region
method applied to the space-mapping algorithm, as in (5), is a
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heuristic procedure that may improve robustness of the algo-
rithm, but still does not ensure sufficient performance.

On the other hand, an important prerequisite of space-map-
ping algorithms is that is physics based so that the surrogate
model reflects the general features of ; in particular, the local
behavior of both models is similar. This, in combination with
the multipoint parameter extraction (4), ensures that (6) and (7)
may be satisfied approximately. Moreover, condition (6) can be
easily enforced by means of the output space mapping [3] using
the surrogate

(8)

with obtained by (4) and

(9)

Numerical results presented in Section IV demonstrate that
the trust-region-enhanced (output) space-mapping algorithm
(8) and (9) indeed exhibits improvement over the standard
algorithm.

III. ROBUST TRUST-REGION SPACE-MAPPING ALGORITHMS

Relations (6) and (7) can be enforced if the space-mapping
surrogate explicitly uses fine model sensitivity information, e.g.,
as in the following model:

(10)

where is any space-mapping surrogate with parame-
ters obtained with (4) and

(11)

(12)

Convergence of algorithm (5) with surrogate model (10)–(12)
is guaranteed under standard assumptions concerning the
smoothness of the fine and coarse models [26]. Note, however,
that the computational cost of space-mapping optimization may
substantially increase in this case because of the necessity of
calculating the fine model Jacobian at all iterations. Jacobian
estimation using finite differences exploits extra fine model
evaluations per estimation, unless some other techniques are
used, such as adjoint sensitivity [28], which, however, is not
yet generally available in commercial electromagnetic (EM)
simulators.

In this section, we propose some modifications of the stan-
dard trust-region space-mapping algorithm that aim at ensuring
robustness of the algorithm without compromising the compu-
tational cost of the algorithm, i.e., avoiding explicit calculation
of the fine model Jacobian. All the proposed algorithms are
based on modifications of the surrogate model (10)–(12) so that
the exact fine model sensitivity data is replaced by a suitable
approximation.

Before we turn to specific models, let us discuss a naive ap-
proach, according to which the surrogate model Jacobian is cal-
culated using finite differences, whereas the fine model Jacobian
in (12) is replaced by a Broyden-based estimation (the iterative

formula for estimating the fine model Jacobian) [2], [29], i.e.,
we have

(13)

where the Broyden-based fine model Jacobian estimation

(14)

with , , and
( is an zero matrix, where is

the dimension of the model response).
Unfortunately, model (10), (11), and (13) will not work well

in practice. The reason is that contains information about

the fine model Jacobian at only for directions from
, i.e., the subspace of spanned by

vectors to . As (14) is a rank-one formula, we need at
least iterations of the space-mapping algorithm in order to get
an estimate of the fine model Jacobian that would be valid for
all directions. Before that, the term may actually mislead
the algorithm because is a zero vector for all direc-

tions not belonging to so that the directional derivative of
(10) for such directions may substantially differ from the actual
derivative of the fine model.1 Moreover, even if is sufficiently
large, so that spans the entire space, estimate (14) may
not be sufficiently accurate as many of the points used in the
Broyden update may be located too far from .

A. Surrogate Model With Restricted Broyden Update

The trust-region space-mapping algorithm with Broyden up-
date can be improved if the term (13) is restricted to the
subspace so that for all
from , the orthogonal complement of , defined as

for all . In this case,
the derivative of at will coincide with the derivative
of for all directions from , but it will use
the Jacobian estimation of the fine model for all directions from

. An appropriate formula is as follows:

(15)

where is given by (14), whereas is an orthogonal

projection onto given by

(16)

with , , being the orthonormal basis of
that can be obtained from , , using the
Gram–Schmidt procedure.

