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SUMMARY

We review the latest developments in space-mapping-based modeling techniques with applications in
microwave engineering. We discuss the two techniques that utilize a combination of standard space
mapping and function approximation methodologies, in particular fuzzy systems and support vector
regression (SVR). In both cases, the initial space-mapping model is enhanced by an additional term that
approximates the differences between the fine model and the initial space-mapping surrogate. We compare
the standard and enhanced space-mapping models, as well as the fuzzy systems and SVR directly used for
modeling fine model data. A discussion of the advantages and disadvantages of the presented methods is
also given. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Electromagnetic simulators offer accurate evaluation of microwave structures and devices.
Unfortunately, the high computational cost of simulation typically prohibits their direct
application in tasks such as statistical analysis and yield optimization, which are crucial for
manufacturability-driven designs in a time-to-market development environment. Space
mapping [1-10] addresses this issue by creating computationally cheap surrogate models that
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426 S. KOZIEL AND J. W. BANDLER

in many cases are sufficiently accurate to be used instead of the simulator-based models for
solving microwave design problems.

Space mapping assumes the existence of ‘fine” and ‘coarse’ models. The ‘fine’ model may be a
high fidelity CPU-intensive EM simulator, undesirable for direct statistical analysis and design.
The cheap ‘coarse’ model is typically a simplified representation such as an equivalent circuit
with empirical formulas. The space-mapping-based surrogate model is created by enhancing the
coarse model using a limited amount of fine model data obtained by evaluating the fine model at
certain base points. The enhancement is typically realized through suitable analytical formulas,
which allows the surrogate model to be almost as computationally cheap as the coarse model.
On the other hand, because the coarse model is supposedly physics-based, the accuracy of the
space-mapping surrogate is considerably better than the accuracy of possible function
approximation models [11-18] using a comparable amount of fine model data.

A number of space-mapping modeling [19-29] and neuro-space-mapping modeling [30-32]
approaches have been proposed recently.

The standard SM modeling approach is based on setting up the surrogate model using a
small amount of fine model data and performing extraction of the mapping parameters over the
whole set of this data [20, 21]. This simple methodology gives reasonable accuracy especially for
low-dimensional problems, however, introducing additional degrees of freedom to handle a
larger amount of fine model data (necessary to improve the surrogate model accuracy above
certain limits) is problematic [25].

Several techniques have been proposed to overcome these limitations. A space-mapping
modeling approach with variable weight coefficients [24, 25] provides better accuracy than the
standard method, however, at the expense of significant increase of the evaluation time, which is
due to a separate parameter extraction required for each evaluation of the surrogate model. This
limits potential applications of the method. In the reference [26], a combination of standard
space mapping with radial basis function interpolation is described. This gives modeling
accuracy comparable or better than the variable weight method [28] without compromising
computational cost. Unfortunately, the problem of determining interpolation coefficients may
be ill-conditioned and the method may be sensitive to some control parameters.

In this paper, we describe the two techniques that use a combination of standard space
mapping with fuzzy systems [27] and support vector machines (SVM) [29]. Both approaches
proved to be superior to other space-mapping-based techniques published so far [27, 29]. We
compare them with the standard space mapping used here as a reference method, as well as to
direct approximation of fine model data using fuzzy systems and SVM. We also provide some
practical guidelines regarding applications of the methods for modeling problems of different
dimensionality.

2. STANDARD SPACE-MAPPING MODELING

Let Rz X;— R and R.: X.— R™ denote the fine and coarse model response vectors, where X;= R”
and X.=R" are design variable domains of the fine and coarse models, respectively.
In particular, R{x) and R.(x) may represent the magnitude of a transfer function of a
microwave filter at m chosen frequencies. We denote by Xz < X} the region of interest in which
we want enhanced matching between the surrogate and the fine model. Typically, X is
an n-dimensional interval in R" centered at reference point x° =[xg;...xo.]" € R,
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ie. Xgr = [X0 — 0, X0+5] = [XO.I - 51,X0.1+51] X e X [X(),n - 5,,,)60,,,'1‘5,1], where 6 = [51 - 5n]T
We assume that the base set Xz = {x',x?,...,x"} c Xj is available, such that the fine model
response is known at all points X/, j = 1,2,..., N. In general, we do not assume any particular
location of these base points.

