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Abstract—We present, for the first time, an efficient adjoint
variable method (AVM) for estimating second-order sensitivi-
ties exploiting time-domain transmission-line modeling. For a
structure with designable parameters, the complete Hessian
matrix of any desired objective function is estimated using
extra simulations as compared to using the traditional
finite-difference approaches. Our approach is illustrated through
estimating the second-order sensitivities for energy functions and
scattering parameter with respect to dimensions and material
properties of metallic and dielectric discontinuities. The results
achieved using our AVM approach are verified using the expensive
finite-difference approaches.

Index Terms—Adjoint variable method (AVM), electromagnetic
(EM) modeling, optimization, transmission-line modeling (TLM).

I. INTRODUCTION

S ENSITIVITY analysis has attracted great interest in mi-
crowave circuit design. It has wide applications in yield

analysis, tolerance analysis, and gradient-based optimization
[1]. Full-wave numerical electromagnetic (EM) solvers can
solve complex microwave and antenna structures [2]. Using
finite-difference approximations, these solvers supply first-
and second-order sensitivities of the desired responses using
repeated simulations with perturbed parameters. First-order
sensitivities are estimated using extra simulations,
where is the number of parameters. Second-order sensi-
tivities require extra simulations. As the complexity
of the problem increases, the required computation overhead
becomes prohibitive despite the acceleration of computing
speeds. As a result, special focus is put on reducing the number
of simulations required for sensitivity analysis.
The adjoint variable method (AVM) aims at efficiently

estimating the sensitivities of a desired objective function
or response. Using at most one extra adjoint simulation, the
first-order sensitivities of the objective function are estimated
with respect to all parameters regardless of their number.
First-order AVM has been successfully implemented in time-
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and frequency-domain EM solvers [3]–[8]. These methods
include the finite-element method (FEM) [4], finite-element
time-domain (FETD) [3], method of moments (MoM) [8],
frequency-domain transmission-line modeling (FD-TLM) [5],
time-domain transmission-line modeling (TD-TLM) [6], and
finite-difference time-domain (FDTD) [7]. The AVM is already
utilized to estimate the scattering parameters ( -parameters)
first-order sensitivities in commercial solvers [9], [10].
Second-order (Hessian) sensitivity information are known to

accelerate the convergence of the optimization algorithms [11],
[12]. These sensitivities are, however, very expensive to cal-
culate. Different approaches to approximate the second-order
sensitivities have been developed through iterative approaches,
e.g., [12]–[14].
The AVM approach has been extended to estimate second-

order and higher order adjoint sensitivities in fluid dynamics
[15], [16] and circuit applications [17]–[20]. The second-order
derivatives of the -parameters were computed based on the
adjoint network method (ANM) for microwave filters with re-
spect to all design parameters. This approach is applicable only
to narrowband frequency-domain solvers.
In this paper, we extend our previous work [21] on AVM

to estimate wideband time-domain-based second-order deriva-
tives of arbitrary responses, to include scattering parameters
and 3-D full-wave simulations. Our approach is illustrated with
TD-TLM [22]. Using only extra simulations, all compo-
nents of the Hessian matrix are estimated. First-order sensitivi-
ties are also estimated as a by-product of our algorithm. It fol-
lows that an accurate second-order Taylor’s expansion of the
response is achieved in an efficient way.
This paper is organized as follows. Section II gives a brief

review of the TLM method and the AVM theory for estimating
first-order sensitivities. Section III presents a detailed deriva-
tion of the AVM theory for estimating second-order sensitivi-
ties. Section IV explains the practical implementation of the al-
gorithm. Section V illustrates the theory through a number of
examples. We finally conclude in Section VI.

