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Abstract  — This paper describes a novel approach to low-cost, 

accurate modeling of microwave structures using response features. 
Computational efficiency of the proposed method originates from 
the less nonlinear dependence of the feature points on the 
designable parameters of the structure of interest than 
conventionally used responses (e.g., S-parameters vs. frequency). 
Further decrease of the surrogate model setup cost is obtained by 
exploiting variable-fidelity EM simulations that are blended 
together using co-kriging interpolation. Comprehensive verification 
and comparisons with benchmark techniques is provided. 

Index Terms — Microwave component modeling, computer-
aided design, surrogates, space mapping, feature-based modeling, 
kriging, co-kriging. 

I.  INTRODUCTION 

High-fidelity full-wave electromagnetic (EM) analysis 
allows for very accurate performance evaluation of microwave 
structures, however, usually at considerable computational 
expense, particularly for complex devices/circuits and when 
including interactions (EM couplings) with its environment. 
The cost of multiple EM simulations, as required in parametric 
optimization, uncertainty quantification, or yield-driven 
design (tolerance-aware design, design centering), may be 
prohibitive. Clearly, fast surrogate models are indispensable in 
carrying out such tasks in reasonable timeframe.  

There are two basic options for surrogate model 
construction: approximation of sampled high-fidelity EM 
simulation data (popular methods: neural networks [1], kriging 
[2], support vector regression [3]) and physics-based 
modeling, i.e., appropriate correction of an underlying low-
fidelity model such as an equivalent circuit (popular method: 
space mapping (SM) [4]). Approximation models are very fast 
but to ensure usable accuracy, they need large amounts of 
training data obtained through massive EM simulation. 
Physics-based surrogates require less training data and—due 
to the problem-specific knowledge embedded in the low-
fidelity model—offer better generalization. However, they are 
less generic, more complex to implement, and their 
applicability is limited to cases when fast low-fidelity models 
are available (e.g., filters). 

Reduction of the number of training points for 
approximation-based surrogates can be achieved by realizing 
the modeling process in an alternative representation of the 
system responses, where the dependence of the responses on 
the designable parameters is less nonlinear. This approach has 
been explored, e.g., in the SPRP technique [5] or in [6] for 
inverse modeling of filters. A modeling technique recently 

introduced in [7] utilizes a concept of feature points similar to 
SPRP but with considerably simpler implementation (achieved 
by abandoning the use of so-called reference designs [7]). 
Feature-based modeling has been demonstrated to ensure good 
accuracy using a fraction of the training points required by 
conventional methods [7].  

In this work, we propose a variable-fidelity generalization 
of the feature-based modeling methodology. The surrogate is 
constructed using feature points extracted from EM simulation 
data at two discretization levels: coarse (low-fidelity model) 
and fine (high-fidelity model). High-fidelity model sampling 
is much sparser than the low-fidelity one. Both data sets are 
combined together using co-kriging [8]. Our approach is 
demonstrated using two microstrip filters. Comparative study 
indicates that the proposed methodology allows for 
considerable reduction of the surrogate model setup cost 
compared to both conventional approximation modeling (here, 
kriging interpolation) and feature-based modeling [7] without 
compromising its predictive power. 

II. VARIABLE-FIDELITY FEATURE-BASED MODELING 

We will denote by Rf(x) the response vector of the 
expensive, high-fidelity EM-simulated model of the 
microwave structure of interest. Rf(x) may represent S-
parameters at m chosen frequencies, ω1 to ωm, i.e., 
Rf(x) = [Rf(x,ω1) … Rf(x,ωm)]T; and x represents designable 
(e.g., geometry) parameters. The task is to construct a fast 
replacement model (surrogate) Rs of Rf. 

Let XT = {x1, x2, …, xN} be the set of training samples. 
Conventional modeling methods aim at approximating the 
data pairs {xk, Rf(xk)} directly. Given the high nonlinearity of 
microwave device responses, particularly filters, it is a very 
challenging task that requires large data sets and which is 
virtually impossible in highly-dimensional design spaces. 

Here, we propose a multi-fidelity feature-based modeling 
technique in which we exploit suitably selected feature points 
allocated on the response of the structure of interest. The 
feature points (cf. Fig. 1) may include points corresponding to 
specific response levels (e.g.,–10 dB, –3 dB), as well as those 
allocated in between fixed-level points (e.g., uniformly in 
frequency). As indicated in Fig. 2, dependence of the feature 
points on the design parameters is much less nonlinear than 
that of the original responses, and thus easier to model. 
Feature-based modeling was originally introduced in [7]. 
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Fig. 1. Family of |S21| responses for a microstrip bandpass filter evaluated 
along a selected line segment (1–t)xa + txb, 0 ≤ t ≤ 1: high-fidelity model Rf 
(—) and low-fidelity model Rcd (····). Selected feature points and groups of 
corresponding points marked (o) for Rf and ( ) for Rcd. 
 