1In fact, the directional derivative of (10) equals zero at ��� for all directions
not belonging to � and it is close to zero in the neighborhood of ��� .
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Equation (15) basically says that we trust the fine model Ja-
cobian in directions where fine model data is available, how-
ever, the fine model Jacobian should match the surrogate Jaco-
bian in directions of “no data.” It can be further improved by
using only points that are sufficiently close to so that in-
stead of considering , we can
consider the subspace spanned only by those of that satisfy

, where is a user-defined threshold; can be
either fixed, i.e., , or it can be related to the distance be-
tween the latest iteration designs, i.e., ,
where and are user-defined positive numbers.

B. Surrogate Model With Broyden-Based Jacobian Estimation
of the Fine and Surrogate Model [22]

Restriction of the term (13) to the subspace can also
be obtained if the Jacobians of the fine model and the space-
mapping surrogate are estimated jointly using the
Broyden update, i.e., with the following formula [22]:

(17)

where

(18)

with
, , and .

In this case, we do not need to project onto as the
condition for all from is
automatically fulfilled.

As before, it is recommended to consider local updates using
points satisfying , where is a user-
defined threshold (either fixed or relative to ).

It should be noted that (15)–(18) are two alternative methods
of determining the term in (10); however, it is difficult to
say beforehand which is better in terms of algorithm perfor-
mance. The numerical experiments of Section IV indicate that
both methods are comparable.

C. Robustness of Trust-Region Space-Mapping Algorithms

Note that in contrast to our standard trust-region space-map-
ping algorithm (5), the modifications proposed in this section
ensure improvement of the fine model objective function for suf-
ficiently small trust-region radius, which is a fundamental prop-
erty behind the trust-region methodology. In particular, for the
algorithms using the term defined in Sections III-A and III-B.
we have and are
two consecutive iteration points) provided that the trust-region
radius is sufficiently small. A sketch of this property is pro-
vided in the Appendix.

IV. VERIFICATION EXAMPLES

We provide a comprehensive numerical verification of
the trust-region-enhanced space-mapping algorithms. In

Fig. 1. Third-order Chebyshev bandpass filter: geometry [30].

Fig. 2. Third-order Chebyshev bandpass filter: coarse model (Agilent ADS).

particular, we compare the performance of the standard
space-mapping algorithm (2)–(4), the trust-re-
gion-enhanced space-mapping algorithm (5) with
the output space-mapping model (8), (9), and the trust-re-
gion-enhanced algorithms using models (10), (11), (15)

and (10), (11), (17) . In all cases, the
algorithm was terminated if one of the following conditions
was satisfied: , , or

, ,
and only).

A. Third-Order Chebyshev Bandpass Filter [30]

Consider the third-order Chebyshev bandpass filter [30]
shown in Fig. 1. The design variables are
mm. Other parameters are mm. The
fine model is simulated in Sonnet [31]. The coarse
model (Fig. 2) is implemented in Agilent Advanced De-
sign System (ADS) [32]. The design specifications are

dB for GHz GHz, and
dB for GHz GHz and

GHz GHz. The initial design is the coarse
model optimal solution mm
(specification error dB).

Table I shows the optimization results. Two types of space-
mapping surrogate models were tested: input space-mapping
model [2] and the combination of input
and frequency space-mapping model in
which is the coarse model evaluated at frequencies dif-
ferent from the original sweep according to the linear mapping

[parameters and are obtained using the usual
parameter-extraction process (4)] [3].

For this example, the standard space-mapping algorithm con-
verges for both surrogate model types, however, especially for
the input space-mapping model , the final design is not
as good as for trust-region-enhanced algorithms, particularly the
ones using the Jacobian estimation. Fig. 3 shows the initial fine
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TABLE I
THIRD-ORDER CHEBYSHEV FILTER: OPTIMIZATION RESULTS [22]

Fig. 3. Third-order Chebyshev filter: Initial (dashed line) and optimized (solid
line) �� � versus frequency; optimization using �� algorithm with the
��� ���� � ���� model [22].