We want to enhance the coarse model R, and create a space-mapping-surrogate model Ry
using auxiliary mappings with parameters determined so that Ry matches the fine model as well
as possible at all base points. Because the coarse model is assumed to be physics-based, i.e.
describes the same phenomenon as the fine model, we hope that the surrogate model will retain
a good match with the fine model over the whole region of interest.

The standard space-mapping model (SM-Standard) is defined as [20]

R(x) = Ry(x, p) (D

where the space-mapping parameters p are obtained using the parameter extraction process
_ . N BB ook
p=argmin ) "~ [[Re(x") - Ryx",1)] )

while R is a generic space-mapping model, i.e. the coarse model composed with some suitable
mappings. The model often used in practice has the form

Ry(x,p) = Ry(x,A,B,¢) = A-R(B-x+c)+d (3)

where A = diag{ay,...,a,}, Bis an n x n matrix, ¢ is an n x 1 vector, and d is an m x 1 vector.

In many cases, both fine and coarse models have parameters that are normally fixed and not
used in the optimization process (so-called preassigned parameters). These parameters can be
used as additional degrees of freedom in the coarse model and adjusted in order to obtain a
better match with the fine model, which leads us to implicit space mapping [2]. Let us denote the
coarse model exploiting the preassigned parameters X, as R«(X, X;,). The surrogate (3) enhanced
by implicit space mapping could take the following form:

l_ls(x, p) = ]_Qs(x, A,B,¢,B,,c;) = A-R(B-x+c¢, B, - x+¢p) 4)

where A, B and ¢ are as in (3), while By, is an n;, x n matrix, and ¢, is an n, x 1 vector, where n,, is
the number of preassigned parameters. Here, we use a generalized implicit space mapping [3] in
which preassigned parameters are dependent on design variables in order to increase the
flexibility of the surrogate model.

The standard space-mapping-surrogate model is very simple and fast, because once the space-
mapping parameters are established, model evaluation cost is roughly the same as the evaluation
cost of the coarse model, which is assumed to be much cheaper than the fine model. A limitation
of this model is that linear mappings such as (3) or (4) may not be able to provide sufficient
accuracy. Also, (3) or (4) may only provide a limited modification of the range of the coarse
model, and this modification is basically independent of the design variables. Finally, because of
the finite number of parameters that are extracted in one shot for the whole region of interest,
the surrogate is, in fact, a regression model. The consequence is that the modeling error might
not decrease below certain, problem dependent, non-zero limits even if the number of base
points goes to infinity (cf. [25]).
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3. SPACE MAPPING WITH FUNCTION APPROXIMATION LAYER

The limitations of the standard space mapping can be alleviated by using a function
approximation layer on top of the standard model. Let us define an enhanced space-mapping-
surrogate model as

RS(X) = Rs(x)+Rs(x) ®)

where R; is a standard space-mapping-surrogate model, while R; is a function approximation
model. We can now consider R; as a trend function and Ry as an output space-mapping term
that models the residuals between the fine model and Ry at all base points. This technique has
the following advantages: (i) relatively good modeling accuracy can be obtained using a limited
amount of fine model data because of exploiting the concept of space mapping and the
underlying physics-based coarse model, (i) the resulting surrogate is computationally as cheap
as the coarse model because the function approximation layer is typically implemented using
analytical formulas, (iii) it is possible to take advantage of any amount of fine model data
available, so that modeling accuracy can be as good as required provided that the base set is
sufficiently ‘dense’.

Several approaches exploiting (5) have been proposed so far [26-29]. It has been
demonstrated that the modeling accuracy of the model (5) is better than the accuracy of the
standard space-mapping surrogate, and, at the same time, better than the accuracy of the
function approximation model used alone, provided that the same amount of fine model data
was used to set up the model in each case. This is, of course, because of features (i) and (iii)
mentioned above.