 
In this work, we utilize training data acquired from variable-

fidelity simulations: sparsely-sampled Rf points 
XTf = {xf

1, xf
2, …, xf

Nf} and densely-sampled data obtained 
from coarse-discretization EM simulations (low-fidelity model 
Rcd), XTc = {xc

1, xc
2, …, xc

Nc}. Although Rcd and Rf are 
misaligned (cf. Fig. 1), they are also well correlated so that the 
initial surrogate model obtained from Rcd data can be 
enhanced using a few Rf points to construct the accurate, final 
surrogate model. Here, we use co-kriging [8] as a way of 
blending together the two data sets. 

We use notation fk.f 
j = [ωk.f 

j lk.f 
j]T, j = 1, …, K, and k = 

1, …, Nf to denote the jth feature point of Rf(xf
k), and fk.c 

j = 
[ωk.c 

j lk.c 
j]T to denote the jth feature point of Rcd(xc

k); ωk.f 
j and 

lk.f 
j denote the frequency and magnitude (level) components of 

fk.f 
j (similarly for fk.c 

j). 
Multi-fidelity feature-based modeling is a two-step process. 

In the first step, we construct approximation surrogates sω.j(x) 
and sl.j(x), j = 1, …, K, of the feature points. The surrogates 
utilize all Nf high-fidelity and Nc low-fidelity training points 
and their corresponding feature points {fk.f 

j, fk.f 
j, …, fNf.f  

j}, 
and {fk.c 

j, fk.c 
j, …, fNc.c 

j}, j = 1, …, K. As mentioned before, 
the surrogates are created using co-kriging [8] (see 
Section III). 

The multi-fidelity feature-based surrogate is defined as 
[ ]1( ) ( , ) ... ( , )ω ω=R x x x T

s s s mR R  (1) 

with 
( , ) ( ( ), ( ), )s j jR I Lω ω= Ωx x x  (2) 

where L(x) = [sl.1(x)  … sl.K(x)] and Ω(x) = [sω.1(x) … sω.K(x)] 
are predicted feature point locations corresponding to the 
evaluation design x. I(Ω,L,ω) denotes a function that 
interpolates the level vector L and frequency vector Ω into the 
response at a given frequency ωj. 

Because ωk
j(x) and lk

j(x) (i.e., frequencies and levels of the 
feature points) are less nonlinear than original responses 
Rf(x,ωj), a substantially smaller number of training points is 
necessary to ensure accurate modeling. Also, excellent 
correlation between Rcd and Rf (cf. Fig. 2) allows for further 
reduction of the surrogate model setup cost because a very 
limited number of Rf samples is sufficient to elevate the Rcd-
based kriging model to high-fidelity model accuracy through 
co-kriging. 

III. KRIGING INTERPOLATION. CO-KRIGING 

Multi-fidelity feature-based modeling relies on kriging [2] 
and co-kriging [8] surrogates. Let f(XTf) be the set of responses 
associated with the training set XTf (i.e., high-fidelity feature 
points fk.f  through fNf.f  ). The kriging interpolant is given as 

 

1( ) ( ) ( ( ) )KR TfM r X Fα α−= + ⋅ Ψ ⋅ −s x x f               
 (3) 

 

where M and F are Vandermonde matrices of the test point x and 
the base set XTf, respectively; α is determined by Generalized 
Least Squares (GLS), r(x) is an 1×Nf vector of correlations 
between the point x and the base set XTf, where the entries are 
ri(x) = ψ(x,xf 

i), and Ψ is a Nf × Nf correlation matrix, with the 
entries given by Ψi,j = ψ(xKR

i, xKR
j). We use the exponential 

correlation function ψ(x,x’) = exp(∑k=1,...,n –θk|xk-x’k|). The 
regression function is constant, F = [1 ... 1]T and M = (1). 

Co-kriging is a type of kriging where the Rf and Rcd model 
data are combined to enhance the prediction accuracy (cf. Fig. 
3). Co-kriging is a two-step process: first a kriging model sKRc 
of the coarse data (XTc,c(XTc)) is constructed and, on the 
residuals of the fine data (XTf,Rd), a second kriging model sKRd 
is applied, where Rd = f(XTf) – ρ⋅c(XTf); c(XTf) can be 
approximated as c(XTf) ≈ sKRc(XTf). The co-kriging interpolant 
is defined as 

 

1( ) ( ) ( )CO dM r Fα α−= + ⋅Ψ ⋅ −s x x R                    (4) 
 

Definitions of M, F, r(x) and Ψ can be found in [8]. 