TABLE II
FOURTH-ORDER RING RESONATOR FILTER: OPTIMIZATION RESULTS

model response and the optimized fine model response obtained
using the algorithm with the model.

B. Fourth-Order Ring Resonator Bandpass Filter [33]

As the next example, consider the fourth-order ring resonator
bandpass filter [33] shown in Fig. 4. The design parameters are

mm. The fine model
is simulated in FEKO [34]. The coarse model (Fig. 5) is im-
plemented in Agilent ADS [32]. The design specifications are

dB for GHz GHz, and
dB for GHz GHz and GHz

GHz. The initial design is the coarse model optimal solu-
tion mm
(specification error dB).

Table II shows the optimization results. Here, we consider
the following space-mapping surrogate models: the input space-
mapping model [2] and the implicit space-
mapping model in which is the coarse
model with the substrate height and dielectric constants used as
preassigned parameters [27] to improve the matching between
the surrogate and fine model.

Fig. 4. Fourth-order ring resonator bandpass filter: geometry [33].

Fig. 5. Fourth-order ring resonator bandpass filter: coarse model (Agilent
ADS).

Fig. 6. Fourth-order ring resonator filter: initial (dashed line) and optimized
(solid line) �� � versus frequency; optimization using �� algorithm
with the��� ���������model. (a) Full frequency range. (b) Magnification from 1.4
to 2.6 GHz and �22 to 0 dB.

Fig. 6 shows the initial fine model response and the optimized
fine model response obtained using the algorithm
with the model. Fig. 7 shows the convergence plot
for the standard algorithm and the algorithm both
working with the implicit space-mapping surrogate .

For this example, the standard space-mapping algorithm does
not converge for either surrogate model type. Also, the final de-
sign is worse than the best one found in the course of optimiza-
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Fig. 7. Fourth-order ring resonator filter: convergence plots for �� ��� and
�� ���, both using surrogate model ��� �����, versus iteration index.

Fig. 8. Wideband ring resonator bandpass filter: geometry [35].

tion, which is because the standard algorithm does not ensure
specification error improvement from iteration to iteration, as
discussed in Section II. Trust-region-enhanced algorithms ex-
hibit clear performance improvement.

C. Wideband Ring Resonator Bandpass Filter [35]

Our third example is the wideband ring resonator band-
pass filter [35] shown in Fig. 8. The design parameters are

mm. The fine model is simulated in
FEKO [34]. The coarse model (Fig. 9) is implemented in Ag-
ilent ADS [32]. The design specifications are dB
for GHz GHz, and dB for

GHz GHz and GHz GHz.
The initial design is the coarse model optimal solution

mm
(specification error dB).

For this example, the following space-mapping surrogate
models were utilized: the combination of the input and fre-
quency space-mapping model in which

is the frequency-mapped coarse model [3], and the im-
plicit space-mapping model in which
is the coarse model with the substrate height and dielectric
constants used as preassigned parameters [27].

Table III shows the optimization results. The standard space-
mapping algorithm does not perform well. For the input/fre-
quency space-mapping surrogate, it even fails to find a solution
satisfying the design specifications. The trust-region-enhanced
algorithms perform well ensuring both algorithm convergence
and a high-quality final design. The fine model responses: the
initial and optimal designs obtained using the algo-
rithm with the model are shown in Fig. 10. Conver-

Fig. 9. Wideband ring resonator bandpass filter: coarse model (Agilent ADS).

TABLE III
WIDEBAND RING RESONATOR FILTER: OPTIMIZATION RESULTS

Fig. 10. Wideband ring resonator filter: initial (dashed line) and optimized
(solid line) �� � versus frequency; optimization using �� algorithm
with the ��� ����� model. (a) Full frequency range. (b) Magnification from 2.5
to 6.0 GHz and �2 to 0 dB.

gence plots for and working with the im-
plicit space-mapping surrogate are shown in Fig. 11.

