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ABSTRACT: We briefly review the current state of the art of microwave CAD technologies.

We look into the history of design optimization and CAD-oriented modeling of microwave

circuits as well as electromagnetics-based optimization techniques. We emphasize certain

direct approaches that utilize efficient sensitivity evaluations as well as surrogate-based opti-

mization approaches that greatly enhance electromagnetics-based optimization performance.

On the one hand, we review recent adjoint methodologies, on the other we focus on space

mapping implementations, including the original, aggressive, implicit, output, tuning, and

related developments. We illustrate our presentation with suitable examples and applica-

tions. VC 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE 20:475–491, 2010.

Keywords: optimization; adjoint sensitivity; surrogate modeling; space mapping; EM simulator;

circuit simulator; tuning

I. INTRODUCTION

The advent of digital computers six decades ago and subse-

quent technological breakthroughs make possible the simula-

tion-based optimization of high frequency structures. Instead

of requiring costly repeated prototyping, actual structures can

be accurately modeled using an electromagnetic (EM) simula-

tor and its optimal designable parameter values determined by

suitable optimization engines. This approach cuts production

costs and reduces product time to market.

EM simulation can be highly accurate but, at the same

time, very CPU intensive. This challenges traditional optimi-

zation techniques. Researchers tackle the issue on two

fronts: (a) the speed-up of EM simulations and, one of the

thrusts of this article, the utilization of corresponding EM-

based derivative evaluations (adjoint sensitivity analysis), (b)

the implementation of suitable surrogate-based approaches

such as space mapping.

In Section II of this article, we briefly review some histori-

cal benchmarks in microwave circuit design and modeling. In

Section III, we review direct optimization approaches with

effective sensitivity evaluations, and also surrogate optimiza-

tion approaches. In Section IV, we discuss an efficient sensi-

tivity analysis technique based on the adjoint concept. We

demonstrate the technique with suitable examples. In Section

V, we review surrogate optimization, in particular, state-of-

the-art space mapping techniques, with applications and

examples. We summarize our presentation in Section VI.

II. HISTORICAL REVIEW

A. Optimization Theory: Preparation
In 1967 Temes and Calahan [1] presented an extensive

review of general-purpose optimization algorithms, many of

which are still useful to today’s computer-aided design.

Theirs was the first comprehensive review of its kind in the

circuits and systems area. In the microwave arena, Bandler

[2] discussed one-dimensional methods, such as Fibonacci

Search, Golden Section search, interpolation methods, etc.

In his review of multidimensional direct search techniques,

Bandler [2] described one-at-a-time search, Pattern Search,

the Rotating Coordinates method, Powell’s Method, and

Simplex methods. He reviewed multidimensional gradient

strategies, such as steepest descent, Newton-Raphson,

Fletcher-Powell, least squares, least pth, etc.

B. Optimization and Modeling in the Microwave Arena
Bandler [2, 3] systematically treated the formulation of

error functions w.r.t. design specifications. He explored

generalized least pth and minimax objectives, as well as
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adjoint circuit sensitivity analysis techniques suitable for

microwave circuit simulation and design. The size and

complexity of microwave devices continued to increase,

especially after the emergence of MMICs [4] in the

1970s. Addressing this issue, Bandler et al. [5] demon-

strated the automated minimax optimization of a 12 GHz

multiplexer with 16 channels and 240 nonlinear design

variables.

Physics-based models provide engineers the flexibility

of performing designs based on physical parameters and

to foresee the circuit characteristics before fabrication.

The year 1992 saw advances [6] in device modeling, pa-

rameter extraction, nonlinear simulation, nominal design,

statistical modeling, and yield optimization in the context

of such physics-oriented microwave circuit optimization.

Topics included analytical large-signal physical models of

MESFETs and nonlinear circuit analysis with physics-

based models integrated into the harmonic balance

equations.

C. Microwave CAD Software
In 1988, Bandler and Chen [7] emphasized optimization-

oriented approaches that deal with process imprecision,

manufacturing tolerances, model uncertainties, measure-

ment errors, and so on, approaches well-suited to yield-

driven design and cost reduction for integrated circuits.

They reviewed realistic representations for nominal (sin-

gle) circuit optimization, statistical circuit design (design

centering), and multicircuit modeling, as well as gradient-

based optimization methods. Their article was timely in

that Optimization Systems Associates (OSA) was then

integrating relevant software into SuperCOMPACT. Ban-

dler and Salama addressed the topic of circuit tuning for

postproduction alignment in an earlier article [8].

Les Besser introduced COMPACT (Computer Optimi-

zation of Microwave Passive and Active CircuiTs) in

1973. Its successor, SuperCOMPACT, became an industry

standard [9]. EEsof launched TOUCHSTONE in 1983.

TOUCHSTONE evolved into Libra after the addition of

harmonic balance simulation through Microwave Harmon-

ica [9].

Effective multidimensional quadratic functions have

been suggested to simultaneously approximate responses

and gradients. Relevant theoretical developments were

incorporated into OSA90/hope [10] and HarPE [10].

OSA90/hope’s novel Datapipe structure constituted the

first microwave CAD product of its kind. This open archi-

tecture feature enabled device and circuit designers to

solve relevant linear/nonlinear/statistical modeling, simula-

tion, and optimization problems with both circuit and

physical parameters.

Techniques for design centering, tolerance assignment,

worst-case, and statistical design, and postproduction tun-

ing evolved during the 1970’s [11]. In the late 1980’s

OSA introduced yield-driven design into SuperCOM-

PACT. EEsof followed suit with yield-driven design

options. The 1980’s also saw advances and robust imple-

mentation of gradient-based algorithms for minimax, l1,
and l2 optimization [7].