Here, we focus on two approaches: space mapping combined with fuzzy systems [27] and
space mapping combined with support vector regression (SVR) [29]. In the following subsection
we briefly describe both concepts, while in Section 4 we present a numerical comparison of the
techniques.

3.1. Function approximation layer implemented with fuzzy systems

In [27], the function approximation layer R, has been realized using fuzzy systems. Fuzzy
systems are commonly used in machine control [33] where the expert knowledge and a set of
sampled input—output (state—control) pairs recorded from successful control are translated into
the set of ‘IF-THEN’ rules that state in what situations which actions should be taken [34].
Because of the incomplete and qualitative character of such information, it is represented using
a fuzzy set theory [35], where given piece of information (element) belongs to a given (fuzzy)
subset of an input space with a certain degree, according to so-called membership function [36].
The process of converting a crisp input value to a fuzzy value is called ‘fuzzification’. Given the
specific input state, the ‘IF-THEN’ rules that apply are invoked, using the membership
functions and truth-values obtained from the inputs, to determine the result of the rule. This
result in turn will be mapped into a membership function and truth value controlling the output
variable. These results are combined to give a specific answer, using a procedure known as
‘defuzzification’. The ‘centroid’ defuzzification method is very popular, in which the ‘center of
mass’ of the result provides the crisp output value.

Fuzzy systems can also be used as universal function approximators [34]. In particular, given
a set of numerical data pairs, it is possible to obtain a fuzzy-rule-based mapping from the input
space (here, design variables) to the output space (here, surrogate model response). The
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mapping is realized by dividing the input and output spaces into fuzzy regions, generating fuzzy
rules from given desired input—output data pairs, assigning a degree to each generated rule and
forming a combined fuzzy rule base, and, finally, performing defuzzification [34]. It can be
shown [34] that under certain conditions, such a mapping is capable of approximating any real
continuous function over the compact domain to arbitrary accuracy.

Fuzzy systems have been successfully used in the microwave area by other authors (e.g.
[37-39]), but never in connection with space mapping. In the following description a fuzzy
system with triangle membership functions and centroid defuzzification [34] is used. Other
membership functions can also be applied resulting in similar performance (see the reference [27]
for numerical comparisons).

We assume that we have data pairs (x*, R¥), where x*€ X and R* = R(x")—Ry(xy), k = 1,
2,...,N. Membership functions for the ith variable are defined as shown in Figure 1. Each
interval [xg; — d¢., X0.i+00:], i=1,2,...,n, is divided into K subintervals (fuzzy regions). The
number K corresponds to the number of base points N and is given by the formula
K =IN'/"] — 1. In particular, if X consists of base points uniformly distributed in the region of
interest X then K+1 is exactly the number of points of this uniform grid along any of the
design variable axes. In general, K is chosen in such a way that the number of n-dimensional
subintervals (and, consequently, the maximum number of rules) is not larger than the number of
base points. Division of [xo; — doi, X0 +J0,] into K subintervals creates K+1 values x™k,
k=0,1,...,K. In the case of a uniform base set, points x4 = [x'¢! ...x”"/"]T, qe {0,1,...,K}"
coincide with the base points. Value x** corresponds to the fuzzy region [x* !, x***1] for
k=1,...,K—1(x", x*!] for k=0, and [x"*!, ¥*X] for k = K). We also use the symbol x7 to
denote the n-dimensional fuzzy region [x"¢' ... x"%]". For any given x, the value of membership
function m;(x) determines the degree of x in the fuzzy region x**. In this paper we only use
triangular membership functions; one vertex lies at the center of the region and has membership
value unity; the other two vertices lie at the centers of the two neighboring regions, respectively,
and have membership values equal to zero.