D. Open-Loop Ring Resonator Bandpass Filter [36]

Our final example is the open-loop ring resonator
bandpass filter [36] (Fig. 12). The design parameters are

mm. Other parameter values
are mm, mm. is simulated in FEKO
[34]. The coarse model (Fig. 13) is implemented in Agilent
ADS [32]. The design specifications are dB
for GHz GHz, and dB for
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Fig. 11. Wideband ring resonator filter: convergence plots for �� ��� and
�� ���, both using surrogate model��� �����, versus iteration index.

Fig. 12. Open-loop ring resonator bandpass filter: geometry [36].

GHz GHz and GHz GHz.
The initial design is the coarse model optimal solution

mm
(specification error 11.8 dB).

Here, we use the following surrogate models: the frequency
space-mapping model , and the implicit
space-mapping model with the substrate
height and dielectric constants used as preassigned parameters
[22].

The optimization results are shown in Table IV. For this
problem, the standard space-mapping algorithm does not per-
form well when the frequency space-mapping surrogate is used;
however, it is as good as the trust-region-enhanced algorithms
for the implicit space-mapping surrogate. This indicates that, in
a way, the trust-region mechanism is being “turned on” only if
necessary; otherwise, it does not interfere with the space-map-
ping optimization process. Fig. 14 shows the initial and final
fine model responses for the algorithm with the

model. Fig. 15 shows the evolution of the specification
error for and algorithm using the
model. This figure illustrates a quite common behavior of the
standard space-mapping algorithm: after initial success, the
algorithm may not be able to yield further improvement if the
surrogate model type is not properly selected.

E. Discussion

The numerical results presented in Sections IV-A–IV-D indi-
cate the advantages of the trust-region-enhanced space-mapping
algorithms , and over the standard
space-mapping algorithm . The results can be summa-
rized as follows.

(a) Algorithms , , and ensure
convergence for all considered test problems, which is
not the case for the standard space-mapping algorithm.

(b) In many cases, the basic trust-region algorithm
performs as well as the algorithms using the Jacobian
estimation ( and ), however, in

Fig. 13. Open-loop ring resonator bandpass filter: coarse model (Agilent ADS).

TABLE IV
OPEN-LOOP RING RESONATOR FILTER: OPTIMIZATION RESULTS[22]

Fig. 14. Open-loop ring resonator filter: initial (dashed line) and optimized
(solid line) �� � versus frequency; optimization using the �� algorithm
with the ��� ����� model [22].

Fig. 15. Open-loop ring resonator filter: evolution of the specification error for
�� ��� and �� ���, both using surrogate model ��� ����� versus
iteration index [22].

some cases, the latter approach prevails: the
algorithm may simply get stuck because the property

may not hold even for
very small trust-region radius values (cf. Section III-C).

(c) Algorithms and can be considered
as equally good; the small differences in the final design
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quality and the computational cost of the optimization
process come from different ways of implementing the

-term in model (10) (cf. Section III).
(d) In the cases when the does well, both and

have little or no effect, which is
exactly what we require.

(e) Using trust-region-enhancement makes the space-map-
ping algorithm less sensitive to the selection of surrogate
model type: may perform well for certain surro-
gate model types and poorly for others, see Tables I–IV;
performance differences are much less pronounced in
trust-region enhanced algorithms.

These conclusions are in agreement with theoretical pre-
dictions. In particular, the convergence of the trust-region-en-
hanced algorithms, as well as iteration-to-iteration improve-
ment with respect to the specification error value (cf. Fig. 15)
is ensured by the trust-region mechanism itself. On the other
hand, extra information in the form of the fine/surrogate
model Jacobian estimation allows further improvement of
the final design quality because the fundamental property

is ensured for sufficiently
small trust-region radius.