D. Optimization Using EM Simulators
During the 1980’s, Ansoft Corporation, Hewlett-Packard,

and Sonnet Software embarked on the development of

simulators that solved Maxwell’s equations for complex

geometries. These EM simulators or solvers were origi-

nally used to obtain accurate simulations or validations of

complex microwave structures.

The idea of employing EM solvers for direct optimiza-

tion attracted microwave engineers. However, EM solvers

are CPU-intensive and, as originally construed, also suf-

fered from nondifferentiable response evaluation and non-

parameterized design variables that were discrete in the

parameter space. These characteristics are unfriendly to

gradient optimization algorithms. To alleviate this, Ban-

dler et al. proposed the utilization of databases [10], Data-

pipe [10], multidimensional interpolation [10, 12], Geome-

try Capture [10, 13] for parameterization, and the

pragmatic idea of the ‘‘simulation grid.’’ Formal EM opti-

mization of microwave structures has been reported since

1994 [14–17]. OSA90/hope [10] provided an interface to

external simulators, circuit based or EM based.

Highlights from 2004 [18] include the article by De

Zutter et al. [19], which provides an overview of the gen-

eral EM circuit co-optimization approach based on an EM

database. Rautio describes [20] a method for joining small

subsections so that the large subsections so formed can

follow the arbitrarily curving edges of a complicated cir-

cuit while including the high edge current. Using such

conformal subsections, nonManhattan geometries, such as

circular spiral inductors, can be effectively analyzed.

Mattes and Mosig [21] present a new adaptive sampling

to accelerate frequency-domain calculations using genetic

algorithms and rational functions to approximate the fre-

quency response. Hussein and El-Ghazaly [22] deal with

global modeling of microwave devices where they con-

sider Maxwell’s equations in conjunction with a hydrody-

namic model. They solve these equations through a real-

coded genetic algorithm and an appropriate objective

function.

E. Adjoint Sensitivities for EM Models
The adjoint sensitivity approach dates back to the 1960s

work of Director and Rohrer [23, 24]. Bandler et al. also

addressed adjoint circuit sensitivities, e.g., [25–28], in the

context of microwave design.

Interest in EM-based adjoint calculations was revived

after the work [29] was published. Since 2000, a number

of interesting publications addressed the application of the

so-called adjoint variable method (AVM) to different nu-

merical EM solvers. These include the time-domain trans-

mission-line modeling (TLM) method [30–34], the finite-

difference time-domain (FDTD) method [35–38], the fi-

nite-element method (FEM) [39, 40], the method of

moments (MoM) [41–43], the frequency domain TLM

[44, 45], the mode-matching method (MM) [46, 47], and

the beam propagation method (BPM) [29, 48]. These

approaches can be classified as either time-domain adjoint

variable methods or frequency-domain adjoint variable

methods.

476 Cheng et al.

International Journal of RF and Microwave Computer-Aided Engineering/Vol. 20, No. 5, September 2010



F. Surrogate Optimization of EM Models
The successful interconnection of EM solvers with power-

ful optimization techniques partially solved the EM-based

design bottleneck, as EM simulation remained CPU-inten-

sive. Since the 1990s, EM modeling and optimization

have been explored through novel technologies that

include response surface modeling [12], model-reduction

techniques [49], artificial neural networks [50], and surro-

gate-base optimization (SBO) [51].

The so-called space mapping approach, recognized as an

SBO method, was introduced by Bandler et al. [52]. In [53,

54], the authors review various concepts of space mapping

and place them contextually into the history of design opti-

mization and modeling of microwave circuits. They formu-

late a generic space mapping optimization algorithm,

explain it in a step-by-step fashion, and demonstrate its

robustness through the fast design of an interdigital filter.

Selected topics of space mapping are also discussed, includ-

ing implicit space mapping, gradient-based space mapping,

the optimal choice of a surrogate model, and—recently—

tuning space mapping, as well as applications for modeling

of microwave structures. They also discuss a state-of-the-art

software package for automated space mapping optimization

involving electromagnetic and circuit simulators.

In [55], the authors discuss a tuning space mapping proce-

dure and its implementation that encompasses the port tuning

method. Circuit theory based tuning elements are inserted into

EM simulator via the tuning port to form a surrogate.

III. HIGH PERFORMANCE EM-BASED OPTIMIZATION

A. The Optimization Problem
The design optimization problem to be solved is given by

x� ¼ arg min
x

UðRf ðxÞÞ (1)

where Rf [R
m�1 is a vector of m responses of the EM model,

e.g., |S11| at m selected frequency points, x is the vector of n
design parameters and U is a suitable objective function. For

example, U could be a minimax objective function with upper

and lower specifications. Here, x* is the optimal solution to

be determined. It is assumed to be unique.

A typical gradient based optimization algorithm (opti-

mizer) requires function values and derivatives or

response sensitivities. See Figure 1. Sensitivity informa-

tion enables the designer to determine the parameters of

most influence on the response and predict how the

response would change by changing these parameters.

Classically, finite difference approximations are used to

estimate the required derivatives.

Typical gradient optimization algorithms may require

hundreds of expensive iterations. This burden motivates

research into alternative approaches such as the adjoint

sensitivity approach. We focus here on the time-domain

AVM in Section IV.

B. Surrogate-Based Approach
A fundamental issue is the high cost of EM simulation.

Simulation-based tasks, such as parametric optimization or

statistical design centering, are typically infeasible when

performed directly using CPU-intensive EM models. An

effective way to overcome this problem is by using suita-

ble cheap surrogates.

