TECHNICAL NOTES AND CORRESPONDENCE

5) Every polynomial function P(4) of a matrix 4 in @ is itself a
member of that same group. In particular, this is true of the ex-
ponential matrix exp (4). Moreover, if

N-1
exp (4) = Z ;K¢ (6)
i=0
then
oy = exp (ao).
6) The determinant of 4 in G is given by
(4] = a®. (7N
A matrix A in G has N identical characteristic values

MA)=ay i=1-+,N. (8)

7) All the preceding properties observed with respect to lower
triangular matrices of the form (2) are equally valid when the matrix
K is consistently replaced everywhere by its transpose K7. In other
words, there exists another similar (but different) group @, of upper
triangular matrices with precisely the same properties.

UsEes

The preceding properties listed are useful in two ways.

1) A matrix M & G can be completely specified by a set of N
numbers, m;, ¢ = 0,1,..., N — 1. All the information contained in
M is condensed in its first column. Thus matrix inversion as well
as the evaluation of the transition matrix exp (4t) can be reduced
to the determination of a single first column of the inverse or of the
transition matrix.

2) In time-varying systems with 4 = A(¢) € @ for all ¢, there is
no difficulty in attaining an analytical solution. This is true by vir-
tue of the commutativity property 2). It is indeed well known
[2, p. 363] that when A(#4) A(lz) = A(t:) A(#) for all ¢y, &z, then the
state transition matrix is given by

£
&(t, 7) = exp {f AQ) dh}. 9)

CONCLUSIONS

Matrices of the special triangular form (2) have some simple
properties. These can be exploited in the simulation and eontrol of
processing plants such as chemical reactors that are structured as a
train or sequence of similar processing steps with no recycle or other
feedback paths. This is particularly useful in view of the time-
varying situation often encountered in such plants.
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Conditions for Minimax Approximation Obtained from
the 7, Norm

J. W. BANDLER anp C. CHARALAMBOUS

Abstract—It is shown how the conditions for an optimal apf)rox-
imation in the minimax sense for general nonlinear functions can
be obtained from the [, norm. Applications in the optimal design of
networks and systems are envisaged.
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Bandler [1] has recently derived necessary conditions for an
optimal approximation in the minimax sense for general nonlinear
approximating functions such as are encountered in network and
system optimization problems. They were derived from the Kuhn-
Tucker relations. It is well known that least pth approximation
with a sufficiently large value of p can result in a solution very close
to the minimax solution [2]-{4]. It is the purpose of this corre-
spondence to show that necessary conditions for a minimax optimum
can be fairly easily derived from the I, norm. A note on sufficiency is
included.

Consider an objective function of the form

U) = {Xla(@)z}v?, p>1 o))
L)

where e:(), in general, represents a weighted error or deviation be-
tween a complex specified function (desired response) and a complex
approximating funetion (actual response) at some sample point ¢
of a finite set I, and ¢ represents the k variable parameters. U(d)
is the norm |[e]|,. Minimization of U(¢) is called least pth approx-
imation.

Theorem 1: At the optimum point &m for a minimax approximation
problem

H(Pu)Vei(do
ZuiRe{e, (@)Veildal] _
& le:(®a)]
Sus=1 w20, i€J
icJ
where
r a |
A1
2
va |9 @)
A
Lar

and where it is assumed that e;(¢) is continuous with continuous
partial derivatives for all 7, at least in the feasible region of ¢. The
asterisk denotes complex conjugate. Note that

max |ex(¢)] = lim {3 [e:()[?} 7,
p—rm

7

t &7 (3)

and
J & {i]|e:(de)| = max |ei(ds)], 7 € I} )

that is, J is the finite (nonempty) set of indices corresponding to
the equal maxima of |ei(de)].
Proof: Differentiating (1), for p > 1 and U(d) > 0,

VU($) = [l |e:(d)|72 Re {e:*(@)Vesld)}.  (5)
el

The necessary conditions for an optimum of U(¢) are that
VU(s) = 0 6

where Ef)p denotes the optimum parameter vector for particular
values of p. Therefore, assuming e;(d,) # 0,

; @)l Refer@nVeldn)l _ o
let@nll-2 focg 1 les()]? -
Let
. Iei((‘f)p)l }p
i [ @l )7 (8)
Ui p—)w{“e((bi’)”p
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Then, it is clear that

""{ > gi ies ®
and, from the definition of ||e]|,,
Dui = 1. (10)
s
Therefore, (7) can be written, for p — o,
Z“‘Re {o* (§e)Veilda)} _ 0 (11)

= les(deo)|

whereit is noted that the |e¢((‘}'>q,)| for i € J are allequal to [ [e(ém)| |w.