V. CONCLUSION

A systematic treatment of trust-region-enhanced space-map-
ping algorithms is presented. A basic trust-region space-map-
ping algorithm and its extensions exploiting the fine model Jaco-
bian estimation are considered. An extensive performance com-
parison with the standard algorithm indicates that the trust re-
gion approach discussed in this paper can be considered as an
important step toward improving the robustness of the space-
mapping optimization process.

APPENDIX

We provide an analytical argument showing that the mod-
ified trust-region-enhanced space-mapping algorithms of
Sections III-A and III-B ensure improvement of the fine model
objective function, i.e., , pro-
vided that the trust-region radius [cf. (5)] is sufficiently
small.

We assume, for simplicity, that the merit function
is smooth. Suppose that the optimization of the surrogate
model produces a new iteration point such that

. Design must be then
rejected and model will be updated [e.g., using (10),
(11), (15) or (10), (11), (17)] so that the following relation
holds

for a sufficiently small . In particular, we have that
, where denotes the

directional derivative along . Now, again
for the trust-region radius being sufficiently small, the
optimal solution of the updated surrogate will be located
almost on the line defined as , .
More specifically, with

. We have the following relation
( denotes the gradient of at ):

, which

gives
, and finally,

, as we as-
sumed .

ACKNOWLEDGMENT

The authors thank Sonnet Software Inc., Syracuse, NY, for
making available, and Agilent Technologies, Santa Rosa,
CA, for making ADS available.

REFERENCES

[1] S. Koziel, Q. S. Cheng, and J. W. Bandler, “Space mapping,” IEEE
Microw. Mag., vol. 9, no. 6, pp. 105–122, Dec. 2008.

[2] J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H.
Bakr, K. Madsen, and J. Sondergaard, “Space mapping: The state of the
art,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 337–361,
Jan. 2004.

[3] S. Koziel, J. W. Bandler, and K. Madsen, “A space mapping frame-
work for engineering optimization: Theory and implementation,” IEEE
Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3721–3730, Oct.
2006.

[4] D. Echeverria and P. W. Hemker, “Space mapping and defect correc-
tion,” Int. Math. J. Comput. Methods Appl. Math., vol. 5, no. 2, pp.
107–136, 2005.

[5] M. A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, “EM-
based design of large-scale dielectric-resonator filters and multiplexers
by space mapping,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1,
pp. 386–392, Jan. 2004.

[6] K.-L. Wu, Y.-J. Zhao, J. Wang, and M. K. K. Cheng, “An effective
dynamic coarse model for optimization design of LTCC RF circuits
with aggressive space mapping,” IEEE Trans. Microw. Theory Tech.,
vol. 52, no. 1, pp. 393–402, Jan. 2004.

[7] J. E. Rayas-Sánchez, F. Lara-Rojo, and E. Martínez-Guerrero, “A
linear inverse space mapping (LISM) algorithm to design linear and
nonlinear RF and microwave circuits,” IEEE Trans. Microw. Theory
Tech., vol. 53, no. 3, pp. 960–968, Mar. 2005.

[8] M. Dorica and D. D. Giannacopoulos, “Response surface space map-
ping for electromagnetic optimization,” IEEE Trans. Magn., vol. 42,
no. 4, pp. 1123–1126, Apr. 2006.

[9] S. Amari, C. LeDrew, and W. Menzel, “Space-mapping optimization
of planar coupled-resonator microwave filters,” IEEE Trans. Microw.
Theory Tech., vol. 54, no. 5, pp. 2153–2159, May 2006.

[10] D. Echeverria, D. Lahaye, L. Encica, E. A. Lomonova, P. W. Hemker,
and A. J. A. Vandenput, “Manifold-mapping optimization applied
to linear actuator design,” IEEE Trans. Magn., vol. 42, no. 4, pp.
1183–1186, Apr. 2006.

[11] G. Crevecoeur, P. Sergeant, L. Dupre, and R. Van de Walle, “Two-level
response and parameter mapping optimization for magnetic shielding,”
IEEE Trans. Magn., vol. 44, no. 2, pp. 301–308, Feb. 2008.

