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Abstract  —  We present an algorithm for design optimization 

of microwave filters utilizing multi-fidelity electromagnetic 
(EM)-simulation models, adjoint sensitivities, and a trust-region 
framework as a convergence safeguard. To further speed up the 
design process, the optimization is performed at the level of 
suitably selected response features whose dependence on the 
designable parameters is significantly less nonlinear than that of 
the original responses (here, S-parameters versus frequency). 
Switching between the EM models of different fidelity is 
governed by suitably defined convergence criteria. Our approach 
is demonstrated by a waveguide filter example. A comprehensive 
numerical comparison with single- and multi-fidelity 
optimization algorithms (both adjoint-based) is also provided.  

Index Terms — Computer-aided design, EM-driven design, 
filter optimization, adjoint sensitivity, response features. 

I.  INTRODUCTION 

Full-wave electromagnetic (EM) analysis allows accurate 
performance evaluation of microwave structures. However, its 
computational expense poses problems for automated EM-
driven design closure as most optimization methods require 
many simulations to converge to optimal designs. The issue is 
critical for complex structures (with longer simulation times) 
and those with a larger number of adjustable parameters. 

A reduction of EM-driven design cost can be achieved by 
means of surrogate-based optimization (SBO) [1], where most 
operations are performed on a suitable surrogate, whereas the 
expensive high-fidelity simulations are only executed for 
design verification and providing data for further refinement 
of the surrogate. SBO methods have been extensively 
developed over the recent years (e.g., [2], [3], [4]), however, 
due to various practical issues (e.g., assumed implementation 
complexity, convergence issues [5], etc.) they have not yet 
been widely accepted by engineering community.  

The recent availability of adjoint sensitivity techniques [6], 
[7] through some commercial EM solvers ([8], [9]) has 
revived interest in gradient-based optimization. The possibility 
of obtaining accurate derivative data at small extra overhead 
allows for substantial reduction of the optimization cost, as 
noted in the literature (e.g., [10]). As recently demonstrated 
[11], adjoint-based optimization can be further accelerated 
when combined with variable-fidelity EM models. 

As indicated in [12] it might be advantageous to carry out 
the design optimization process in the space of suitably 
selected feature points, whose dependence on the design 
variables is much less nonlinear than that of the original 
responses such as S-parameters vs. frequency. 

In this paper, we propose an enhancement of the multi-level 
algorithm with adjoints [11] by feature-based optimization. In 
each step, a gradient-based algorithm embedded in a trust 
region framework is utilized. However, unlike [11], the 
optimization is conducted using response features (except for 
the first iteration, where the lowest-fidelity model is optimized 
at the level of the original responses). As demonstrated using a 
waveguide filter, adjoint-based optimization at the response-
feature level allows for up to 40 percent cost reduction 
compared to the multi-fidelity adjoint-based algorithm [11], 
and over 70 percent savings compared to direct high-fidelity 
model optimization (also with adjoints). 

II. MULTI-FIDELITY ADJOINT-BASED OPTIMIZATION WITH 
RESPONSE FEATURES 

A. Problem Formulation and EM Models 
The problem at hand can be formulated as follows 

( )* arg min ( )fU=
x

x R x  
 

(1) 

where Rf(x) denotes the response vector of a high-fidelity  
EM-simulated model of the microwave filter of interest (e.g., 
|S11| and/or |S21| versus frequency); U is an objective function 
that encodes given performance specifications, while x is an n-
dimensional vector of design variables. 

In this work, we utilize a family variable-fidelity models 
{Rj}, j = 1, …, K, all evaluated by the same EM solver. The 
model Rj+1 features finer discretization than the model Rj, and, 
consequently, improved accuracy at the expense of longer 
simulation time. For notational consistency, we assume that 
RK = Rf. In practice, the number of coarse-discretization 
models is two or three. 

B. Feature-Based Surrogates 
Filter responses are highly nonlinear functions of both 

frequency and geometry parameters. As shown in [12], 
efficient optimization can be realized using so-called feature 
points that determine critical parts of the response, potentially 
responsible for violation of given design specifications. Figure 
1 shows a reflection response of an example filter as well as 
feature points corresponding to passband edges (–20 dB 
levels) and local response maxima within the passband. 
Frequency and level locations of these points determine 
whether the filter satisfies the design specifications, here, 
defined as |S11|  ≤ –20 dB for 10.4 GHz to 11.6 GHz.  
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The feature points of the response vector Rk(x) are denoted 
as pk 

j(x) = [fk 
j(x) rk 

j(x)]T, j = 1, …, M, where, f and r are the 
frequency and magnitude components of the respective point. 
They can be extracted by simple analysis (screening) of the 
original S-parameter response. Design speedup when using 
feature points results from the fact that pk

j(x) are normally 
much less nonlinear w.r.t. x than Rk(x). The original problem 
(1) can be reformulated in the feature space as 

 

( )* arg min ( )F fU=
x

x P x  
 

(2) 

where UF is the objective function defined for the feature 
points (equivalent to U for the original response Rf(x)), and Pf 
= [(pf

1)T … (pf
M)T]T is the vector of aggregated feature points. 

C. Optimization Algorithm 

The proposed optimization algorithm produces a sequence 
of approximate solutions to (1), x(j), j = 0, 1, …, K, so that 

 

(1)
1arg min ( ( ))U=

x
x R x

      
                     (3) 

 

and  
 

( 1) arg min ( ( ))j
F jU+ =

x
x P x

      
                   (4) 

 

for j > 1, i.e., x(j) is an optimum of the jth model Rj. Clearly, 
x(j) = x*. Note that from the second iteration on, optimization 
is realized in the feature space. We do not use feature-based 
optimization in the first iteration because the initial design 
may be far from the optimum, where some of the relevant 
feature points are not yet present in the original response. 