II. FIRST-ORDER AVM

A. TLM Method

The transmission-line matrix method models the propagation
of EMwaves in the time domain [23], [22], where both time and
space are discretized. The computational domain is modeled by
a grid of nodes connected together with transmission-line links.
The scattering of voltage impulses over these links models the
propagation of EM waves. The electric and magnetic fields are
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linear functions of the voltage impulses incident on the trans-
mission lines. An impulse incident on one of these transmis-
sion lines follows a sequence of scattering and connection steps.
The scattering and connection steps for incident impulses on all
transmission lines are governed by

(1)

where is the vector of incident impulses for all nodes at
the th time step. The matrix is a block diagonal matrix of
the whole domain. is the connection matrix that describes
how the reflected impulses are connected to their neighboring
nodes/boundaries. is the vector of the excitation source at the
th time step. Even though (1) is used to mathematically express
the scattering and connection steps, the actual implementation
does not perform matrix multiplication on the large matrices
and . The scattering and connection steps are carried out on a
cell-by-cell basis.

B. First-Order AVM

An EM design problem can be formulated as a minimization
problem [6]

(2)

where is the vector of all design parameters, is
the vector of EM responses, is the objective function to be
minimized, and is the vector of optimal design parameters.
Solving (2) with a gradient-based optimization algorithm re-
quires the first-order sensitivities (response gradient). A faster
convergence is achieved when the second-order sensitivities
(Hessian) information is available.
One of the most efficient gradient estimation techniques is

the AVM. Using at most one extra simulation, all components
of the response gradient vector are estimated regardless of their
number. The AVM implementation in the case of TLM simula-
tions has been reported in [6] and [24]–[27].
The AVM considers an objective function of the form

(3)

where is the vector of TLM link incident voltages and is
the simulation time. The sensitivity of with respect to the th
design parameter, , is given by [6]

(4)

where is the adjoint variable vector calculated using the ad-
joint simulation [6] and is the time-step index. The simulation
runs backward in time and is given by

(5)

where is the adjoint excitation
. The matrix is the net change

in the system matrix due to perturbation of the variable .

The system matrix of the TLM problem is defined for a
band-limited excitation and sufficiently small time step, , by
utilizing a first-order Taylor’s expansion on (1) to obtain [6]

(6)

Reorganizing (6), we have the temporal first-order differential
equation governing the incident impulses

(7)

where

(8)

The matrix has very few nonzero components corre-
sponding to the perturbed nodes in the computational domain.
The sparsity in allows for storing a reduced number of
components of the vectors and at all time steps.

III. THEORY OF SECOND-ORDER AVM

The second-order derivative is traditionally calculated using
finite-difference techniques and gradient-based approximations.
The central finite difference (CFD) general expression for the
second derivative is [28]

(9)

Calculating all components of the symmetric Hessian matrix
requires extra simulations. This cost is, for most practical
problems, computationally prohibitive.
Here, we give a detailed derivation of an AVM approach

to second-order sensitivity estimation. Assuming an objective
function of the form (3), we consider two parameters and ,
where . The first-order differential equation (7) is rewritten
as a function of two distinct parameters as [6]

(10)

Perturbing only in the direction of by , we get the per-
turbed differential equation

(11)

To simplify the notation, we write as
in all subsequent equations such that . Subtracting
(10) from (11), we get

(12)
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Dividing both sides of (12) by and using the chain rule of
differentiation, we get the second-order differential equation

(13)

Furthermore, perturbing the parameter in (13) by , we
have

(14)

Subtracting (13) from (14) and dividing by , the following
third-order differential equation is obtained:

(15)

where

and

(16)

The corresponding adjoint system is defined using (15). Mul-
tiplying (15) by an arbitrary variable vector, , and integrating
over time by parts, one gets

(17)

It can be shown that the second-order derivative of the objective
function in (3) with respect to any two parameters and

is given by

(18)

Here, is the explicit second derivative, which
is equal to zero in most practical objective functions. Com-
paring the first term of the integral in (18) with the left-hand
side of (17), we have the following equation for the adjoint TLM
problem:

(19)

By using the definition of the system matrix in (8) and rear-
ranging, we obtain the following equation governing the adjoint
system:

