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Abstract—Space mapping is a recognized method for speeding
up electromagnetic (EM) optimization. Existing space-mapping
approaches belong to the class of surrogate-based optimization
methods. This paper proposes a cognition-driven formulation
of space mapping that does not require explicit surrogates. The
proposed method is applied to EM-based filter optimization. The
new technique utilizes two sets of intermediate feature space
parameters, including feature frequency parameters and ripple
height parameters. The design variables are mapped to the fea-
ture frequency parameters, which are further mapped to the
ripple height parameters. By formulating the cognition-driven
optimization directly in the feature space, our method increases
optimization efficiency and the ability to avoid being trapped in
local minima. The technique is suitable for design of filters with
equal-ripple responses. It is illustrated by two microwave filter
examples.

Index Terms—Cognition-driven design, computer-aided design
(CAD), electromagnetic (EM) optimization, microwave filters,
modeling, space mapping (SM).

I. INTRODUCTION

S PACE MAPPING (SM) is a recognized engineering opti-
mization methodology in the microwave area [1]–[3]. The

SM concept combines the computational efficiency of coarse
models with the accuracy of fine models [1]. Coarse models are
typically empirical functions or equivalent circuits, which are
computationally efficient but demonstrate low accuracy. Fine
models can be provided by an electromagnetic (EM) simulator,
which is accurate but computationally intensive. SM establishes
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a mathematical link between the coarse and fine models and di-
rects the bulk of the CPU-intensive computations to the coarse
models, while preserving the accuracy from the fine models
[2]. Recent progress has focused on several areas, such as a re-
cent review points towards a cognition interpretation of SM [4],
portable SM for efficient modeling [5], three-level output SM
[6], tuning SM [7], shape-preserving response prediction [8],
parallel SM [9] and zero-pole SM [10]. A software implemen-
tation of space mapping such as the SMF framework with appli-
cations such as antenna design have also been described in the
literature [11].
In practical cases, equivalent circuit coarse models are not

always available [12]. Some effort has been focused on this sit-
uation. In [13], to build a coarse model for waveguide filters,
a small number of accessible modes in the method of moments
are considered to obtain a faster simulation at the expense of so-
lution accuracy. In the work of [12], [14]–[16], coarse and fine
mesh EM simulations are used to enable space mapping EM
optimization. Sensitivity information from EM simulations has
been used to increase the effectiveness of space mapping [15],
[17], [18]. The convergence speed in this case is affected by
the difference between fine and coarse mesh EM simulations,
and the continuity of the coarse mesh EM response w.r.t design
variables.
This paper is a significant advance over the work of [15] in

an effort to address the challenge of SM when explicit equiva-
lent circuit coarse models are not available. We exploit the con-
cept of feature parameters to assist the SM, as opposed to use
of coarse-mesh EM in [15]. Several recent works have investi-
gated possible feature parameters in model responses. In [19],
using the differences between return loss and transmission loss
at maxima in the passband and minima in the stopband as the
objective function, the coefficients of the characteristic polyno-
mial for a filter are optimized to reach equiripple passband and
stopband responses. Theories for the synthesis of multiple cou-
pled resonator filters go back many years [20], [21], and zeros
and poles of filter transfer functions are used as feature param-
eters for optimization in [10] and [22]. In [23] and [24], feature
parameters of filter responses are used for SIW filter tuning and
statistical analysis of microwave structures.
This paper aims to explore the use of intermediate fea-

ture space parameters in SM. We propose a cognition-driven
formulation of space mapping for equal-ripple optimization
of microwave filters. It is suitable for EM-based design of
Chebyshev- and elliptic-type responses. The proposed SM
can proceed with neither explicit coarse models nor explicit
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surrogate models. In our method, the intermediate feature space
parameters, including the feature frequency parameters and
ripple height parameters, are used to set up two new kinds of
space mapping. The design variables are mapped to feature
frequency parameters, which are further mapped to the ripple
height parameters, thus the concept of SM in our optimization.
By formulating the cognition-driven optimization directly
in the feature space, our method can increase optimization
efficiency and ability to avoid being trapped in local minima.
This technique is illustrated by two microwave bandpass filter
examples.
We think of our technique as “cognitive” [4] in the sense that

a meaningful coarse or surrogate model is implied by the engi-
neer's intuition and experience.
This paper is organized as follows. In Section II, the design

optimization problem is outlined, and the challenges of EM op-
timization are described. In Section III, our proposed cogni-
tion-driven formulation of SM formicrowave filter optimization
is introduced, and details of the new algorithm are provided. In
Section IV, we demonstrate the EM optimization of two mi-
crowave bandpass filter examples, confirming the efficiency of
our proposed approach to cognition-driven optimization.