Having defined the membership functions we need to generate the fuzzy rules from given data
pairs. We use if-then rules of the form IF x*is in xY THEN y = R*, where y is the response of the
rule. At the level of vector components it means

IF xp; is in x'"%" AND x5 is in x*® AND...AND x, is in X" THENy =R* ()

where x;, i = 1,...,n are the components of vector x*. In general, it may happen that there
are some conflicting rules, i.e. rules that have the same IF part but a different THEN part.

m(x)

m;x-1(x)

|
|
|
|
|
|
|
|
f

0.0 Y
X0~ X080, x

Figure 1. Division of the input interval [xo; — do;, X0, +00;] into fuzzy regions and the corresponding
membership functions.
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We resolve such conflicts by assigning a degree to each rule and accepting only the rule from a
conflict group that has a maximum degree. A degree is assigned to a rule in the following way.
For the rule ‘IF x4, is in X' AND x5 is in x*% AND...AND x;,, is in X THEN y = R*,
the degree of this rule, denoted by D(x") is defined as

DO, x) = [ mig () ()
i=1

Having resolved the conflicts we have a set of non-conflicting rules, which we denote as R;,
i=1,2,...,L. Wedenote by Ry : Xz — R™ the output of our fuzzy system, which is determined
using a centroid defuzzification

Ei:l D(Xn X')
where x’ is an n—dimensional fuzzy region corresponding to the ith rule, and y; is the output of
the ith rule.

It should be noted that implementation of the fuzzy system described above is very simple
and once the fuzzy rules are established, the evaluation of Ry(x) is very fast, so that the surrogate
model (5) using fuzzy systems (we will refer to it as SM-Fuzzy) is virtually as cheap as the coarse
model.

Ry(x) = ®)

3.2. Function approximation layer implemented with SV R

SVR [40] is a relatively novel technique, which is characterized by good generalization capability
[41] and easy training through quadratic programming resulting in a global optimum for the
model parameters [42]. SVR is a variant of the SVM methodology developed by Vapnik [43],
which was originally applied to solve the classification problems. SVM exploits the structural
risk minimization (SRM) principle, which has been shown to be superior [40] to traditional
empirical risk minimization (ERM) principle, employed by the conventional methods used in
the empirical data modeling, e.g. neural networks. SRM minimizes an upper bound on the
expected risk [40], as opposed to ERM that minimizes the error on the training data, which is
the difference that equips SVM with a greater ability to generalize [40].

SVR is currently gaining popularity in the electrical engineering area (e.g. [44-51]). In the
reference [29], the application of SVR for enhancing the space-mapping models has been
presented for the first time.

As before, let R*= Rf(xk)—RS(xk), k=1,2,..., N, denote the differences between the fine
model and the standard space-mapping model (1). We want to use SVR to approximate the
residuals R* at all base pomts We shall also use the notation R* = [RERS ... RX]" to denote the
components of vector R”. In the case of linear regression, we want to approx1mate a given set of
data, in our case, the data pairs D; = {(x', j),...,(x , ])}, j=1,2,...,m, by a linear
function fj(x) = ijx+b_/. The optimal regression function is given by the minimum of the
functional [42]

1 N
W, &) =3 Wi+ G 3 (&t &) ©)

where C;is a user-defined value, and 5 and ¢;; are slack variables representing upper and lower
constraints on the output of the system The typlcal cost function used in SVR is the so-called
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¢-insensitive loss function
0 for |fi(x) — yl<e
L(y) = . (10)
[fi(x) — ¥l otherwise

The value of C; determines the trade-off between the flatness of f; and the amount up to which
deviations larger than ¢ are tolerated [39].

Here, we use non-linear regression employing the kernel approach, in which the linear
function ijx-i-bj is replaced by the non-linear function Ziy,-'[K(xk,x)+bj, where K is a kernel
function. Thus, the SVR term used to enhance the standard SM is defined as [29]

Zfil 71K, x)+b)
R, = : (11)

le‘il Vn1.iK(Xi7 X) + bm

with parameters y;; and b;, j=1,...,m, i=1,...,N obtained according to a general SVR
methodology. In this paper we use Gaussian kernels of the form
)
K(x,y) _exp(—”xfyz”>, >0 (12)
2¢2)

where A = A(8, N)—used here as an normalization factor—is a so-called characteristic distance
of the base set defined as [24]

2 "
HON) = — ;af (13)

The scaling parameter ¢ as well as parameters C; and ¢ are adjusted to minimize the generalization
error calculated using a cross-validation method [14] and exponential grid search [44].