Surrogate models can be categorized into functional and

physical [56]. Functional surrogates are created through data

pairs (designs and corresponding responses) obtained by sam-

pling the design space of a given microwave structure. Popu-

lar methods include polynomial approximation, radial basis

function interpolation [57], kriging [58], support vector

regression [59], and neural networks [60]. For good accuracy,

these techniques require many training points, and are there-

fore suitable in creating multiple-use library models. Physical

surrogates, on the other hand, are based on low-fidelity (or

coarse) models that embed physical phenomena already

encoded in the original, high-fidelity model. In microwave en-

gineering, such coarse models include equivalent circuits and

coarse-grid EM models. Typically, physical surrogates ensure

good accuracy even though a limited number of training

points is used to set them up, which makes them suitable for

tasks such as design optimization or statistical analysis.

Both functional and physical models can be exploited in

so-called surrogate-based optimization [51]. The generic

SBO optimization algorithm can be formulated as follows:

xðiþ1Þ ¼ argmin
x

UðRðiÞ
s ðxÞÞ (2)

where x(i), i ¼ 0, 1, …, is the sequence of approximate

solutions to the original design problem x* ¼ argmin{x:
U(Rf(x))}. Here, x

(0) is the initial design. If R
ðiÞ
s is a com-

putationally cheap and sufficiently reliable representation

of the fine model, particularly in the neighborhood of the

current design x(i), the algorithm (2) is likely to produce a

sequence of designs that quickly approach x*.
Usually, Rf is only evaluated once per iteration (at ev-

ery new design x(iþ1)) for verification purposes and to

obtain the data necessary to update the surrogate model. If

the surrogate model is computationally cheap, its optimi-

zation cost (cf. (1)) does not substantially influence the

total optimization cost. The number of evaluations of Rf

for a well-performing surrogate-based algorithm is sub-

stantially smaller than for any direct optimization method

(e.g., gradient-based one) [61].

If the surrogate model satisfies zero- and first-order

consistency conditions with the fine model, i.e., R
ðiÞ
s (x(i)) ¼

Figure 1 A gradient-based optimizer utilizes both the response

and its gradient.
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Rf(x
(i)) and (qRðiÞ

s /qx)(x(i)) ¼ (qRf/qx)(x
(i)), and the algorithm

(2) is enhanced by the trust region method [61, 62], then it

is provably convergent to a local optimum of the fine model

[63]. Convergence can also be guaranteed if the algorithm

(2) is enhanced by properly selected local search methods

[64]. Some of the available space mapping approaches are

based on ensuring first-order consistency, including General-

ized Implicit Space Mapping [61], Manifold Mapping [65],

and corrected space mapping [66].

Other approaches, popular in aerospace and structural

engineering, include approximation and model manage-

ment [64], surrogate management framework [67], SBO

techniques based on surface response approximation and

kriging [68], as well as a combination of surrogate model-

ing with evolutionary optimization [69].

Space mapping is probably the most popular SBO

approach used in microwave engineering. In Section V,

we review and discuss the original, aggressive, implicit,

output, and tuning space mapping.

IV. ADJOINT SENSITIVITY ANALYSIS

A. Introduction
The basic concept behind all adjoint sensitivity analysis

approaches is to construct another circuit called the

adjoint circuit. This circuit supplies the adjoint response.

The simulation time of this circuit should be comparable

to that of the original simulation. Using the original cir-

cuit response R(x) and the adjoint circuit response ~RðxÞ,
the gradient is estimated. It follows that the cost of one

gradient estimation is reduced to only one extra simulation

regardless of n. This makes this approach particularly

attractive for problems where n is large or when the com-

putational cost of one simulation is high.

In [29], the authors employ both the FDTD and finite-

element time-domain (FETD) approaches together. They

estimate the sensitivities of a given objective function using

only one extra adjoint simulation. Because this approach uti-

lizes a combination of techniques, it is less attractive.

The target of EM optimization is to determine an opti-

mal set of values x* of the designable parameters as the

solution of the optimization problem:

x� ¼ argmin
x

Fðx;RðxÞÞ (3)

where F is the objective function, and R is a vector of

responses that are calculated using the electromagnetic so-

lution E. Notice that the objective function has been

extended from (1) to include both explicit and implicit de-

pendence on x through R. If the explicit dependence is

zero, the F of (3) becomes equivalent to the U of (1).

B. Time-Domain Adjoint Sensitivities [30]–[36]
For time-domain simulators, the objective function

includes an integral of time-domain values, and it can be

put in the form

F ¼
ZTs

0

wðx;RÞdt (4)

where Ts is the simulation time. The derivative of F with

respect to the ith parameter is given by

@F

@ xi
¼

ZTs

0

@e w
@ xi

dtþ
ZTs

0

@w

@ RT

@R

@ xi
dt; i ¼ 1; 2;…; n (5)

Note that the first integral in (5) is the explicit depend-

ence of the objective function. The second integral con-

tains the dependency of the objective function on the

design parameters through the responses.

For both TLM and FDTD, the actual simulation is

given by

M €Eþ N _Eþ KEþ
Z t

0

Gðt� sÞEðsÞds ¼ Q (6)

The matrices M, N, and K are functions of the space

discretization, the material properties, and the design pa-

rameters. Vector E represents the field solution in FDTD

or the vector of incident impulses in the TLM method.

The matrix G is the time-domain Green’s function of the

boundary and is assumed parameter independent. The vec-

tor Q is the excitation term and is assumed to vary

according to a known time profile. The domain where Q
is nonzero is called the excitation domain. The matrices

M, N and K are time-independent. We assume that (6) is

solved with zero initial field conditions E(0)¼ 0 and
_Eð0Þ ¼ 0. The objective function F of (4) is calculated

using the time-domain field E. The domain in which (4)

is calculated is called the observation domain. Figure 2a

illustrates the excitation and observation domains for a 2D

problem.