II. ORIGINAL OPTIMIZATION PROBLEM
Let denote the response corresponding to a vector of

design variables and frequency . The original optimization
problem is formulated as follows:

(1)

where is a suitable objective function, typically minimax
objective function [25], which represents the error function of

with respect to the design specifications, and is the
optimal design to be found.
The convergence of optimization is efficient when the objec-

tive functions are relatively smooth and/or the initial values are
of good quality. However, when the objective functions contain
traps of local minima and the initial values are not within the
neighborhood of a good solution, gradient-based optimization
may easily be trapped into local solutions. An example is the
filter design shown in Fig. 1(a), (c), and (e). As shown in the
figures, because the reflection zeros of the four-pole filters are
not all within the specification range, the optimization process
will force only three poles to contribute to the filter passband re-
sponse, while the remaining one pole is excluded from helping
the passband response. Suitable optimization techniques, such
as nongradient-based methods, may help alleviate some of the
above-mentioned problems, usually at the cost of longer CPU
time. In this paper, we explore an efficient approach to solve the
problem using feature parameters and formulations inspired by
human design intuition.

III. PROPOSED SPACE MAPPING TECHNIQUE FOR
MICROWAVE OPTIMIZATION

A. Feature Space Parameters
Our cognition-driven approach is motivated by the intuitive

(cognitive) design process of the experienced filter designer.

Fig. 1. Optimization of the four-pole waveguide filter: (a), (c), (e) Responses
during quasi-Newton optimization iterations, where only three poles are forced
to contribute passband response: (a) initial, (c) iteration 50, (e) and iteration
300. (b), (d), and (f) Proposed cognition-driven space mapping iterations.
(d) Proposed method adjusts the frequency locations of reflection zeros to the
passband in the first stage. (f) Then the frequency locations of reflection zeros
are adjusted according to the ripple height parameters.

The designer would firstly adjust the frequency locations of re-
flection zeros relative to the passband, rather than trying to push
the -parameter values in the initial design stage. In subsequent
design stages, the designer would adjust the ripple height using
the fact that making two frequency locations of reflection zeros
closer (further apart) will reduce (increase) the height of the
passband ripple in the frequency response curve. This process is
illustrated in Fig. 1(b), (d), and (f). By adopting such a concept,
we reformulate the design optimization by introducing new fea-
ture parameters for the design, i.e., we define a new feature pa-
rameter space, called the feature frequency space as follows.
For an equal-ripple bandpass filter, the filter response curve

(e.g., versus frequency) has several minima which are re-
ferred to as feature frequencies, and several maxima which are
referred to as ripples. The feature frequencies correspond to the
reflection zeros at which the filter has maximum transmission.
We propose to use feature frequencies as feature space parame-
ters for spacemapping. For example, Fig. 2(a) shows a four-pole
waveguide filter, and Fig. 2(b) shows in decibels of this
filter, where the feature frequencies are
important features of the response curve and are used by
our technique as intermediate feature space for a new formu-
lation of space mapping. We perform space mapping between
physical/geometrical design variables (i.e., the original opti-
mization variables) and the feature frequency parameters .
Themaximum values of in decibels between these feature

frequency points are also important features of the response
curve and are represented by a new set of feature parameters
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Fig. 2. Four-pole waveguide filter. (a) Simulation structure. (b) Proposed fea-
ture parameters and in the filter response.

called ripple height parameters similar to that
used in [23] and [24].
In our proposed formulation of space mapping, we obtain

the feature frequency parameters and the
ripple parameters from the results of an
EM simulation, where represents the number of poles of the
filter.
At the beginning of our proposed method, we generate mul-

tiple sample points with star distribution around the current so-
lution point in the th iteration of space mapping. We per-
turb twice along each dimension, once towards the positive
direction, and once towards the negative direction. In this way,
we find 2 points of response, where is the number of design
variables. Let represent the points of
the star distribution with as the center, i.e., , and the
remaining 2 points in the neighborhood of the center. When
the optimization process moves to the next iteration, the center
of the star distribution moves from to . We perform
EM simulations at all the 2 data points to obtain the re-
sponses at , using 2 processors in parallel [9],
and subsequently obtain and , for .
In this way, the basic data available in the th iteration includes
the feature frequency parameters and the ripple height pa-
rameters , which equal and , respectively. Because our
algorithm uses parallel computation to perform the EM
simulations simultaneously, the total computation time for the

EM simulations is similar to (or only incrementally more
than) that of a single EM simulation.

B. Mapping from Space to the Space

With this basic data, we can build the mapping from the
design variables to the feature frequency
parameters as follows:

(2a)

(2b)

is the Jacobian matrix of . We evaluate the
matrix using the EM solutions over the 2 star distribution
points as

(3)

where is the th element of , and is the perturbation
of in the star distribution. is defined as a vector con-
taining zero everywhere except the th element, which is ,
i.e.,

(4)
We incorporate the trust region mechanism [26] into our for-

mulation of optimization. When this mapping is built, we can
solve for the step in the th iteration by

(5)

where is the trust radius, represents the desired fre-
quency vector, and is the Jacobian matrix of in the th
iteration.