Similarly as in the case of fuzzy systems, the cost of evaluating the SVR model (11) is low
and, therefore, SVR does not degrade the computational efficiency of the standard space-
mapping model when both are utilized in the enhanced surrogate (5). It should be noted though,
that implementation of SVR is more complicated than implementation of fuzzy systems because
it involves solving a constrained non-linear optimization problem as well as the tuning of certain
control parameters. On the other hand, the SVR function is smooth, which may not be the case
for modeling with fuzzy systems [27]. We will refer to the model (5) using SVR enhancement as
SM-SVR.

4. COMPARISON OF MODELING METHODOLOGIES

In this section we compare different aspects of the enhanced space-mapping techniques
described in Section 3. In particular, we consider modeling accuracy, robustness with respect to
distribution of base points, as well as applicability for modeling problems of different
dimensionality. We use two examples of microwave filters. The first one is a low-dimensional
problem with only two design variables; the second example is a higher-dimensional problem
with five design variables. We begin, however, with a brief discussion of some design of
experiments techniques that can be used to determine the distribution of the base points.
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4.1. Design of experiments for low- and higher-dimensional modeling problems

Before the surrogate model is established, we need to decide on the amount and location of the
base points x', x2, ..., x", at which we evaluate the fine model, and then use this information to
perform the parameter extraction (2), and, subsequently, generate the data pairs
Rf = Rf(xk)—RS(xk), k=1,2,...,N, used to set up the function approximation model.

Traditionally, following the classical factorial design of experiments [52], the standard space-
mapping model uses the so-called star-distribution-like base set [20], where N =2n+1, with
x'=x° x/ = x0+(1)7_15[(,-,1)/2}(3[(,,1)/2} for j=2,...,N, where x° is the reference point (cf.
Section 2),ande; =[0 ... 010 ... 0]" is a unit vector with 1 at jth position; 0; is the size of the
region of interest along the jth axis. Figure 2 shows the star-distribution base set for n = 2.

As mentioned before, the star-distribution-like base set is not sufficient if we want to improve
the accuracy of the surrogate model, especially when a function approximation layer is used in
combination with space mapping as described in Section 3: we need more fine model data. In
this paper, we do not assume any prior knowledge of the fine model behavior within the region
of interest, X g. Therefore, we would like the base points to be distributed more-or-less uniformly
within Xx.

One of the possibilities, frequently exploited when the number of design variables # is small,
is locating the base points on a uniform grid, as shown in Figure 3 for n =2 and grid density
k = 5. Obviously, this technique gives the most uniform distribution of points possible, however,
the number of base points grows very fast with both # and &, and, feasible number of points that

X2
Xi (region of interest)

Reference point

-

X1

Figure 2. Region of interest and the star-distribution base set for n = 2.

Figure 3. Uniform-grid-like base set for n =2 and the grid density k = 5.
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can be allocated is limited to possible values of k£”. In practice, it can be effectively applied for
n<S5.

Another technique that can be used is one of many available sampling algorithms that
produce a quasi-uniform distribution of base points. In this paper, we shall use a Latin
hypercube sampling [52, 53]. The basic idea of this method is to divide the range of each
parameter into N intervals of equal size, which creates N” bins in the region of interest. Next, we
select N samples so that (i) each sample is randomly placed inside a bin, and (ii) for all one-
dimensional projections of the N samples and bins, there will be one and only one sample in
each bin [52]. Numerous improvements of this basic technique have been reported in the
literature [53-56] that lead to more uniform distribution of samples. Here, we use a version
described in [53]. Figure 4 shows an example of allocating 15 samples within a two-dimensional
region of interest.

An attractive aspect of a Latin hypercube sampling technique is that it allows any number of
base points, regardless of n. Thus, it is more suitable for modeling problems that involve a larger
number of variables.