The vector x(j) is obtained in a trust-region algorithm as  
 

(1. ) (1. )

(1. 1) ( )
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and
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Here, x(j.i), i = 0, 1, …, is a series of approximate solutions of 
(3) (for j = 1) and (4) (for j > 1); G1

(i) is the 1st-order expansion 
of R1 at x(1.i) defined as 

 

( ) ( ) ( . ) ( . )( ) ( ) ( ) ( )
j

i i j i j i
j j= + ⋅ −RG x R x J x x x                   (7) 

 
and where Hj

(i) is the linear model of the feature vector Pj: 
 

( ) ( ) ( . ) ( . )( ) ( ) ( ) ( )
j

i i j i j i
j j= +∇ ⋅ −PH x P x x x x                   (8) 

 

where JR1 is the Jacobian of R1 and ∇Pj is the gradient of Pj, 
both obtained using the adjoint sensitivity technique. The 
starting point to find x(j) is x(j.0) = x(j–1) (the initial design x(0) is 
the starting point for optimizing R1). The process of finding 
the new design x(j.i+1) and updating the search radius δ(j.i) 
follows the standard trust region rules [13]. Switching 
between the models is controlled by the termination condition 
|| x(j.i) – x(j.i–1) || < εj, where εj = M 

(K–j)ε, with ε as the overall 
termination threshold; here, ε = 0.001, and M is the scaling 
factor (here, M = 10). Thus, the termination condition for 
optimizing lower-fidelity models is more relaxed than for the 
higher-fidelity ones (which is sufficient due to the limited 
accuracy of the lower-fidelity models). 

III. ILLUSTRATION EXAMPLE 

Consider a waveguide filter with nonsymmetrical irises [14] 
shown in Fig 2. The design variables are x = [z1 z2 z3 d1 d2 d3 t1 
t2 t3]T. It is implemented in HFSS [9]. We consider three 
models: the high-fidelity Rf (~115,000 tetrahedral mesh cells, 
evaluation time about 25 minutes), and two coarse-
discretization models: R1 (~2,000 mesh cells, evaluation time 
3 minutes), and R2 (~12,000 mesh cells, evaluation time 10 
minutes). The design specifications are: |S11| < –25 dB for 10.4 
GHz to 11.6 GHz. The initial design (cf. Fig. 3) is x(0) = [12.0 
14.0 14.0 14.0 12.0 11.0 1.5 3.0 2.5]T mm. 

The filter was optimized using the algorithm of Section II. 
Figure 4 shows the difference between R1, R2 and Rf at a selected 
design on the optimization path. The high-fidelity model 
response at the final design x* = [12.62 13.54 14.21 15.48 12.48 
11.35 1.78 2.27 1.49]T mm is shown in Fig. 3. It can be observed 
(cf. Table I) that the total optimization cost corresponds to only 
about 4 evaluations of the high-fidelity model.  

For comparison, the filter was optimized using the multi-
fidelity adjoints-based algorithm [11]. Also, the high-fidelity 
model was optimized directly using the trust-region-based 
algorithm with adjoint sensitivities, equivalent to executing 
the algorithm of Section II with K = 1. While all final designs 
are of comparable quality, the design costs of the benchmark 
techniques are 62% and 233% higher, respectively. 

 
 

 
Fig. 1. Return loss of a detuned microwave filter (—) and corresponding 
response features (o) with design specifications (━). 
 

 

 
Fig. 2. Geometry of the 5th-order waveguide bandpass filter [14]. 
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IV. CONCLUSIONS 

A computationally efficient algorithm for design 
optimization of microwave filters has been proposed. It is 
based on variable-fidelity EM simulations and adjoint 
sensitivities, utilizes feature-based optimization, and is 
embedded in a trust region framework to ensure convergence. 
As demonstrated by a waveguide filter example, our technique 
allows considerable savings compared to multi-fidelity 
gradient search as well as direct optimization of the high-
fidelity model (both benchmark methods using adjoints). 
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Fig. 3. Fifth-order waveguide filter: responses of the high-fidelity model Rf at the 
initial (thin lines) and the final (thick lines) designs: |S11| (—) and |S21| (- - -). 
 

 
Fig. 4. Fifth-order waveguide bandpass filter: |S11| responses of the models R1 
(⋅⋅⋅⋅), R2 (- - -) and Rf (—) at one of the designs selected design on the 
optimization path. The plots indicate the differences between the models is 
meaningful, particularly for lower values of |S11|. 

TABLE I. FIFTH-ORDER WAVEGUIDE FILTER: OPTIMIZATION RESULTS 

Algorithm 

Optimization Cost 
max |S11| for 10.4 
GHz to 11.6 GHz 
at Final Design 

Number of 
Model 

Evaluations 

CPU Time 
Absolute 

[min] 
Relative 

to Rf 

Multi-Fidelity 
Feature-Based    

(This work) 

11 × R1 33 1.3 

–30.2 dB 
3 × R2 30 1.2 
2 × Rf 50 2.0 

Total cost: 113 4.5 

Multi-Fidelity 
Trust-Region$

 

11 × R1 33 1.3 

–29.3 dB 
5 × R2 50 2.0 
4 × Rf 100 4.0 

Total cost: 183 7.3 
Trust-Region-

Based#
 

15 × Rf 375 15.0 –26.6 dB 
$ Multi-fidelity trust-region optimization with adjoints [11]. 
# Trust-region optimization of Rf with adjoints (cf. Section II with K = 1). 
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