(20)

where is the adjoint excitation. To avoid
carrying out more than one adjoint problem, the perturbed
scattering and connection matrices and
are approximated with the original matrices ( and , respec-
tively). This approximation is valid as long as the perturbations

and are small enough. The adjoint expression in (20)
is the same as the adjoint expression for the first-order AVM
sensitivity in (5). This implies that the same adjoint simulation
is used to extract both the first- and the second-order response
derivatives. Using (17) and (18), the adjoint variable expression
for the second-order sensitivity is given by

(21)

In addition to the vector of original impulses obtained
using (1) and the adjoint response, , obtained using (20),
the vectors and are also required. These
can be obtained through perturbed simulations. To calculate
all components of the Hessian matrix, extra simulations
are thus needed.
It is noteworthy from the above derivation that positive per-

turbation is assumed for both parameters and in (16).
Other perturbations can be assumed such as negative perturba-
tion of both parameters or a combination of positive
and negative perturbations and . In the case
of a single parameter , central perturbation is assumed

. This will accordingly affect the adjoint system ma-
trix in (19) depending on the direction of perturbation.

IV. ALGORITHM IMPLEMENTATION

Similar to the first-order AVM approach, the second-order
AVM requires storing the field information at certain locations
in the computational domain corresponding to the respective
parameter change [6]. This is achieved through the following
steps: 1) parameterization; 2) original analysis; 3) adjoint
analysis; and 4) sensitivity estimation. In the parameterization
phase, the system matrix (8) is defined for the nominal and
perturbed domains. The changes in the system matrix required
for calculating the terms , , and in (16) are determined.
These three sparse matrices have a few nonzero elements
corresponding to the perturbed subsets of the computational
domain. We assume in our implementation that the change in
the system matrix is represented by a change in the scattering
matrix, , while the connection matrix, , is kept
unchanged. The local changes in the electric conductivity,

, and relative permittivity, , that may occur due
to a change in any of the design parameters, are reflected
in changes in the scattering matrix. Fig. 1(a)–(d) illustrates
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Fig. 1. Illustration of system matrix perturbations for an arbitrary discontinuity
in TLM domain. (a) Nominal structure, (b) perturbation in the parameter
by , (c) perturbation in the parameter by , (d) perturbations

in both and , (e) change , (f) change , and (g) change
in (16).

Fig. 2. TEM-mode parallel-plate waveguide loaded with a rectangular dielec-
tric discontinuity. The waveguide has a width mm and length

mm. The TLM cell is mm. The dielectric has , and
S m .

this concept. Changing the length or width of the
shown discontinuity results in changing material properties

Fig. 3. Second-order sensitivities of the objective function in (22) with respect
to and of the rectangular dielectric discontinuity shown in Fig. 2. The sensi-
tivities are estimated using CFD and AVM (—) for different discontinuity
widths.

for certain subsets of the computational domain. The nonzero
components of the matrices , , and are determined
by subtracting these subsets from one another, as shown in
Fig. 1(e)–(g).
In the original analysis, the forward TLM simulation in (1) is

executed. The first three terms on the right-hand side of (15) are
computed at the nonzero links and stored at all the time steps.
These terms are weighted summations of the incident impulses



NEGM et al.: WIDEBAND SECOND-ORDER ADJOINT SENSITIVITY ANALYSIS EXPLOITING TLM 393

Fig. 4. Second-order sensitivities of the objective function in (22) with respect
to the length, , and width, , of the rectangular dielectric discontinuity shown
in Fig. 2. The sensitivities are estimated using CFD and AVM (—) for
different discontinuity widths.

and their derivatives. The adjoint excitation in (20) is also de-
termined at every time step.
In the third step, the adjoint analysis in (20) is executed.

The adjoint field components are computed at the locations
corresponding to the nonzero links in the original system.
To reduce the memory overhead, the adjoint field values are
not stored, but rather are multiplied on-the-fly by the terms
in (15) [see also (21)] during the adjoint simulation for each
parameter [29].

Fig. 5. 2-D parallel-plate waveguide with a metallic inductive obstacle cen-
tered in the middle. The waveguide has a width mm and length 62 mm.
The TLM cell is mm. The obstacle width is fixed at mm.