4.2. Lower-dimensional modeling problem

Consider a second-order capacitively coupled dual-behavior resonator (CCDBR) microstrip
filter [57] shown in Figure 5. The design parameters are x = [L; L, Ls]"; the value of S is fixed
and equal to 0.05 mm. The fine model Ry is simulated in FEKO [58]. The coarse model R, is the
circuit model implemented in Agilent ADS [59] and shown in Figure 6. The response vector
consists of reflection coefficient |S,;| in the frequency range 2—6 GHz. The reference point is
x" =1[3.448 4.803 1.036]" mm, and the region size = 0.1 - x. The reference point corresponds, in
fact, to the optimal fine model design with respect to the following specifications:
[S>1(w)|<—20dB for 2.0 GHz<w<3.2GHz, |S5|>-3dB for 3.8 GHz<w<4.2GHz, and
|S51]<-20dB for 4.8 GHz<®w<6.0 GHz.

We perform experiments using the following surrogate models: SM-Standard, SM-Fuzzy,
SM-SVR. For comparison purposes we also consider models that directly approximate fine
model data, in particular, models based on fuzzy systems (Fuzzy) and SVR. Table I shows
details of the base sets used in our experiments. The base sets have growing numbers of points

Figure 4. Latin hypercube sampling example for n =2 and N = 15.
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e §
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N

Figure 5. CCDBR filter: physical structure [57].
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Figure 6. CCDBR filter: coarse model (Agilent ADS).

(and decreasing characteristic distances 1) in order to examine the dependence of the modeling
error on the amount of fine model data used to create the model.

Accuracy was tested using 50 test points randomly distributed in the region of interest. The
error measure used was the /, norm of the difference between the fine model response and the
corresponding surrogate model response.

Table II shows numerical results (error statistics) for the models with the various base sets
considered. Figure 7 shows the dependence of average modeling error on the number of base
points for all considered surrogate models. Figure 8 shows the error plots (the modulus of the
difference between the fine model and the corresponding surrogate model response versus
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Table I. Base set data for CCDBR filter modeling example.

Base set Base set description Number of base points A

XBi1 Uniform mesh of density 1 8 0.310
Xg2 Uniform mesh of density 2 27 0.206
Xp3 Uniform mesh of density 3 64 0.155
XBa Uniform mesh of density 4 125 0.124
XBs Uniform mesh of density 5 216 0.103

Table II. Modeling results for test CCDBR filter.

Model Base set Average error Maximum error Standard deviation
SM-Standard X1 0.0981 0.1489 0.0174
SM-Fuzzy 0.0659 0.1137 0.0181
SM-SVR 0.0866 0.1386 0.0198
Fuzzy 0.4125 0.6043 0.1149
SVR 0.4107 0.6543 0.1114
SM-Standard X2 0.0926 0.1362 0.0171
SM-Fuzzy 0.0336 0.0708 0.0118
SM-SVR 0.0356 0.0741 0.0117
Fuzzy 0.1496 0.2497 0.0534
SVR 0.1481 0.2420 0.0432
SM-Standard X3 0.0898 0.1308 0.0165
SM-Fuzzy 0.0242 0.0636 0.0107
SM-SVR 0.0225 0.0633 0.0099
Fuzzy 0.0778 0.1466 0.0250
SVR 0.0936 0.2084 0.0432
SM-Standard Xp4 0.0888 0.1304 0.0162
SM-Fuzzy 0.0211 0.0664 0.0127
SM-SVR 0.0245 0.0676 0.0148
Fuzzy 0.0506 0.0970 0.0195
SVR 0.0612 0.1725 0.0376
SM-Standard XBs 0.0887 0.1306 0.0164
SM-Fuzzy 0.0144 0.0473 0.0105
SM-SVR 0.0148 0.0486 0.0100
Fuzzy 0.0333 0.0598 0.0124
SVR 0.0485 0.1320 0.0286

Verification For 50 random test points.

frequency) for two base sets: Xp, and Xps. Finally, Figure 9 shows actual fine and surrogate model
responses at two selected test points for the models obtained with base set Xp,. More specifically,
we show a test point representing the average modeling performance as well as a worst-case.
The results show that, as expected [25], the performance of the SM-Standard model is
virtually independent of the number of base points. The performance of the SM-Fuzzy and SM-
SVR models is almost the same, and better than for SM-Standard model for all base sets
considered. Modeling accuracy improves with growing number of base points. We can observe
the same pattern for function approximation surrogate models Fuzzy and SVR. However, both
the Fuzzy and SVR models are substantially worse than SM-Fuzzy and SM-SVR and one
can estimate by extrapolation that the performance of all these models might be the same
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Figure 7. Average modeling error versus number of base points.