Figure 2 The AVM approach: (a) the original simulation and

(b) the adjoint simulation where the observation domain becomes

the excitation domain. The field is stored at the locations indi-

cated by the dots in both simulations. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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The AVM utilizes an adjoint system of the form:

MT€k� NT _kþ KTkþ
ZTs

0

GTðs� tÞkðsÞds ¼ @w
@E

;

kðTsÞ ¼ 0 and _kðTsÞ ¼ 0 ð7Þ

The adjoint system (7) supplies the vector of adjoint

fields k at all time steps. Note that (7) defines a backward

adjoint simulation. Starting at a time t ¼ Ts, the adjoint

simulation runs backward in time to get the values of the

vector k at all time steps. Note also that the adjoint excita-

tion qw/qR is determined through the original simulation

and is nonzero only within the observation domain (Fig.

2b).

Once the E vectors are determined using the original

simulation (6) and the adjoint response k is determined

using (7) for all time steps, the sensitivities of F with

respect to all parameters are determined from

@F

@ xi
¼

ZTs

0

kT
DQ
D xi

� DM
D xi

€E� DN
D xi

_E� DK
D xi

E

� �
dt (8)

Note that the perturbation of the system matrices or

excitation are assumed known for a given perturbation of

any parameter. It follows that by using original simulation

(6) and adjoint simulation (7), we can estimate the sensi-

tivities of the objective function with respect to all param-

eters regardless of their number.

The expression (8) requires storing of both the original

field E and the adjoint field k where the system matrices

undergo a parameter change. For a change in the dielectric

property of an object, both fields have to be stored inside

the objects for all the time steps, as shown in Figure 2.

To illustrate the AVM approach, we consider the sin-

gle resonator filter shown in Figure 3. This filter was

simulated using 2D TLM with a modal Johns matrix

boundary [30]. This boundary implements the integral in

(6) but for only one mode, resulting in a reduction in

computational cost. The waveguide length and width are

16.0 cm and 6.0 cm, respectively. A TLM cell of dimen-

sion 1.0 mm is utilized. Our objective function is of the

form

Fðx;VÞ ¼ Dt
XNt

k¼1

XNx
i¼1

V2
3;kði;NzÞ (9)

where V3,k is the value of the incident field at the 3rd link

at the kth time step. The objective function (9) measures

the power delivered to the output port. The waveguide is

excited with a Gaussian-modulated sinusoidal signal cen-

tered at xo¼3.5 GHz.

The sensitivities of (9) are estimated using both the

AVM approach and central differences. Figure 4 compares

both approaches for a sweep of the parameters d and W,

respectively.

C. S-Parameter Calculations
S-parameters are usually calculated in time-domain solvers

by applying the Fourier transform to time-domain data

stored at ports of interest. For example, the output spec-

trum at the pth port due to an excitation at the qth port of

a multiport circuit is given by

~EpqðfoÞ ¼
ZTs
0

Z Z
pth port

Eðt; rÞEpðrÞds

8><
>:

9>=
>; expð�2p

ffiffiffiffiffiffiffi
�1

p
fo tÞdt

(10)

In (10), the field at the pth port is first correlated with

the modal distribution of the desired mode at the pth port

Ep(r). The Fourier transform is then applied to the surface

integral. The complex objective function (10) can be di-

vided into two real objective functions similar to (4). This

Figure 3 The single-resonator filter [70].

Figure 4 Objective function sensitivities for the single-resona-

tor filter example at W ¼ 13Dl with Dl ¼ 1.0 mm for different

values of d; qF/qd obtained using AVM (o), qF/qd obtained using

central differences (—), qF/qW obtained using AVM (*), and qF/
qW obtained using central differences (--).
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implies that two sinusoidal adjoint excitations are required

to obtain the sensitivities of the real and imaginary parts

with respect to all parameters. In [32], it was shown that

the derivatives of the real and imaginary part of the spec-

trum (10) can be obtained using only a single sinusoidal

excitation with frequency fo. It was also shown that wide-

band S-parameter sensitivities can be estimated using a

wideband adjoint excitation. The approach reported in

[32] requires Np extra adjoint simulations to estimate the

sensitivities of all the S-parameters with respect to all pa-

rameters regardless of their number and regardless of the

number of frequency points. This work was the first to

show an algorithm for obtaining wideband adjoint sensi-

tivities of the S-parameters using a time-domain solver.

Figure 5 shows a seven section H-plane filter simulated

using the TLM method [32]. The cell size is 0.6223 mm.

The waveguide length and width are 301Dz and 56Dx,
respectively. The vector of designable parameters is x ¼
[L1 L2 L3 W1 W2 W3 W4]

T. The waveguide is excited with

a Gaussian-modulated sinusoidal waveform centered at

frequency xo ¼ 8.0 GHz. The sensitivities of S21 are esti-

mated using the AVM approach with central differences

for nine frequencies in the range 6.0 GHz to 10.0 GHz.

These sensitivities are evaluated for the set of parameter

values [L1 L2 L3 W1 W2 W3 W4 ]T ¼ [22Dz 26Dz 27Dz
21Dx 19Dx 18Dx 18Dx]T. We show only the sensitivities

with respect to the lengths. Note that the central differ-

ence approximation requires 15 TLM simulations while

the AVM approach requires only 2 simulations.

D. The Self-Adjoint Approach
The self adjoint concept was first presented [33] for esti-

mating the S-parameters. This concept states that for some

objective functions there is no need for an adjoint simula-

tion (7). The vector of adjoint fields k is deduced from

the vector of original fields E for all time steps. This is

the case when the excitation domain and the observation

domain are the same and when the original excitation Q
has a similar spatial and temporal profile to the adjoint ex-

citation qw/qR. This applies to the S-parameters because

Figure 5 (a) The seven section H-plane filter and, for a sweep of frequencies, the sensitivities of S21 relative to (a) spacing L1, (b) spac-
ing L2, and (c) spacing L3. The imaginary part’s sensitivities obtained through AVM (—); the imaginary part’s sensitivities obtained using

central differences (o); the real part’s sensitivities obtained through AVM (--); and the real part’s sensitivities obtained using central differ-

ences (D).
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ports are excited with the modal distribution one at a time

and the modal field is observed at all other ports (Fig. 6).