IV. VERIFICATION EXAMPLES 

The proposed modeling approach is verified using two 
examples of microstrip filters (Fig. 4): the fourth-order ring 
resonator bandpass filter [9], (Filter 1), and the microstrip 
bandpass filter with open stub inverter [10], (Filter 2). Design 
variables are x = [L1 L2 W1 S1 S2 d]T (Filter 1), x = [L1 L2 L3 S1 
S2 W1 W2]T (Filter 2), and x = [L1 L2 L3 S1 S2 W1]T (Filter 3). 

The high-fidelity models of both filters are simulated in 
FEKO using 952 (10 minutes) and 432 triangular meshes (6 
minutes), respectively.  

The low-fidelity models are also simulated in FEKO but 
with coarser discretization: 174 meshes (simulation time 25 s) 
for Filter 1, and 112 meshes (simulation time 15 s) for Filter 1.  

 
 

 

 
Fig. 2. Selected feature point plots between designs xa (t = 0) and xb (t = 1): 
(a) frequency, (b) levels. They correspond to 2 feature points: center 
frequency of the filter (- - -) and –10 dB level on the left-hand side of the 
passband (—); thick and thin lines used for high- and low-fidelity model 
feature points, respectively. 
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Table I shows the accuracy verification using 100 random 
test designs and relative error measure ||Rf(x) – Rs(x)||/||Rf(x)|| 
expressed in percent. 

The multi-fidelity feature-based model is compared to 
feature-based surrogate [7] and direct kriging interpolation of 
high-fidelity data with different number of training points 
from 20 to 400. For all problems considered, the accuracy of 
the multi-fidelity feature-based surrogate is very good even for 
the smallest number of high-fidelity training samples (i.e., 20), 
and better than the accuracy of the benchmark methods for the 
corresponding number of training points. Figure 5 shows the 
high-fidelity and multi-fidelity feature-based model responses 
at selected test points. 

 
 
 

 
Fig. 3. Co-kriging concept: Rf model (—), Rc model (- - -), Rf model samples 
(), Rc model samples (○). Kriging interpolation of Rf model samples (- ⋅ -) is 
not an adequate representation of the Rf model (limited data set). Co-kriging 
interpolation (⋅⋅⋅⋅) of blended Rc and Rf data provides better accuracy at lower 
computational cost. 
 

                  
        (a)                      (b)  

Fig. 4. Filter structures used for feature-based modeling verification: (a) 4th-order 
ring resonator bandpass filter [9], (b) bandpass filter with open stub inverter [10]. 
 

 
(a) 

 
(b) 

Fig. 5. High-fidelity (⎯) and multi-fidelity feature-based model (set up with 20 Rf 
and 200 Rcd points) (o) at the selected test designs for Filter 1 (a), and 2 (b). 

TABLE I: MODELING RESULTS FOR FILTERS 1 AND 2  
Filter Modeling   

Method 
Average Error 

N* = 20 N = 50 N = 100 N = 200 N = 400

1 

Multi-Fidelity 
Feature-Based$ 

3.7 % 
[28.3]& 

1.5 % 
[58.3]& 

1.3 % 
[108.3]& 

1.2 % 
[208.3]& 

1.2 % 
[408.3]&

Feature-Based% 11.6 % 5.1 % 3.8 % 3.6 % 2.5 % 
Direct Kriging# 13.5 % 7.8 % 6.3 % 4.6 % 3.6 % 

2 

Multi-Fidelity 
Feature-Based$ 

0.7 % 
[28.3]& 

0.6 % 
[58.3]& 

0.5 % 
[108.3]& 

0.45 % 
[208.3]& 

0.4 % 
[408.3]&

Feature-Based% 7.5 % 2.4 % 1.2 % 0.7 % 0.6 % 
Direct Kriging# 11.6 % 8.8 % 6.1 % 4.8 % 3.1 % 

* N stands for the number of training points. 
$ Multi-fidelity feature-based modeling of Section II using 200 Rcd samples.  
& Numbers in brackets refer to the total model setup cost (including Rcd points). 
% Feature-based modeling using the procedure of [7]. 
# Direct kriging interpolation of high-fidelity model |S21| responses. 

V. CONCLUSION 

A variable-fidelity feature-based technique for low-cost 
surrogate modeling of microwave structures is proposed. 
Realizing the modeling process through response features and 
utilizing both high- and low-fidelity EM simulation data 
allows for further reduction of the surrogate model setup cost 
compared with benchmark methods, including conventional 
kriging interpolation as well as feature-based modeling of 
high-fidelity data. 
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