for a number of base points equal at least 10° or 10, which is rather impractical. Note also that
the Fuzzy and SVR models are not better than SM-Standard until the number of base points is
at least 10°. Figure 9 shows that function approximation surrogate models are rather poor in
modeling the filter response in the pass-band, which is the most important part of the frequency
spectrum.

If the number of base points is severely limited, SM-Standard is probably the best choice
because of its simplicity and performance comparable with more involved models using a
function approximation layer.

For all other cases, where the number of base points is a few dozen or more, the best choice is
either SM-Fuzzy or SM-SVR.

4.3. Higher-dimensional modeling problem

Consider the 3rd-order Chebyshev band-pass filter [60] shown in Figure 10. The design
parameters are X =[L; L, S; S» W, W>]" mm. The fine model Ry is simulated in Sonnet em [61]
with a fine grid of 0.2 mm x 0.02 mm. The coarse model R, is the circuit model implemented in
Agilent ADS [59] (Figure 11). The response vector consists of reflection coefficient |S,;| in the
frequency range 1-3 GHz. The reference point is X’ =[15150.40.80.40.4]" mm, and the region
size $=[220.10.20.10.1]" mm.

As for the previous example, we perform experiments using the space-mapping models SM-
Standard, SM-Fuzzy, SM-SVR, and the two function approximation models: Fuzzy and SVR.
Table III shows details of the base sets used in our experiments.

Accuracy was tested using 50 test points randomly distributed in the region of interest. The
error measure used was the , norm of the difference between the fine model response and the
corresponding surrogate model response.

Table IV shows numerical results (error statistics) for the models with the various base sets
considered. Figure 12 shows the dependence of average modeling error on the number of base
points for all considered surrogate models. Figure 13 shows the error plots (the modulus of the
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Figure 8. Error plots for the base set Xp, and X5 for SM-Standard (a, b), SM-Fuzzy (c, d), SM-SVR
(e, 1), Fuzzy (g, h), and SVR (i, j); 50 random test points used in each case.
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Figure 9. Fine model (solid line) and surrogate model (circles) responses at a typical and a worst-case test point

for SM-Standard (a, b), SM-Fuzzy (c, d), SM-SVR (e, f), Fuzzy (g, h), and SVR (i, j), for the base set Xp,.
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Figure 10. Third-order Chebyshev band-pass filter: physical structure [60].
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Figure 11. Third-order Chebyshev band-pass filter: coarse model (Agilent ADS).

Table I11. Base set data for Chebyshev filter modeling example.

Base set Base set description Number of base points A

XB1 Latin hypercube sampling 15 0.96
Xp2 Latin hypercube sampling 60 0.76
XB3 Latin hypercube sampling 200 0.62

difference between the fine model and the corresponding surrogate model response versus
frequency) for two base sets: Xp; and Xp3. Finally, Figure 14 shows actual fine and surrogate
model responses at two test points (for the models obtained with the base set Xp3): a test point
representing the average modeling performance as well as a test point representing the worst-
case (largest modeling error).

As in the previous example, the performance of the SM-Standard model is virtually
independent of the number of base points. The performance of SM-Fuzzy and SM-SVR models
is better than for the SM-Standard model for all base sets considered except Xg;, and modeling
accuracy improves with growing the number of base points. It should be emphasized that the
good accuracy of SM-Fuzzy and SM-SVR model is a result of combining the respective function
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Table IV. Modeling results for test Chebyshev filter.