In [33], it was shown that for TLM, the adjoint impulses

utilized in calculating the S-parameter sensitivities are de-

ducible from the original impulses through the mapping

kðsÞ ¼ � 1

l
ARðTs �sÞ (11)

where l and A are a known scaling factor and matrix,

respectively. It follows that adjoint simulations can be

predicted from the original simulation (6) through scaling

and time shifting.

To illustrate the self adjoint approach, we consider a

loaded Tee junction (Fig. 7) simulated using TLM [33].

The designable parameters are the dimensions x ¼ [d
W]T. The waveguide is excited with a Gaussian-modulated

sinusoidal signal centered at fo¼7.5 GHz. The sensitivities

are estimated at [d W]T ¼ [4Dz 4Dx]T. Figure 8 shows a

good match between the self adjoint sensitivities and those

obtained using central differences.

The self adjoint approach was also developed for the

FDTD approach [36] and later extended to the general

nonhomogenous case of TLM [34].

The main difficulty in all time-domain AVM techni-

ques is the large storage of field components. Field com-

ponents have to be stored for all time steps at possibly big

subdomains of the computational domain. Several

improvements were suggested recently to reduce the mem-

ory storage of the technique. An algorithm was presented

in [37] that limits the required storage needed to estimate

the sensitivities. It was shown that the field can be under-

sampled without sacrificing the accuracy of the estimated

sensitivities. Figure 9 shows how the field is sampled

within a dielectric object. The sampling rate can go down

to a quarter wavelength without sacrificing accuracy. A

typical result for a 2D FDTD simulation is shown in Fig-

ure 10. It shows that for sampling rates above 20Dh, the
accuracy of the sensitivities does not deteriorate.

Another approach to further reduce the required storage

[38] exploits the fact that the S-parameters are usually calcu-

lated for a small discrete number of frequencies. It follows

that we can estimate the spectral sensitivities using the spec-

tral components of the field rather than the time-domain

field itself. For example, in Figure 2 we may store the spec-

tral components of the field at the dots rather than storing

the complete time-domain profile. A saving of NT/2Nf is

possible where NT is the number of time-domain steps and

Nf is the number of frequency points.

V. SPACE MAPPING

A. The Space Mapping Concept
Space mapping technology [52–55] addresses the issue of

reducing unnecessary, time-consuming full-wave EM sim-

ulations of microwave structures in device modeling and

design optimization. The approach involves a calibration

of a physically-based ‘‘coarse’’ surrogate by a ‘‘fine’’

model. This simple CAD methodology embodies the

learning process of a designer. It makes effective use of a

suitable fast surrogate to sparingly manipulate the itera-

tions of the fine model.

We denote the coarse and fine model design parameters

by xc and x [ R
n�1, respectively. The corresponding response

vectors are denoted by Rc and Rf [R
m�1, respectively.

We propose to find a mapping P relating the fine and

coarse model parameters as

xc ¼ PðxÞ (12)

such that

RcðPðxÞÞ � Rf ðxÞ (13)

in a region of interest.

Then we can avoid using direct optimization, i.e., solv-

ing (1) to find x*. Instead, we declare �x, given by

�x ¼D P�1ðx�cÞ (14)

Figure 6 The calculations of the S-parameters for a multiport

circuit. One port is excited and the fields at all other ports are

observed. For calculating all S-parameters the ports are excited

one at a time. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 7 The loaded Tee junction.
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as a good estimate of x*, where x�c is the result of coarse

model optimization.

B. Interpretation of Space Mapping Optimization [53]
Space mapping algorithms initially optimize the coarse model

to obtain the optimal design x�c , for instance in the minimax

sense. Subsequently, a mapped solution is found by minimiz-

ing the objective function kgk22, where g is defined by

g ¼ gðxÞ ¼D Rf ðxÞ � Rcðx�cÞ (15)

Correspondingly, according to [52], Rc(P(x)) is opti-

mized in the effort of finding a solution to (1). Here,

Rc(P(x)) is an expression of an ‘‘enhanced’’ coarse model

or ‘‘surrogate.’’ Thus, the problem formulation (1) can be

rewritten as

�x ¼ argmin
x

UðRcðPðxÞÞ (16)

where x may be close to x* if Rc is close enough to Rf. If

x�c is unique then the solution of (16) is equivalent to driv-

ing the following residual vector f to zero:

f ¼ f ðxÞ ¼D PðxÞ � x�c (17)

C. Original Space Mapping Approach [52, 53]
In this approach, an initial approximation of the mapping

P(0) is obtained by performing fine model analyses at a

pre-selected set of at least m0 base points, m0 � nþ1. One

base point may be taken as the optimal coarse model solu-

tion, thus x(1) ¼ x�c . The remaining m0 – 1 base points are

chosen by perturbation. A corresponding set of coarse

model points is then constructed through the parameter

extraction process

xðjÞc ¼D argmin
xc

Rf ðxðjÞÞ � RcðxcÞ
�� �� (18)

for which

e ¼D Rf ðxðjÞÞ � RcðxðjÞc Þ�� ��
¼ min

xc
Rf ðxðjÞÞ � RcðxcÞ

�� �� (19)

is the parameter extraction error.

