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5) Every polynomial function P ( A )  of a matrix A in G is itself a 
member of that same group. I n  particular, this is true of the ex- 
ponential matrix exp ( A ) .  Moreover, if 

t.hen 

= exp (a,,). 

6) The  determinant of A in G is given by 

]AI = w". (7) 

A matrix A in G has N identical  characteristic  values 

Bandler [l] has recent,ly derived necessary condit,ions for an 
optimal  approximation in  the minimax sense for general  nonlinear 
approximating  functions  such as  are encountered in network and 
system  optimization problems. They were derived  from the  Kuhn- 
Tucker relations. It is well known t.hat least pth approximation 
with a sufficiently large value of p can result. in a solution very close 
to the minimax solut.ion [2]-141. It is the purpose of this corre- 
spondence to show that necessary condit.ions for  a minimax optimum 
can be fairly easily derived  from t.he Z, norm. A note on sufficiency is 
included. 

Consider an object.ive funct,ion of t.he form 

hi(A) = Q,,, i = 1, . - . , N. (8) where ei(+) ,  in general, represents a weighted error or deviation be- 
tween a complex specified function (desired response) and a complex 

7) All the preceding  properties observed with respect to lower approximating  function (act,ual response) at some sample point i 
triangular matrica of the form (2) are equally  valid when the matrix of a finite set, I, and + represents t,he k variable  parameters. U(+) 
K is consistent.ly replaced everywhere by  its transpose KT. In  other is the norm l ~ e ~ ~ p .  Minimization of U ( @ )  is called least pth approx- 
words, there exists another similar (but  different) group G, of upper imation. 
triangular matrices with precisely the  same properties. Theorem 1: At the opt.imum point & for a minimax approximation 

uroblem 
USES 

The preceding properties  listed are useful in t.wo ways. 
1) A matrix M E G can be completely specified by a set of N 

numbers, m ,  i = 0, 1, . . . , N - 1. All the information  contained in 
. M is condensed in  its first column. Thus  matrix inversion as well 

as  the evaluation of the transition matrix exp (At )  can be reduced 
to  the  determination of a single first column of t,he  inverse or of the where 
transition  matrix. 

2 )  In time-varying systems wit,h A = A ( t )  E G for all t, t,here is 
no difficulty in attaining  an  analytical solution. This is true  by vir- 
tue of the  commutativity  property 2 ) .  It is indeed well known 
[2,  p. 3631 t.hat when A&) A(t2) = A(h)  A&) for all tl ,  &, then  the 
state  transition matrix is given by 
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Then,  it is clear that 

i g J  
2 0 ,  i E J  

and, from the definition of Ilellp, 

CW = 1. 
CJ 

Therefore, (7) can be written, for p - m ,  

whereit. is not.ed t.hat t.he lei(&,)\ for i E J are  allequal t.0 I le(&,)l la. 
Theorem I: If the relations  in  Theorem 1 ?re satisfied at.  a point. 
irn and  the lei(+)( for i E I are convex, then I#I= is opt.imal. 

If t,he appropriate lei(+)\ are convex, then  it is relatively  straight- 
forward to prove that, I le(+)l I n  is convex for p 2 1, so that hp locates 
a minimum. 

I t  is felt that t.he ideas discussed here could lead to a bet.ter 
understanding of t.he relationship between least pth  and minimax 
approximations for net.work and system design problems. Piote khat. 
no assumptions concerning the number of equal maxima of le;(+,)l 
compared with  the number of paranlet.ers  has been made. Further- 
more, (8) relating ui t.o le;(&,)l is not immediat,ely obvioua from an 
applicat.ion of the Kuhn-Tucker  relations [I]. 
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Iterative  Solution of the Riccati Equation 

KAREL  VIT 

Abstract- 1 new convergence proof of an  iterative method for  the 
steady solution of the Riccati equation is presented  and  its geo- 
metric nature and close  resemblance to the Newton method are 
emphasized. Uniqueness, rate of convergence and initialization of 
the iterative  process are discussed. 