Model Base set Average error Maximum error Standard deviation
SM-Standard Xpi 0.2083 0.4718 0.074
SM-Fuzzy 0.2172 0.3957 0.071
SM-SVR 0.2021 0.4695 0.065
Fuzzy 1.2306 29121 0.705
SVR 0.6561 0.9697 0.146
SM-Standard Xpo 0.2018 0.4681 0.073
SM-Fuzzy 0.1879 0.3370 0.065
SM-SVR 0.1603 0.3794 0.066
Fuzzy 0.8349 2.3477 0.345
SVR 0.3515 0.8901 0.127
SM-Standard XB3 0.1985 0.4190 0.072
SM-Fuzzy 0.1740 0.3281 0.065
SM-SVR 0.1086 0.2893 0.044
Fuzzy 0.8319 0.2809 0.588
SVR 0.2170 0.4473 0.075

Verification for 50 random test points.

| —e— SM-Standard
3 —%— SM-Fuzzy
i| —— SM-SVR

100 f

Average Modeling Error

Number of Base Points

Figure 12. Average modeling error versus number of base points.

approximation techniques with space mapping: performance of the function approximators
(both Fuzzy and SVR) acting as stand-alone models is rather poor. In general, it is expected that
any kind of universal function approximation method will enhance performance of the standard
space-mapping model (see, e.g. [26] where the combination of SM with radial basis function
interpolation is described).

Note also that SM-SVR substantially outperforms SM-Fuzzy. The improvement of modeling
accuracy for SM-Fuzzy is very slow with the growth of the number of base points. The reason is
that for this example, we cannot afford a uniform-grid-like base set and we use a Latin
hypercube sampling. While it does not change the performance of the SM-SVR model (as well
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(e, ), Fuzzy (g, h), and SVR (i, j); 50 random test points used in each case.
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Figure 14. Fine model (solid line) and surrogate model (circles) responses at a typical and a worst-case test
point for SM-Standard (a, b), SM-Fuzzy (c, d), SM-SVR (e, ), Fuzzy (g, h), and SVR (4, j), for the base set Xp3.
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as the SVR model), it seriously affects the SM-Fuzzy model (as well as the Fuzzy model),
because fuzzy systems require, for best performance that the base points are located at maxima
of the membership functions (here, we use triangle functions). Also, given a division of the
design space into fuzzy regions, it may happen that a given region has no corresponding fuzzy
rule (because of the lack of a data point in the region). This is especially visible for the Fuzzy
model where it may happen that it gives zero response for certain values of the design variable
vector (see Figure 14(h)). We can also observe that the accuracy of function approximation
models is much worse than the accuracy of the space-mapping models and we would need at
least 10 or 10* base points in order to obtain comparable accuracy of both types of models.

Similarly as in the previous example, the SM-Standard model is probably the best choice if
the number of base points is limited.

If more fine model data is available, we recommend the SM-SVR model but not the SM-
Fuzzy model for the reasons mentioned before.

We should also mention that the SM-SVR model has another advantage with respect to the
SM-Fuzzy model, which is that the accuracy of the SM-SVR model can be assessed using a
cross-validation method so that no ‘external’ test points are necessary [14]. This cannot be done
for the SM-Fuzzy model because of the fact that the fuzzy rules are strictly localized to the
neighborhood of the respective base points, which makes a cross-validation of this kind of
model unreliable.

5. CONCLUSION

A review of recent advances in space-mapping modeling of microwave devices is presented.
A detailed comparison of space-mapping models enhanced by a function approximation
layer involving fuzzy systems and SVR is given. Both techniques substantially improve the
modeling accuracy when compared with standard space mapping. The observed improvement is
a result of combining the respective approximation techniques with space mapping, which is
confirmed by a poor performance of both fuzzy systems and SVR acting as stand-alone
surrogate models.

It is shown that the performance of the space-mapping model exploiting fuzzy systems is
heavily dependent on the structure of the base set used to establish a surrogate model, which is
not the case for the model using SVR as a function approximation layer. Therefore, both models
are equally good for lower-dimensional problems where the uniform-grid-line base set can be
utilized, however, the space-mapping model enhanced by SVR is preferred for higher-
dimensional problems where other design-of-experiment techniques, such as Latin hypercube
sampling, must be utilized to select base points.

In any case, a standard space-mapping model is probably the best choice if the amount of fine
model data available to set up the surrogate model is severely limited.
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