
CORRESPONDENCE 287 

that Theory of Generalized Least pth Approximation 

with 0 = -?r. This means that A is of the form 
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sin & cos 81 1 , ‘.., 
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It is easily checked that T(0) = I and T(1) = lJH= Tl. Obviously, T(x) is 
continuously dependent on x, and is nonsingular, being of the form 
U(x)H(x) for orthogonal U(x) and positive definite H(x). This proves 
the theorem and, at the same time, we have indicated how the family 
T(x) may be found. 

Remark: It follows easily from the theorem that the set of all 
minimal state realizations of a transfer function matrix falls into two 
disjoint subsets, with all members of the one subset being continuously 
equivalent. It is not possible for three or more realizations to be such 
that no pair is continuously equivalent. 

Remark: Define the matrices W0 and W1 by 

w< = [Bi A& * * . Ain-‘&], i = 0,l (8) 

where Ai is nXn. The Wi have rank n by the minimality of { Ai, Bi, Cd ). 
The matrix Tl is uniquely determined by T,W,,= WI or T,W,W, = 
WIFE,‘; see [8]. Since W,,W,,’ evidently has positive determinant, the 
condition det TI > 0 is equivalent to det W, IV,,’ >O. 

Remark: The result extends easily to the time-varying case. Let 
{A,(t), B<(f), Ci(r)] be two realizations of the same weighting function, 
related by A1 = T,(r)AoT,-‘(r)+~‘,(r)T,-l(r), B1’= T,(t)&, C,’ = C;T,-l(t); 
see [8]. It is implicitly assumed that rl(r) is differentiable and non- 
singular for all t. For fixed t, a family T(x, t), O<x< 1, exists taking A0 
to A1 if and only if det r&)>O. Also, if det r,(t) is positive for one 
particular value of t, it is positive for all t because T,(. ) is continuous 
and always nonsingular. Accordingly, the family T(x, Qexists for all t. 

There is no question that there remains a gap between the statement 
of this theorem and its use in the design problem of varying the elements 
of a network SO as to preserve the terminal behavior but achieve a more 
satisfactory internal configuration. The bridging of,the gap will un- 
doubtedly require use of the state-space approach to network synthesis; 
see [lo], for example. 
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JOHN W. BANDLER AND C. CHARALAMBOUS 

Abstract-A unitled discussion of least pth approximation as it re- 
lates to optimal computer-aided design of networks and systems is pre- 
sented. General objective functions are proposed and their properties 
discussed. The main result is that a wider variety of design problems and 
Q wider range of specifications than appear to hove been considered 
previously from the least pth point of view should now be tractable. 

INTRODUCTION 

It is well known to network and system designers that least pth 
approximation with a sufficiently large value of p can result in an 
optimal solution very close to the optimal minimax solution [l]-[4]. 
Many designers continually express their preference for least pth ap- 
proximation because of its flexibility [S]. Gradient optimization 
methods suitable for least pth approximation, such as the Fletcher- 
Powell method [6], are widely available as computer subroutines and 
are often easier to use than minimax algorithms. The results obtained 
are usually almost as good for practical purposes as the minimax solu- 
tion. 

To the authors’ knowledge, a generalization of least pth approxima- 
tion to design with upper and lower response specifications, such as 
encountered in filter design, does not appear to have received serious 
attention in the literature. Usually, least pth approximation is applied 
to the approximation of a single specified function by a network or 
system response. Minimax approximation using nonlinear program- 
ming methods, on the other hand, has been applied to more general 
problems [7], [8]. See also [2] and [3]. 

This correspondence presents a unified discussion of least pth ap- 
proximation.. General objective functions are proposed and their 
properties discussed. The usefulness of least pth approximation is 
extended to a wider variety of network and system design problims and 
a wider range of specifications than appear to have been considered 
previously from the least pth point of view. 