The additional m0 – 1 points apart from x(1) are

required to establish full-rank conditions leading to the

Figure 8 The sensitivities of the S-parameters for the loaded Tee junction over a sweep of frequencies for [d W]T ¼ [4Dz 4Dx]T with

respect to d; sensitivities of the real part obtained through AVM (--); sensitivities of the real part obtained through forward differences

(D); sensitivities of the imaginary part obtained through AVM (—); and sensitivities of the imaginary part obtained through forward differ-

ences (o).
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first mapping approximation P(0). Bandler et al. [52]

assumed a linear mapping between the two spaces, i.e.,

xc ¼ PðjÞðxÞ ¼ BðjÞxþ cðjÞ (20)

where B(j) [ Rn�n and c(j) [ Rn�1.

At the jth iteration, the sets of points in the two spaces

may be expanded to contain, in general, mj points which

are used to establish the updated mapping P(j). As the ana-

lytical form of P is not available, space mapping uses the

current approximation P(j), to estimate x* at the jth itera-

tion as

�x � xðmjþ1Þ ¼ ðPðjÞÞ�1ðx�cÞ (21)

The process continues iteratively until Rf(x
ðmjþ1Þ) is

close enough to Rc(x
�
c). If so, P

(j) is assumed close enough

to our desired P. If not, the set of base points in the fine

space is augmented by xðmjþ1Þ, and x
ðmjþ1Þ
c , as determined

by (18), augments the set of base points in the coarse

space. Upon termination, we set the space-mapped design

as in (21).

This algorithm is simple but has pitfalls. First, m0

upfront high-cost fine model analyses are needed. Second,

a linear mapping may not be valid for significantly mis-

aligned models. Third, nonuniqueness in the parameter

extraction process may lead to an erroneous mapping esti-

mation and algorithm breakdown.

D. Aggressive Space Mapping Approach [53]
The aggressive space mapping algorithm incorporates a

quasi-Newton iteration using the classical Broyden for-

mula [71]. A rapidly improved design is anticipated fol-

lowing each fine model simulation, while the bulk of the

computational effort (optimization, parameter extraction)

is carried out in the coarse model space.

The aggressive space mapping technique iteratively

solves the nonlinear system

f ðxÞ ¼ 0 (22)

for x. Note, from (17), that at the jth iteration, the error

vector f(j) requires an evaluation of P(j)(x(j)). This is exe-

cuted indirectly through the parameter extraction (evalua-

tion of x
ðjÞ
c ). Coarse model optimization produces x�c .

The quasi-Newton step in the fine space is given by

BðjÞhðjÞ ¼ �f ðjÞ (23)

where B(j), the approximation of the mapping Jacobian Jp,
is updated using Broyden’s rank one update. Solving (23)

for h(j) provides the next iterate x(jþ1)

xðjþ1Þ ¼ xðjÞ þ hðjÞ (24)

The algorithm terminates if kf(j)k becomes sufficiently

small. The output of the algorithm is an approximation to

�x ¼ P�1ðx�cÞ and the mapping matrix B. The matrix B can

be obtained in several ways, such as a unit mapping [72,

Figure 9 Sensitivity solver grid: (a) the fine simulation grid (b)

the coarse sensitivity-analysis grids. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 10 Sensitivity estimates obtained using the self adjoint approach (FDTD-SASA), using finite difference approaches, analytical

approaches, and using different sampling rates of the field. Adjoint sensitivity analysis fails for the blue curve where the sampling rate

drops below a quarter wavelength. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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73], Broyden-like updates [70], Jacobian-based updates

[53, 74], and constrained update [75].

E. General and Implicit Space Mapping [54]
Simple to implement, implicit space mapping [53, 76, 77],

differs from earlier formulations in that the surrogate model

parameters used for matching the fine model are separate

from the design variables. Still, they are typically physically

based and are usually selected and their values ‘‘preas-

signed’’ early in the modeling and design process. We have

presented implicit space mapping for design optimization

[76, 77] and device modeling [78, 79] tasks. Unlike input

space mapping [53, 54], implicit space mapping does not

affect the domain of the surrogate model whose parameters

may be constrained. Most of our recent space mapping

approaches can be generalized to a general space mapping

form in the following procedure to solve (1)

xðkþ1Þ ¼ argmin
x

UðRsðx; pðkÞÞÞ (25)

where Rs(x, p) is a response vector of the space mapping

surrogate model with x and p as design variables and

model parameters, respectively. In implicit space mapping

[76, 77], the model parameters are the so-called preas-

signed parameters. Parameters p(k) are obtained at iteration

k using the parameter extraction procedure

pðkÞ ¼ argmin
p

Xk

j¼0
wjjjRf ðxðkÞÞ � RsðxðkÞ; pÞjj (26)

where we try to match the surrogate with the fine model.

Weighting factors wj determine the contribution of previ-

ous iteration points to the parameter extraction process.

The surrogate is usually the coarse model Rc composed

with suitable transformations, e.g., the input space map-

ping surrogate is defined as a linear distortion of the

coarse model domain: Rs(x, p) ¼ Rs(x, B, c) ¼ Rc(B�x þ
c).

Consider the second-order tapped-line microstrip filter

[54, 76, 80] shown in Figure 11a. For simplicity we use

two design parameters, L1 and g as shown in Figure 11a.

The fine model is simulated in FEKO [81]. The coarse

model of Figure 11b is the circuit equivalent of the struc-

ture in Figure 11a, and is implemented in Agilent ADS

[82].

We optimize our filter using implicit space mapping

with the dielectric constant er and height H of the sub-

strate as preassigned parameters. Fixed in the fine model,

we tune these parameters in the coarse model following

our implicit space mapping steps.

The initial design is the optimal solution of the coarse

model with respect to our specifications. Figure 12a shows

the fine and coarse model responses at the initial design.

Note that neither the coarse nor fine models satisfy the

specifications. A significant misalignment is observed

between them with respect to center frequency and band-

width. We now perform the parameter extraction proce-

dure and update er and H so that the misalignment is

minimized. Figure 12b shows the fine model and the

Figure 11 Second-order tapped-line microstrip filter [54, 79]: (a) geometry, (b) coarse model (Agilent ADS).