Following the paper by Kleinman [I], t.he process of computing the 
steady solut.ion of t.he Kiccati  equation reduces to one of allocating 
the posit.ive definite solution, if it. exists,  among all symmet.ric K 
satisfying t.he syst.enl of nonlinear algebraic  equations 

0 = KA + ATK + P C  - K S K  (1 1 
where X = BR-lBT. We assume that R is positive definite, ( A ,  B )  
and (A,  C) being completely cont.rollable and observable  pairs, 
respect.ively, A being a stable matrix. X11 matrices are real, square, 

R3- ’ 

Fig. 1. Scalar case. 

and of equal order.  Under  these conditions the positive definite 
solution K > 0 of (1) is known to exist and  to be unique. 

In order to avoid the use of a concept of a cost, mat,rix and of 
matrix exponentials in t,he t,ime domain as in [ 11, we introduce tn-o 
symmetric operat,ors mapping the space of all real symmetric  matrices 
into  and  onto itself respectively. These are 

a(V) -ATV - p7A + T’:\;J,‘ - CrC (2) 

SF(T’) = (l\’F - A)TT.‘ + T’(:vF - A )  - P S F  - CTC ( 3 )  

where F is a  symmetric matrix.  The solution of (1) is clearly equiv- 
alent  to  the solution of R ( K )  = 0. SF is easily shown  t.0 be a  support, 
of a a t  F.  In such  a way a simple and int.eresting geometric int,erpre- 
tat.ion of (2) and (3) is int.roduced with  its  strong analogy to a scalar 
case in which 5 becomes a  tangent. to a. The solution of a nonlinear 
syst.em a(. ) = 0 is replaced by a sequence of linear problems 
a ( .  ) = 0 n-hich are much easier to solve numerically. 

For  an easier understanding of t.he it,erative proces  to be derived, 
a graphical interpretation of a scalar case presented in Fig. 1 may  be 
referred to. The  Lyapunov t.heorenl will be used throughout wiithout, 
being explicitly mentioned. 

Lemma 1: Let Y be a symmet.ric matrix  such that A - S I ‘  and 
.jrY - A have no eigenvalues in common and let V be the solution of 
5 y ( V )  = 0. Then @(I7) 2 0. If for the above condition also V > 0, 
then A - XV is a stable matrix. 

Proof: Due to the assumption, the solut,ion of S y ( V )  = 0 exists 
and is unique. Use of (2) and ( 3 )  together wit,h 3t-(I’) = 0 gives 

m(v) = (Y  - V ) X ( Y  - V )  L 0. (4) 

Directly from t.he definition (2) 

R(V) = (WV - A)TV + V(XV - A )  - VA\T - CTC. ( 5 )  

From (4) and ( 5 )  one obtains 

(A - X V ) V  + V ( A  - 2h-V) 

= - (Y  - V)-V(Y - V) - V S T . ’  - C’C (6) 

and  the assumption V > 0 implies t,he stabilit,y of A - S T ’ .  
Lemma 2: Let, {I,’;), i = 0, 1, 2 . . . , be a sequence of symmetric 

matrices  generated by jri(Vi+l) = 0, 1’0 = 0. Then V;+I 5 V;, 
i = 1, 2, . . . , and.V; > 0 for each V i  E { Pi) . 

Proof: Let. us proceed by induction. For i = 0 we have T’, = 0 
and (3) reduces to ATV,  + T’, A = - CTC. Since VI > 0 the matrix 
A - N V 1  is st,able by Lemma 1. Assume nos- Vi to be the solution 
of 3 r T i - l ( V i )  = 0 and A - -VV; to be stable. Then P;+l > 0 is the 
solution of 

( A  - XVi)rV;+l + Vi+l(A - S V ; )  = -J’;-h-l,’; - CTC (7) 

and, by Lemma 1, A - :W’i+1 is a st.able matrix. In order to shorn 
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