Definitions 
THE OBJECTIVE FUNCTIONS 

Define real error functions related to the “upper” and “lower” 
specifications, respectively, as [2] 

4% #I P w($)(F~(4+ $1 - So) 

where the symbols are 

(1) 

F(+, $) approximating function (actual response); 
Sk($) upper specified function (desired response bound); 
Sdti) lower specified function (desired response bound); 
wlsti) upper positive weighting function; 
WC&) lower positive weighting function; 
+ vector containing the k independent parameters; 
ti independent variable (e.g., frequency or time). 

In filter design problems, for example, F($, $) will be the response’ 
+ may represent the network parameters, + could be the frequency’ 
S,(+) would refer to the passband specification, and SI($) to the stop- 
band sp,ecification. F(+, $) is often continuous in + and $, but SZ($), 
S,(+), wl($), and w,(G) are most likely discontinuous in $, but with 
S,(ti)>Sl(+).’ See, for example, Figs. 1 and 2. Time-domain approxima- 
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Fig. 1. Example of a design problem for which it is generally impossible for the Fig. 2. Example of a design problem in which the response exceeds the specification 
response to exceed the specification. Case 1 is applicable. L Case 2 is applicable. 

tion problems can also be readily formulated in these terms as is well 
known. 

A special case of (1) occurs when S, := Sr = S and W, = WI = W, leading 
to the more common form 

4% ti) 4 dti)(F(+, ti) - fW)). (2) 

In practice, we will evaluate all the functions at a finite discrete set of 
values of $J taken from one or more closed intervals. Therefore, we will 
let 

edcp) A 443 h), i E 1, 

ed+) P a(+, $4, i E 12 (3) 

where it is assumed that a sufficient number of sample points have been 
chosen so that the discrete approximation problem adequately approxi- 
mates the continuous problem. Z, and Zr are appropriate index sets. 
For the special case, Z, = Z, = I. 

Case I-Specification Violated 

In the case when the specification is violated, some of the e,<(+) or 
-eli(+) are positive. For the special case mentioned earlier, we will 
generally always have some *es(g) positive. In an effort to meet the 
specification we propose the following objective function to be mini- 
mized: 

UC+) =,ET (4) 
” 
bd+)l” -t-i&, [;40)lP 

where 

J, & (i I edcb) 2 0, iEL] 

JI A {i 1 -ezi(+) 2 0, i EZ,} (5) 

and p> 1. If J,, and .ZJ are empty then VI:+) is set to zero and optimiza- 
tion is terminated. If the minimum value of U(4) is zero then we have 
just met or exceeded the specification. In general, of course, this will not 
be possible if the design problem is similar to the example depicted in 
Fig. 1. Note that the special case is readily accommodated since the 
objective function reduces to 

0% 

The larger the value oip the more nearly would we expect the maxi- 
mum error to be emphasized, since 

max [ed(+), -eti(+)l 
i 

In using gradient methods of minimizatio: we would be concerned 
if the objective function in (4) had discontinuous derivatives. Note that 
U(+) is continuous if the appropriate e&+) and ea(+) are continuous. 
Differentiating the objective function we have 

where 

a 
1 1 - 

a+k 

For p>l, and with e,;(+) and eri(+) continuous with continuous de- 
rivativ.es for e,,i(+)>O and -ed+)>O, VU(+) will be continuous, 
becoming 0 at the minimum. 

The matrix of second partial derivatives is given by 

H = P(P - 1) [<g euiP+Ve,i(Veui)T + C (-eli)P-ZVeti(Vezi)T 
iEJ, 1 u 

+pLg 
e,iP-lv (v e,iP - 1 (-etW1v (VedT] . (9) 

u iEJl 

It is easily shown that Ve,i(Ve,i)T and Vez@e# are positive-semi- 
definite. If e,i(+) and -eii($) are convex, then V(Ve,JT and -V(Vel;)r 
are also positive-semidefinite. For large enough values of p, however, 
the first two terms are likely to be much greater than the last two, SO 
H is usually likely to be positive-semidefinite anyway. 
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Case 2-Specification Satisfied 

For the case when the specification is satisfied all the e,i(+) and 
-eu(+) will be negative. It is usually impossible to make +_ei(+) nega- 
tive, however, so this case need not be considered here. This time, in an 
effort to exceed the specification by as much as possible, we propose the 
following objective function to be minimized: 

U(G) = & [-eui(+)l-P + ig [edG)l-P 
” I 

(10) 

where we assume 

andp>l. 