Figure 12 Second-order tapped-line microstrip filter [54, 79]: fine model (—) and coarse model (---) responses. (a) the initial design, (b)

a good match obtained after extracting the preassigned parameters, (c) a good fine model response at the optimal design of the updated

coarse model. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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updated coarse model responses at the initial design. We

(re)optimize the design parameters in our coarse model

with the newly obtained preassigned parameter values. A

new set of design values is found to update the fine

model. The fine and coarse model responses at this new

design are shown in Figure 12c. We observe that the fine

model response satisfies the design specifications.

F. Output Space Mapping, Gradient-Based Space
Mapping and Trust Region Methods [54]
The surrogate model is assumed to represent the fine

model sufficiently well. A physically-based coarse model

and a suitable combination of mappings provide a global

match between the models. To achieve a more accurate

local match, we proposed the so-called output space map-

ping [61, 83], which enhances the (original) surrogate by

a correction term. Its simplest correction is the difference

between the fine and the original space mapping responses

at the current iteration point so that a perfect match

between these models is ensured (also called zero-order

consistency [64]).

Consider the microstrip bandpass filter shown in Figure

13a [84]. The fine model is implemented in FEKO, the

coarse model is a circuit equivalent implemented in Agi-

lent ADS (Fig. 13b). Figure 14a shows the fine model

(solid line) and the (frequency) space mapping surrogate

(dashed line) responses at, say, iteration i. Figure 14b

shows the response of the optimized surrogate model as

well as the fine model response at the surrogate model op-

timum. If the surrogate model is enhanced by the output

space mapping term, its response becomes identical to the

fine model response of Figure 14a. Optimizing this

enhanced model, we obtain the responses of Figure 14c,

and we see that the fine model response of Figure 14c is

better than that of Figure 14b with respect to the given

specification. Thus, the output space mapping correction

compensates the misalignment between the fine and surro-

gate models (Fig. 14a) and, although the alignment is per-

fect only at the current design, it also reduces mismatches

between the models in the neighbourhood of this design.

The surrogate model can be further enhanced by an

additional linear term, which ensures coincidence of the

Jacobian of the surrogate and the Jacobian of the fine

model at the current design [61] (first-order consistency

condition [64]). This term requires a fine model sensitivity

analysis, however, it is more robust and ensures the con-

vergence of the algorithm to a local fine model optimum

if the algorithm is safeguard by trust region methods [62].

Theoretical aspects of the output and gradient-based space

mapping are discussed in [61].

G. The Tuning Space Mapping Algorithm [55]
The tuning space mapping procedure encompasses the

port tuning method proposed for design using EM simula-

tors [85]. We define multiple auxiliary ports within a

structure, e.g., in the manner of the ‘‘cocalibrated’’ [86]

internal ports of Sonnet em [87]. We call this structure

with defined internal ports ‘‘auxiliary fine model.’’

Figure 13 Microstrip bandpass filter [54, 83]: (a) geometry, (b) coarse model (Agilent ADS).

Figure 14 Fine model (solid line) and surrogate model (dashed) responses for the microstrip bandpass filter [54, 83]: (a) the fine and

surrogate model responses at iteration i, (b) the response of the optimized surrogate and fine model responses at the surrogate model opti-

mum, (c) the response of the optimized surrogate enhanced by output space mapping and the fine model response at the enhanced surro-

gate model optimum (fine model specification error þ0.4 dB). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

The State of the Art of Microwave CAD 485

International Journal of RF and Microwave Computer-Aided Engineering DOI 10.1002/mmce



Elements can then be incorporated into the auxiliary fine

model to form a tuning model. Tuning space mapping

techniques [55, 88–91] utilize tuning model as surrogate.

The resulting tunable model constitutes a surrogate for

design or modeling purposes.

In [87, 88], tuning space mapping involves a so-called

‘‘Type 0’’ embedding, in which tuning elements are

attached to internal ports of the fine model. If a tuning-to-

design-parameter conversion is not available, we require

for calibration purposes an additional full-system coarse

model or the simulation of a perturbed fine model.

In [55, 89], we replace certain designable sub-sec-

tion(s) with so-called ‘‘Type 1’’ tuning element(s). In

most of our examples, these elements have direct tuning

parameters, i.e., distributed microwave circuit elements

with physical dimensions corresponding to those of the

fine model. In a simple parameter extraction procedure,

we match the tuning model with the fine model (the origi-

nal structure without internal ports). We assume that cer-

tain fine-model couplings are preserved in the tuning

model. Thereby, we expect to obtain a good surrogate of

the fine model that is subsequently tuned to satisfy our

goals by optimizing its tuning parameters. The obtained

tuning parameter values are converted to design parameter

values that become our next fine model iterate (design).

Our algorithm produces a sequence of points (design

variable vectors) x(i), i ¼ 0, 1, …. The iteration of the

algorithm consists of three steps: 1) alignment of the tun-

ing model with the fine model, 2) the optimization of the

tuning model, and 3) the calibration of the tuning parame-

ters to the design parameters.

In our first step, based on data from the fine model

(with internal ports) at point x(i), the current tuning model

R
ðiÞ
s is built with appropriate Type 0 or Type 1 embed-

ding. The tuning model response may not agree with the

response of the original fine model Rf at x(i). We align

these models by the procedure

ðxðiÞp ; t
ðiÞ
0 Þ ¼ argmin

xp ;t0
Rf ðxðiÞÞ � R

ðiÞ
t ðt0; xpÞ

��� ��� (27)

where Rt [ Rm denotes the response vector of the tuning

model, xp represents the preassigned parameters of the

tuning model, and t0 represents the initial tuning parame-

ters of the tuning model. We may only need to extract ei-

ther t0 or xp depending on the type of tuning model.

