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Abstract—We propose a procedure for accelerating the space
mapping optimization process. Exploiting both fine- and surro-
gate-model sensitivity information, a good mapping between the
two model spaces is efficiently obtained. This results in a signifi-
cant speed-up over direct gradient-based optimization of the orig-
inal fine model and enhanced performance compared with other
space mapping approaches. Our approach utilizes commercially
available software with adjoint sensitivity analysis capabilities. It
is illustrated through an example.

Index Terms—Adjoint sensitivity analysis, aggressive space map-
ping (ASM), engineering optimization, implicit space mapping.

I. INTRODUCTION

PACE mapping (SM) optimization aims at shifting the
S optimization burden from an expensive “fine” (or high-fi-
delity) model to a cheap “coarse” (or low-fidelity) model by
iteratively optimizing and updating a surrogate. Utilizing a
mapping between the parameter spaces of the coarse and fine
models, the optimization iterates are guided in the fine-model
space by very few fine-model simulations. In the field of
microwave circuit design, SM usually exploits full-wave elec-
tromagnetic (EM) solvers as fine models while circuit-based
CAD tools are utilized as coarse models [1].

Several SM algorithms have been proposed since its incep-
tion in 1994 [1]. Aggressive SM (ASM) [2] exploits a quasi-
Newton iteration with the classical Broyden formula [3] to es-
timate the mapping. Implicit space mapping (ISM) [2] exploits
preassigned parameters of the fine model. In ISM, an auxiliary
set of parameters (e.g., dielectric constant of a substrate) is used
to match the coarse model to the fine model. The coarse model is
then calibrated by these parameters and re-optimized to predict
a better fine-model design. Output SM (OSM) [2] introduces a
transformation of the coarse-model response. OSM is usually
used in the final stage when combined with other SM methods.

The theory of adjoint sensitivity analysis has been extended to
electromagnetic solvers (e.g., see [4]). Using at most one extra
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EM simulation, we obtain the gradient of the fine-model re-
sponse with respect to all design parameters regardless of their
number. Adjoint sensitivity analysis can be implemented with
various full-wave solvers. The self-adjoint sensitivity analysis
(SASA) has the advantage of eliminating the extra adjoint EM
simulation, resulting in negligible overhead compared to the
full-wave simulation itself. It is applicable to network responses
such as S-parameters [4].

In this letter, we propose an algorithm for enhancing SM op-
timization. Using the self-adjoint sensitivities supplied by the
EM solver and the cheap response sensitivities of the surrogate
model, a mapping between the fine and coarse parameter spaces
is accurately estimated. Results show that using available sen-
sitivities dramatically decreases the number of iterations and,
hence, the number of fine model evaluations.

II. BACKGROUND

The SM algorithm [2] aims at establishing a mapping be-
tween the design parameters of the coarse and fine models

z.=Bzs+e ey
such that
|R:(z.) — Ry(zy)| <e. 2)

Here x. and 5 are the coarse- and fine-model design (or input)
parameters, respectively, and R. and R are their corresponding
responses. € is a sufficiently small number. Once the linear input
mapping parameters (B) are known, an approximation of the
fine-model optimal design can be obtained from

zt = BY%; + ¢ 3)

where z} is the optimal coarse-model solution, B is the ith
iteration linear mapping matrix, Z ; is an estimate of the optimal
fine model, and ¢ is the corresponding shift vector.

The original SM differs in the way B is estimated. In [1],
two sets of points in the fine- and coarse-model parameter space
are used to estimate the mapping parameters. This approach re-
quires an overhead of expensive fine-model simulations. In the
ASM algorithm, B is updated using the classical Broyden for-
mula. An initial guess is usually the identity matrix. If the two
models are significantly misaligned, the algorithm may fail to
give a good result. A trust region methodology integrated with
ASM limits the step taken in every iteration to guarantee the
convergence of the algorithm [2]. In ISM the mapping is estab-
lished inside the surrogate model.
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Fig. 1. Eight-section H-plane filter: (a) the fine model in HFSS witha = 1.372
inch and b = 0.622 inch; (b) the coarse model in Agilent ADS.
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Fig. 2. Responses obtained during the optimization processes. The horizontal
purple lines show the specifications.

III. SM EXPLOITING JACOBIAN INFORMATION
AND PREASSIGNED PARAMETERS

Based on the concept of ISM [2], at iteration z = 1, 2,. . ., the
surrogate model response can be defined as

R (z.) = R. (2..p") )

where

e L I )
p is a vector of preassigned parameters which are different from
the optimizable parameters .. These parameters are optimized
to ensure a better match between the fine and surrogate model
responses. . @ s the optimum surrogate response using
p'“~1. The main drawback of this approach is the requirement
of enough preassigned parameters to match the fine and sur-
rogate model responses at each iteration which are not always
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TABLE 1
DESIGN PARAMETER VALUES DURING THE OPTIMIZATION
PROCESSES, ALL VALUES ARE IN INCH
*O X OD) X0 X X X
w, 0.5 0.57433 0.56723 0.53318  0.56278  0.53139
W, 0.5 0.55880 0.56199 0.52337  0.56216  0.52243
W, 0.5 0.54539 0.54984 0.50497  0.55107  0.50487
W, 0.5 0.53965 0.54463 0.49759  0.54612  0.49720
Wy 0.5 0.53804 0.54317 0.49663  0.54505  0.49562
L 0.7 0.59479 0.69760 0.69200  0.75096  0.69930
L, 0.7 0.63638 0.63286 0.63552  0.63490  0.63059
Ly 0.7 0.65139 0.65159 0.65101  0.65491  0.65051
L, 0.7 0.65729 065833 0.65992  0.66130  0.65749