-f&i(+) > 0, i E 1, 
eri(+) > 0, i E 12 01) 

The larger the value of p the more nearly would we expect the mini- 
mum “error” to be emphasized, since 

mir! [-ed+), a(+)] i 

so that minimizing the objective function in (10) will tend to maximize 
the minimum amount by which the specification is exceeded. 

Differentiating ,( 10) we have 

VU(+) Zig P[-ee,i(~)l-p-‘Ve,i(g) 
u 

- ig pleli(~)l-“-‘ven(~). (13) 
1 

In this case, with 1 /e,i(+) and l/eli($) continuous with continuous deriv- 
atives for -e,<(g) > 0 and eli(+) > 0, VU(+) will be continuous, becom- 
ing 0 at the minimum. 

The matrix of second partial derivatives is given by 

H = P(P + 1) [ C (-eui)-P-2veui(ve,i)T + C 
iEI” iEZl 

er;-~-‘ve~i(vea)T] 

+ p [ ig (-e&p-‘V (VeuijT - C ezi-P-9 (vei;,T] . (14) 
u iEIl 

H will be positive-semidefinitive under conditions rather similar to those 
for case 1. 

Much of the foregoing analysis is intuitively obvious. Fig. 3 shows 
sketches which can be used as an aid to understanding the procedure. 

Probably the most useful parallel to the objective function of case 1 
is the simple penalty function approach for dealing with nonfeasible 
points in constrained optimization [2]. A suitable penalty term including 
only the violated constraints is minimized, commonly with p=2. If 
the penalty term is zero, a feasible solution is indicated. If the minimum 
is nonzero, the constraints remain violated. In the case of generalized 
least pth approximation such a situation may indicate the impossibility 
of satisfying the specification. 

If a feasible solution in constrained optimization is available a 
penalty term formed 6y all the constraint functions may be defined so 
that an optimal solution close to the boundary of the feasible region is 
discouraged. Indeed, by minimizing this penalty function an attempt to 
move as far as possible from the boundary is made. Thus, a parallel to 
case 2 is the penalty function approach developed by Fiacco and 
McCormick [9], [IO]. This is seen by letting p in (10) be 1. Unlike the 
Fiacco-McCormick technique, however, our objective function is in the 
form of a penalty term, so our aim is simply to move away from the 
boundary. Similar precautions to avoid nonfeasible solutions may have 
to be taken [see Fig. 3(d)]. 

It should be remarked that the role of the weighting functions is the 
usual one. In case 1, deviations from the specification are emphasized 
by relatively large weighting numbers, and a greater effort will be de- 

Cdl 

Fig. 3. Sketchcv to illustrate the behavior of components of possible generalized least 
pth objectives. f(x) is convex continuous with continuous derivatives. p > 1 in (b) 
and (c). p 2 1 in (d). 

voted to forcing the corresponding response closer to the specification 
than the rest of the response. In case 2, relatively large weighting num- 
bers have the effect of allowing the corresponding response to remain 
much closer to the specification while improving other parts. 

CONCLUSIONS 

Implementation of the generalized least pth objectives proposed in 
this correspondence should be very straightforward. The usually diffi- 
cult problem of choosing suitable weighting functions to force more 
nearly uniform approximation is alleviated by using an appropriate 
value of p. Difficulties such as are encountered in attempting to use the 
conventional least pth objective function to force responses above or 
below desired levels are virtually eliminated. Poles, for example, in 
the stopband of filters if they are deemed desirable, which they usually 
are, are readily accommodated. Numerical experiments employing the 
objective functions in the optimal design of networks and systems are 
currently under way. 
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