V. NUMERICAL EXAMPLES

The theory presented in Sections III and IV is validated
through a number of numerical examples. These examples
utilize different types of objective functions. All examples are
simulated using our in-house TLM solver written in MATLAB
R2010a, which runs on an Intel Xeon CPU 5160 at 3.0 GHz
and 16.0 GB of RAM.

A. Rectangular Dielectric Discontinuity

Our algorithm is applied to the sensitivity analysis of a TEM-
mode parallel-plate waveguide loaded with a rectangular dielec-
tric discontinuity (see Fig. 2). The relative permittivity, , and
conductivity, , are 1.5 and 1.0 S m , respectively. The vector
of design parameters is defined to be .
The waveguide has a width of mm and length of

mm. The dielectric discontinuity has a constant length
of mm. The sensitivities are estimated for a sweep
of dielectric widths, mm. The domain
is discretized into square TLM cells of size mm.
The ports are modeled with wideband absorbing boundary con-
dition for TEM waves propagating in free space with an im-
pulse reflection coefficient of 0.17157. The domain is excited
with a Gaussian-modulated sine wave with a center frequency
at GHz and a bandwidth of GHz, injected
from the left port of the waveguide. The objective function is
defined by the energy

(22)

where the observation domain, , is the last column of nodes
at the output port. is the component of the electric field at
each node. The second-order sensitivities of (22) with respect
to the constitutive parameters ( , , and

) and the shape parameters ( , ,
and ) are shown in Figs. 3 and 4, respectively.
The results achieved using our second-order AVM match
those obtained using the accurate, but time-intensive CFD
approximation. The CFD requires 17 independent simulations,
while our approach requires only six independent simulations,
a reduction of 64%.

B. Inductive Obstacle

We consider an inductive obstacle in a parallel-plate wave-
guide, as shown in Fig. 5. The waveguide has a width of
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Fig. 6. Second-order sensitivities of the objective function in (22) with respect
to length, , and width, , of the inductive obstacle shown in Fig. 5. The sen-
sitivities are estimated using CFD and AVM (—), at different obstacle
lengths.

mm and a length of mm. The metallic obstacle is cen-
tered in the middle of the waveguide with a fixed width,

mm. A square TLM cell of size mm is utilized.
The vector of design parameters is . The wave-
guide is excited with a Gaussian-modulated sine wave centered
at GHz and a bandwidth of GHz. The
derivatives , , and of the en-
ergy function in (22) are estimated at different obstacle lengths,

Fig. 7. Second-order sensitivities of the scattering parameters, with respect
length, , and width, , for the inductive obstacle example shown in Fig. 5.
Sensitivities are computed by CFD, symbols, and AVM, lines, at different fre-
quencies. Real part ( , —) and imaginary ( , - - -).

. The results are shown in Fig. 6. Good agreement is achieved
with CFD. The number of the required independent simulations
has been reduced from 9 to only 4.

C. -Parameters Sensitivities for the Inductive Obstacle

We demonstrate the estimation of the second-order sensitiv-
ities of the scattering parameters for the inductive obstacle ex-
ample in Fig. 5. The vector of design parameters is .
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Fig. 8. 2-D single resonator filter of width mm and length mm.
The TLM cell is mm. The initial values for the filter parameters are

mm and mm.

Fig. 9. Second-order sensitivities of the objective function in (22) with
respect to , , , and , for the single resonator example shown in
Fig. 8. The sensitivities are computed by CFD, , , and AVM, —, - - -.
(a) (left -axis), (right -axis); and (b) (left
-axis), (right -axis).