[12] M. F. Pantoja, P. Meincke, and A. R. Bretones, “A hybrid genetic-
algorithm space-mapping tool for the optimization of antennas,” IEEE
Trans. Antennas Propag., vol. 55, no. 3, pp. 777–781, Mar. 2007.

[13] P. Sergeant, R. V. Sabariego, G. Crevecoeur, L. Dupre, and C.
Geuzaine, “Analysis of perforated magnetic shields for electric power
applications,” IET Elect. Power Appl., vol. 3, no. 2, pp. 123–132, Mar.
2009.

[14] V. K. Devabhaktuni, B. Chattaraj, M. C. E. Yagoub, and Q.-J. Zhang,
“Advanced microwave modeling framework exploiting automatic
model generation, knowledge neural networks, and space mapping,”
IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 1822–1833, Jul.
2003.

[15] J. C. Rautio, “A space mapped model of thick, tightly coupled conduc-
tors for planar electromagnetic analysis,” IEEE Microw. Mag., vol. 5,
no. 3, pp. 62–72, Sep. 2004.

[16] L. Zhang, J. Xu, M. C. E. Yagoub, R. Ding, and Q.-J. Zhang, “Ef-
ficient analytical formulation and sensitivity analysis of neuro-space
mapping for nonlinear microwave device modeling,” IEEE Trans. Mi-
crow. Theory Tech., vol. 53, no. 9, pp. 2752–2767, Sep. 2005.

[17] N. M. Alexandrov and R. M. Lewis, “An overview of first-order model
management for engineering optimization,” Optim. Eng., vol. 2, no. 4,
pp. 413–430, Dec. 2001.



2174 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 8, AUGUST 2010

[18] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon,
and M. W. Trosset, “A rigorous framework for optimization of expen-
sive functions by surrogates,” Struct. Optim., vol. 17, no. 1, pp. 1–13,
Feb. 1999.

[19] J. E. Dennis and V. Torczon, “Managing approximation models
in optimization,” in Multidisciplinary Design Optimization, N. M.
Alexrov and M. Y. Hussaini, Eds. Philadelphia, PA: SIAM, 1997,
pp. 330–374.

[20] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and
P. K. Tucker, “Surrogate-based analysis and optimization,” Progr.
Aerosp. Sci., vol. 41, no. 1, pp. 1–28, Jan. 2005.

[21] S. Koziel, J. W. Bandler, and K. Madsen, “Quality assessment of coarse
models and surrogates for space mapping optimization,” Optim. Eng.,
vol. 9, no. 4, pp. 375–391, 2008.

[22] S. Koziel, J. W. Bandler, and Q. S. Cheng, “Trust-region-based conver-
gence safeguards for space mapping design optimization of microwave
circuits,” in IEEE MTT-S Int. Microw. Symp. Dig, Boston, MA, 2009,
pp. 1261–1264.

[23] S. Koziel and J. W. Bandler, “Space-mapping optimization with adap-
tive surrogate model,” IEEE Trans. Microw. Theory Tech., vol. 55, no.
3, pp. 541–547, Mar. 2007.

[24] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, ser.
MPS-SIAM Optimization. Philadelphia, PA: , 2000.

[25] M. H. Bakr, J. W. Bandler, R. M. Biernacki, S. H. Chen, and K.
Madsen, “A trust region aggressive space mapping algorithm for EM
optimization,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp.
2412–2425, Dec. 1998.

[26] N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon, “A trust
region framework for managing use of approximation models in opti-
mization,” Struct. Multidisciplinary Optim., vol. 15, no. 1, pp. 16–23,
1998.

[27] J. W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail, “Implicit
space mapping optimization exploiting preassigned parameters,” IEEE
Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 378–385, Jan. 2004.