available. Here we have a different approach both in using
preassigned parameters and exploiting surrogate sensitivities.
In this approach, by using Jacobian information, we establish
a mapping between the input of the surrogate and fine models
and we use preassigned parameters to match the responses of
the surrogate and fine models.
Contrary to (5) our parameter extraction (PE) process is per-
formed via
(xﬁi),p(i)) = arg min HRf (z‘f)) - Rc(z‘c,p)H (6)
z..p
where zgf) and Ry (zy)) are the ith fine-model solution and fine
model response, respectively. The initial point for performing
(6) is (.'1::(171)7 pli=1). Using (6) allows more degrees of
freedom for matching the responses in comparison with ISM.
Based on [2], the Jacobians of the surrogate and fine model
responses at two corresponding points in the ith iteration are
related by

J, (a:ﬁ“) B = g, (xf)) . %
The Jacobian of the fine-model response is estimated using
SASA. If not available, the Jacobian of the surrogate-model
response is obtained through finite differences (FD). The latter
computation is fast because the coarse model is much faster
than the fine model. The linear input mapping matrix is obtained
by solving (7) as

‘ T A\ N\ T ;
B =~ (Js (:Egb)) J. (.’l:ﬁ”)) J (xgz)) Jy (ng)) (8)

where J (mg)) is the Jacobian of the surrogate model. Then we

re-optimize the new surrogate model to find

2 = argmin U (Rgi)(m)) ©)

where U is the given objective function. Finally, the fine-model
solution is updated as

S0~ B0 (a0 o) 12 (10

If we denote the simulation response accuracy by ¢ ¢, the ter-
mination criterion for optimization is determined as

I (s) - () <o
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TABLE II
PREASSIGNED PARAMETER VALUES, ALL VALUES ARE IN INCH

a b
p(O) 1.3720 0.6220
p(l) 1.3526  0.6778
p(2) 1.3333  0.7003
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Fig. 3. Comparison of proposed algorithm with other SM algorithms.
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Fig. 4. Comparison of direct gradient optimization starting from different
points with the proposed space mapping algorithm. One iteration corresponds
to one fine model evaluation.

where || -|| oo s the infinite norm operator. One can terminate the
program if Ry (z (LH)) satisfies the specifications but this may
prevent the optlmlzer from reaching the best possible solution.
The proposed algorithm can be summarized as follows
Step 0: Obtain z:*) through (9) starting from 2., p(®).
Step 1: Set i = 1 set z‘;f) = 2:?), obtain Ry (:ESF )

and obtain J f( ) simultaneously using SASA.

Step 2: Find :t< ) and p¥) using (6).

Step 3: If not avallable obtain J (:cg )) through FD.

Step 4: Calculate B® using (8).

Step 5: Obtain .jl;‘c( 2 through (9).

Step 6: Find =\ *") using (10), set i = i + 1.

Step 7: Obtain Ry(z'/)), and obtain J ¢ (z') using SASA.
Step 8: If (11) is true, go to Step 9; else go to Step 2.

Step 9: Terminate.
IV. EXAMPLE

Here, we consider an eight-section H-plane filter, an extended
version of a design presented in [5]. The design specifications
are

|S11] <0.16 5.0 GHz < w < 9.4 GHz
Sll Z 0.85 w S 4.9 GHz

|

S11] > 0.5 w > 9.8 GHz.

|

The fine model is an EM model simulated using Ansoft HFSS
ver. 13 on an X5670 3 GHz workstation with 48 GB of RAM.
The simulation accuracy (Maximum Delta S) is set to 0.002
at 5.0 GHz with 50% mesh refinement and a magnetic wall is
used (because of symmetry) to reduce the simulation time. The
average simulation time is 240 min. As shown in Fig. 1, the
coarse model is constructed by waveguide sections and induc-
tances to model the septa. The @ and b in Fig. 1 are the width
and the height of the waveguide which are used as preassigned
parameters. The values of the inductances are found from a sim-
plified formula [6]. This coarse model is simulated using the
model solver Agilent ADS. We used the MATLAB optimization
toolbox for parameter extraction (using fminsearch), direct op-
timization and re-optimizing the surrogate model (using fmin-
imax) (see Fig. 2).

The initial design parameters ( ) as well as the fine- and
surrogate-model parameters obtalned during the optimization
processes and preassigned parameters are shown, respectively,
in Tables I and II. Fig. 3 shows that our enhanced SM algo-
rithm converges in fewer fine-model simulations than required
by the other SM algorithms [2]. Direct optimization needs 19
fine-model evaluations to converge even though it uses SASA
and starts from the optimum coarse model which is the best
possible starting point. Fig. 4 shows a comparison of the new
algorithm with direct optimization using SASA starting from
different starting points.

V. CONCLUSION

We propose an algorithm for the integration of sensitivity
analysis with SM optimization. It is shown through an example
that the number of fine-model evaluations is reduced compared
to direct optimization, even when using Jacobian information in
the direct optimization process and starting from the optimum
coarse model solution. The proposed algorithm also converges
in fewer fine model evaluations than other space mapping
methodologies. The availability of parallel processing make
the combination of space mapping and direct optimization
more interesting as direct optimization can be performed by
starting from different points obtained from space mapping
optimization independently.
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