Theorem 2: If the relations in Theorem 1 are satisfied at a point
& and the [e:()| for ¢ € I are convex, then §. is optimal.

If the appropriate |ei(¢)| are convex, then it is relatively straight-
forward to prove that ||e(d)||, is convex for p > 1, so0 that §, locates
a minimum.

It is felt that the ideas discussed here could lead to a better
understanding of the relationship between least pth and minimax
approximations for network and system design problems. Note that
no assumptions concerning the number of equal maxima of |e.-((f)=,)‘
compared with the number of parameters has been made. Further_
more, (8) relating u: to |e;($e)| is not immediately obvious from ap
application of the Kuhn-Tucker relations [1].
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Iterative Solution of the Riccati Equation
KAREL VIT

Absfract—A new convergence proof of an iterative method for the
steady solution of the Riccati equation is presented and its geo-
metric nature and close resemblance to the Newton method are
emphasized. Uniqueness, rate of convergence and initialization of
the iterative process are discussed.

Following the paper by Kleinman [1], the process of computing the
steady solution of the Riccati equation reduces to one of allocating
the positive definite solution, if it exists, among all symmetric K
satisfying the system of nonlinear algebraic equations

0 =KA+ ATK + (7C - KANK (1)

where N = BR-1BT. We assume that R is positive definite, (4, B)
and (A4, C) being completely controllable and observable pairs,
respectively, A being a stable matrix. All matrices are real, square,
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Fig. 1.

Scalar case.

and of equal order. Under these conditions the positive definite
solution K > 0 of (1) is known to exist and to be unique.

In order to avoid the use of a concept of a cost matrix and of
matrix exponentials in the time domain as in [1], we introduce two
symmetric operators mapping the space of all real symmetric matrices
into and onto itself respectively. These are

R(V) = —ATV — VA + VNV — CTC @)
5p(V) = (NF — ATV + V(NF — A) — FNF — C'C  (3)

where F is a symmetric matrix. The solution of (1) is clearly equiv-
alent to the solution of ®(K) = 0. 3r is easily shown to be a support
of & at F. In such a way a simple and interesting geometric interpre-
tation of (2) and (3) is introduced with its strong analogy to a scalar
case in which J becomes a tangent to ®&. The solution of a nonlinear
system ®(-) = 0 is replaced by a sequence of linear problems
3(-) = 0 which are much easier to solve numerically.

For an easier understanding of the iterative proecess to be derived,
a graphical interpretation of a scalar case presented in Fig. 1 may be
referred to. The Lyapunov theorem will be used throughout without
being explicitly mentioned.

Lemma 1: Let Y be a symmetric matrix such that A — NY and
NY — A have no eigenvalues in common and let ¥ be the solution of
3¢(V) = 0. Then &(V) > 0. If for the above condition also V > 0,
then A — NV is a stable matrix.

Proof: Due to the assumption, the solution of 3y(V) = 0 exists
and is unique. Use of (2) and (3) together with Jx(V) = 0 gives

RV)=(¥ —-V)NY -V)=0. (4)
Directly from the definition (2)
R(V) = (NV — ATV + V(NV — A) — VNV — CTC. (5)
From (4) and (5) one obtains
(A — NV)TV + V(4 — NV)
= —(Y - MNY — V)= VNV - CTC (6)
and the assumption ¥ > 0 implies the stability of A — X V.

Lemma 2: Let {Vi}, ¢ = 0,1,2 ---, be a sequence of symmetric
matrices generated by Jvi(Vin) = 0, Vo = 0. Then Vi < V5,
i=1,2, ---,and"V; > Oforeach V;: € {Vi}.

Proof: Let us proceed by induction. For 7 = 0 we have V', = 0
and (3) reduces to ATV, + V, A = —CTC. Since V; > 0 the matrix
A — NViisstable by Lemma 1. Assume now V; to be the solution

of 3p;1(V;) = 0and A — NV; to be stable. Then Vi, > 0 is the
solution of

(A = NV)TVip + Viu(d — NVy) = —V. NV, — CTC (T)

and, by Lemma 1, A — NV, is a stable matrix. In order to show
that {Vi} is decreasing we introduce D; = Vi — Vi, From (2)
and (3) follows