[28] N. K. Nikolova, Y. Li, Y. Li, and M. H. Bakr, “Sensitivity analysis of
scattering parameters with electromagnetic time-domain simulators,”
IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1598–1610, Apr.
2006.

[29] C. G. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Math. Comput., vol. 19, pp. 577–593, 1965.

[30] J. T. Kuo, S. P. Chen, and M. Jiang, “Parallel-coupled microstrip filters
with over-coupled end stages for suppression of spurious responses,”
IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 440–442,
Oct. 2003.

[31] em. ver. 11.54, Sonnet Softw. Inc., North Syracuse, NY, 2008.
[32] Agilent ADS. ver. 2008, Agilent Technol., Santa Rosa, CA, 2008.
[33] M. H. M. Salleh, G. Prigent, O. Pigaglio, and R. Crampagne,

“Quarter-wavelength side-coupled ring resonator for bandpass filters,”
IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 156–162, Jan.
2008.

[34] “FEKO® User’s Manual,” EM Software & Syst. S.A. (Pty) Ltd., Stel-
lenbosch, South Africa, 2008.

[35] S. Sun and L. Zhu, “Wideband microstrip ring resonator bandpass fil-
ters under multiple resonances,” IEEE Trans. Microw. Theory Tech.,
vol. 55, no. 10, pp. 2176–2182, Oct. 2007.

[36] C. Y. Chen and C. Y. Hsu, “A simple and effective method for
microstrip dual-band filters design,” IEEE Microw. Wireless Compon.
Lett., vol. 16, no. 5, pp. 246–248, May 2006.

Slawomir Koziel (M’03–SM’07) received the M.Sc.
and Ph.D. degrees in electronic engineering from
Gdansk University of Technology, Gdansk, Poland,
in 1995 and 2000, respectively, and the M.Sc. de-
grees in theoretical physics and in mathematics and
Ph.D. degree in mathematics from the University of
Gdansk, Gdansk, Poland, in 2000, 2002, and 2003,
respectively.

He is currently an Associate Professor with the
School of Science and Engineering, Reykjavik
University, Reykjavik, Iceland. His research interests

include computer-aided design (CAD) and modeling of microwave circuits,
surrogate-based optimization, space mapping, circuit theory, analog signal
processing, evolutionary computation, and numerical analysis.

John W. Bandler (S’66–M’66–SM’74–F’78–
LF’06) studied at Imperial College, London, U.K.
He received the B.Sc. (Eng.), Ph.D., and D.Sc.(Eng.)
degrees from the University of London, London,
U.K., in 1963, 1967, and 1976, respectively.

In 1969, he joined McMaster University,
Hamilton, ON, Canada, where he is currently a Pro-
fessor Emeritus. He was President of Optimization
Systems Associates Inc., which he founded in 1983,
until November 20, 1997 (the date of acquisition by
the Hewlett-Packard Company). He is President of

Bandler Corporation, Dundas, ON, Canada, which he founded in 1997.
Dr. Bandler is a Fellow of several societies including the Royal Society of

Canada. He was the recipient of the 2004 IEEE Microwave Theory and Tech-
niques Society (IEEE MTT-S) Microwave Application Award.

Qingsha S. Cheng (S’00–M’05–SM’09) was born
in Chongqing, China. He received the B.Eng.
and M.Eng. degrees from Chongqing University,
Chongqing, China, in 1995 and 1998, respectively,
and the Ph.D. degree from McMaster University,
Hamilton, ON, Canada, in 2004.

In 1998, he joined the Department of Computer
Science and Technology, Peking University, Beijing,
China. In 1999, he joined the Department of Elec-
trical and Computer Engineering, McMaster Univer-
sity, where he is currently a Research Associate with

the Department of Electrical and Computer Engineering and a Lecturer with
the Faculty of Engineering. His research interests are surrogate modeling, com-
puter-aided design (CAD), modeling of microwave circuits, software design
technology, and methodologies for microwave CAD.