Our AVM approach is applied to estimate the wideband second
derivative of the insertion loss, , with respect to . The inser-
tion loss is defined as the ratio between the output spectrum of
the output port and the reference incident spectrum at the input
port. The output spectrum of the desired mode at port 2 due to a
sinusoidal excitation of frequency, , at port 1 is described as
[25]

(23)

Fig. 10. Second-order sensitivities of the objective function in (22) with
respect to , , , and , for the single resonator example shown
in Fig. 8. The sensitivities are computed by CFD, , , and AVM, —,
- - -. (a) (left -axis), (right -axis); and
(b) (left -axis), (right -axis).

where denotes the position vector, is the mode profile
at the incident port ( -mode), is the electric field
vector, , and is the angular frequency.
The double integral is reduced to a single integral in this 2-D
simulation. The time integral represents the Fourier transform.
Using an approach similar to [25], the sensitivities of the real
and imaginary parts of (23) is estimated. The results for wide-
band second-order sensitivity analysis of the real and imaginary
parts of the scattering parameter are shown in Fig. 7. The results
obtained with the proposed approach match the CFD estimates.

D. Single Resonator Filter

Next, we consider the single resonator waveguide filter
shown in Fig. 8. It has a width mm and a length

mm. Four metallic arms control the response of the
filter. Each arm has a length and resides at a distance
away from the waveguide center (see Fig. 8). Symmetry has
been employed to simulate half of the domain. The filter is
excited by a wideband Gaussian-modulated sine wave centered
at 3.0 GHz with a bandwidth of 3.0 GHz. John’s matrix [30]
is utilized as a wideband absorbing boundary condition. The
vector of design parameters is . The
objective function is taken as the energy function (22). Figs. 9
and 10 show the sensitivity results. The proposed AVMmethod



396 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 62, NO. 3, MARCH 2014

TABLE I
SIMULATION TIME FOR CFD AND AVM

Fig. 11. 3-D DRA.

TABLE II
SUMMARY OF PARAMETERS FOR THE DRA

successfully estimates the sensitivity of the objective function
for eight different variables in reference to the CFD. The
number of simulations has been reduced from 21 independent
simulations—in the CFD case, down to only six simulations
using AVM, i.e., 28%. Table I compares the CPU time and
memory usage between AVM and CFD.

E. Dielectric Resonator Antenna (DRA) (3-D TLM)

The final example is a 3-D TLM DRA, as shown in Fig. 11
[31], [32]. The antenna is characterized by a wideband response,
operating at a center frequency of 15 GHz with 8.0-GHz band-
width. The antenna is fed by a microstrip line of width, .
The substrate has a relative permittivity and height, .
The DRA radiating material has relative permittivity and
dimensions , . A dielectric insert of relative permit-
tivity and dimensions , , and is placed between the
microstrip feed line and the DRA. The insert expands the band-
width of the antenna by enhancing the impedancematching over
a wide band of frequencies. Table II shows the numeric values
of the design parameters. The vector of design parameter is

. The objective function is the return
loss, , defined as the ratio between the input spectrum of the
input port and the reference incident spectrum at the input port.

Fig. 12. Second-order sensitivities of the objective function in (24) with re-
spect to and for DRA shown in Fig. 11. The sensitivities are com-
puted by CFD, , and AVM, —. (a) , (b) ,
and (c) .

The input spectrum is given by

(24)

where is the mode profile at the input port. Given the six
design parameters in , a total of 21 sensitivities are estimated.
Few are shown due to space limitation. The second-order sen-
sitivities produced by our AVM approach in comparison with
CFD is shown in Fig. 12 (for , ,
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Fig. 13. Second-order sensitivities of the objective function in (24) with respect
to and for DRA shown in Fig. 11. The sensitivities are computed by
CFD, , and AVM, —. (a) and (b) .

and ) and Fig. 13 (for and
). A good agreement is achieved.

VI. CONCLUSION

We have presented a new technique for estimating wideband
second-order sensitivities for time-domain EM simulators It is
based on AVM, previously used for first-order response sensi-
tivities [6]. This technique reduces the number of simulations
from to when compared to finite-difference tech-
niques. The accuracy of the proposed technique has been veri-
fied through a number of examples. Results from the proposed
AVM technique match those estimated using CFDs. Two types
of objective functions have been utilized including the energy
function and the scattering parameters.
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