In the second step, we optimize R
ðiÞ
t to have it meet

the design specifications. We obtain the optimal values of

the tuning parameter t
ðiÞ
1 as

t
ðiÞ
1 ¼ argmin

t1
U R

ðiÞ
t ðt1; xðiÞp Þ

� �
(28)

Having t
ðiÞ
1 we perform the calibration procedure to deter-

mine the values of the design variables that yield the same

change in the tuning model response as t
ðiÞ
0 goes to t

ðiÞ
1 .

The new design is obtained through the calibration

step [88]

xðiþ1Þ ¼ xðiÞ þ sðiÞ � t
ðiÞ
1 � t

ðiÞ
0

� �
(29)

where s(i) is a real vector and * denotes component-wise

multiplication. For direct tuning elements, s(i) ¼ [1 1 … 1]T.

Otherwise a calibration step [88] follows to calculate s(i).
Figure 15 shows the structure of a high-temperature

superconducting (HTS) filter [88]. The design parameters

are the lengths of the coupled-line sections and the spac-

ing between them, shown as L1, L2, L3, S1, S2, and S3,
respectively.

The tuning model is constructed by dividing the five

coupled-line polygons in the middle and inserting the tun-

ing ports at the new cut edges. Its S22P data file (22 being

the number of ports) is then loaded into the S-parameter

component in Agilent ADS. The circuit-theory coupled-

line components and capacitor components are chosen to

be the tuning elements and are inserted into each pair of

tuning ports (Fig. 16). The lengths of the additional

coupled-lines and the capacitances of the capacitors are

Figure 15 HTS filter: physical structure with tuning ports [88].

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 16 HTS filter: tuning model (Agilent ADS) [88].
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assigned as tuning parameters, so that we have xt ¼ [LL1
LL2 LL3 C1 C2 C3]

T (LLk in mm, Ck in pF).

The calibration model implemented in ADS is an

equivalent circuit containing the same tuning elements as

the tuning model. It mimics the division of the coupled

lines in preparing Rt. The calibration model also contains

six (implicit) space mapping parameters to be used as pa-

rameters p in the calibration process [88], namely, p ¼
[H1 H2 H3 er1 er2 er3]

T, where Hk and erk are substrate

height and dielectric constant of the coupled-line segment

of length Lk according to Figure 15.

The initial design x(0) is the optimal solution of the

coarse model, i.e., the calibration model with zero values

for the tuning parameters.

Figure 17 shows the fine model response at x(2). Note
that the tuning space mapping algorithm requires only one

iteration to satisfy the design specifications, and only one

additional iteration to obtain an almost equal-ripple fine

model response.

H. Building a Surrogate
Building a surrogate may not be straightforward. We

show, using the microstrip-fed monopole antenna [92] of

Figure 18, how to combine functional and physical models

in building a surrogate.

Our design variables are x ¼ [Wp1 Lp1 Lp2 Wg2 Lp0]
T.

The remaining parameters are fixed. The fine model of the

antenna is evaluated by CST Microwave Studio (simula-

tion time about 2.5 h). The design specifications are |S11|
� –10 dB for 3.1 to 10.6 GHz. We want to optimize the

antenna using space mapping, however, a suitable equiva-

lent-circuit coarse model is not available. Instead, we use

a coarse-discretization CST model Rcd (evaluation time 2

min and 15 sec). Rcd is still computationally too expensive

to be used directly as a coarse model, therefore, a coarse

model Rc is created in the neighbourhood of the starting

point (here, the approximate optimum of Rcd), using krig-

ing interpolation [58] of the Rcd data. The procedure is as

follows.

1. Allocate N base designs, XB ¼ {x1, …, xN}, using

Latin Hypercube Sampling [93];

2. Evaluate Rcd at each design xj, j ¼ 1, 2, …, N;
3. Build Rc as a kriging interpolation of data pairs {(xj,

Rcd(x
j))}j ¼ 1,…,N.

The coarse model created this way is computationally

cheap, easy to optimize, and yet retains the features of a

physically-based model. The initial design is xinit ¼ [19 0

17 22.5 0]T mm. The starting point for space mapping

optimization, x(0) ¼ [20.33 2.44 19 15.17 0]T mm, is the

approximate optimum of Rcd. The kriging coarse model

Rc is set up in the region defined by deviation d ¼ [2 1 2

1 0.5]T mm from x(0) using N ¼ 100 base points. Figure

19 shows the responses of Rf and Rc at both xinit and x(0).
The space mapping algorithm uses the input/output space

mapping surrogate Rs ¼ Rc(x þ c) þ d. The design after

three evaluations of Rf is x* ¼ [20.2 2.27 19.5 14.77

0.384]T mm. The fine model specification error at x* is –

Figure 17 HTS filter: fine model response (|S21| obtained with

Sonnet em) at the final design. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 18 Microstrip-fed planar monopole antenna [91].

Figure 19 The microstrip-fed monopole antenna: fine model

(dotted line) and coarse model (�) responses at the initial design

xinit, as well as the fine model (solid line) and coarse model

(dashed line) responses at the coarse model optimum x(0). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 20 The microstrip-fed monopole: fine model |S11| at the
final design. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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2.1 dB (Fig. 20). The total optimization time (Table I)

corresponds to only about eight evaluations of Rf.

VI. CONCLUSIONS

We briefly review the history of microwave CAD and recent

developments high-performance EM-based design optimiza-

tion. We describe two state-of-the-art approaches in EM-

based optimization and modeling, namely, adjoint sensitivity

analysis and space mapping. They dramatically improve the

efficiency of EM optimization. We illustrate the techniques

with applications and examples. We believe that combining

space mapping with adjoint sensitivity evaluation should form

the next generation of effective space mapping algorithms.
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