C. Stage 1: Adjustment of Locations of Feature Frequencies

In the first stage, the passband specified for the filter is di-
vided into equal parts. The desired feature frequency
parameters in the first stage are designated as

(6)
where and mean the lower and higher frequency edge
of the filter passband, respectively. Both and are con-
stants determined a priori according to the desired filter pass-
band. Now we can calculate by solving (5) using
for the first stage.
Once is determined, we generate sample points

with star distribution in parallel around the new center
and perform these EM simulations in parallel. The

feature frequency parameters and the ripple height param-
eters are determined at .
Then, we calculate the adjustment index for the trust radius

as part of the trust region procedure. If the dimensions of feature
space parameters change, is set to be 1. Otherwise, can be
obtained by

(7)

where is the objective function for the first stage defined as

(8)

The stopping criterion for the first stage is shown as follows:

(9)
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where is a user-defined threshold for the first stage. By
doing this, all of the feature frequency points will move to
the passband, and will have approximately equal distance
between each two adjacent feature frequency points. Therefore,
the first stage helps to avoid being trapped in a local minimum.

D. Stage 2: Mapping from Space to Space and Adjustment
of Ripple Height
In the second stage, we perform the second kind of mapping,

i.e., from the feature frequency parameters to the ripple height
parameters as follows:

(10)

where represents the desired ripple height pa-
rameters, and and are
mapping coefficients between the and spaces. To find the op-
timal filter solution, the ripples should be equal, which means
every element of should be the same. Let be defined as
the average value of , i.e.,

(11)

To make every element of equal, we set

(12)

By doing this, we translate optimization problem (1) into the
space with a new criterion, which is that the variance
of is minimized to be smaller than a user-defined threshold

(13)

When this new criterion is reached, the optimization process
stops. If not, we determine the mapping between the space and
the space. To do this, we firstly determine the matrix and
vector by the following training process:

(14)

where the training error function is defined as

(15)

After and are found from (14) and (15), the map-
ping between the and spaces is determined. We will use the
mapped to deduce the desired value of the vector, for the
feature parameters in the space. We introduce a new vector

, which satisfies

(16)

where represents the desired frequency vector and rep-
resents the current actual frequency parameters. In order to find

in the second stage, we need to solve for . After the first
stage, we assume that (9) is satisfied. Therefore, any changes to

and will influence the passband. We need to refine

the values of and according to . First, we
find two frequency points and in the EM responses which
can satisfy

(17a)

(17b)

where and is the number of frequency
points per EM simulation. These two frequencies and ,
approximately representing the lower and upper frequencies of
the current frequency band, are compared with the desired lower
and upper frequencies and . Then, and are
obtained by solving

(18a)
(18b)

Equations (17) and (18) try to refine the passband location. Then
we regard and as constant value and obtain by
solving

(19)

Using (16), can be obtained from .
Next, we perform SM from the space to the space by

solving (5).
Once is determined, we perform EM simula-

tions using the star distribution in parallel around the new center
, and subsequently we can get the feature frequency

parameters and the ripple height parameters at
.

We calculate the adjustment index for the trust radius. If
the dimensions of feature space parameters change, is set to
be 1. Otherwise, can be obtained by

(20)

where is defined as

(21)

Notice that the computation for trust region parameters in
Stage 2 [described by (20) and (21)] are different from that in
Stage 1 [described by (7) and (8)].

E. Update of Trust Region
After we get for both stages, we should update the radius

of the trust region using the following equation [26], [27]:

if
if
otherwise

(22)

where is the maximum value of the trust radius and decide
whether or not to accept this step .
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If the dimension of remains the same as , and the
following condition:

(23)

is satisfied in the first stage or the condition

(24)

is satisfied in the second stage, we accept the step and up-
date the design variables as

(25)

At the same time, we set , and .
In this way, both the original design variables and the trust

radius are updated, thereby completing one iteration of the pro-
posed space mapping.
Otherwise (i.e., if the dimensions of feature space parameters

change, or neither (23) nor (24) is satisfied), will be kept
unchanged, and a new is calculated by solving (5) with the
updated trust radius .
To make our proposed method more robust, we terminate

the algorithm if one of the following conditions is satisfied:
or [28].

F. Stepwise Algorithm

The flowchart of the proposed space mapping technique is
shown in Fig. 3. The proposed algorithm can be summarized as
follows.
Step 1) Initialize and at .
Step 2) Set to be equal to . Create multiple points

using a star distribution sam-
pling strategy with the center . Evaluate
multi-point fine responses by performing
EM simulation using parallel computation for

.
Step 3) Determine the feature frequency parameters and

the ripple height parameters .
Step 4) If the stopping criterion of the first stage (9) is not

satisfied, go to step 5), else go to step 9).
Step 5) Obtain the first mapping matrix by solving

(3)–(4) and get by (6).
Step 6) Obtain the prospective step by solving (5).
Step 7) Perform parallel EM simulations at star

distribution points around the new center
. Obtain the feature parameters and at

, and find using (7)–(8). Update trust
radius by solving (22) according to the value
of .

Step 8) If the dimension of remains the same as ,
and , then we update the de-
sign variable , set

, and set . Update iteration counter
, and go to step 4). Otherwise, keep

unchanged, set , and go to step 6).
Step 9) If the stopping criterion of the second stage (13) is

satisfied, STOP, otherwise, go to step 10).

Step 10) Obtain by solving (3)–(4) and get the second
set of mapping matrices by solving
(14)–(15), then find by solving (10)–(12) and
(16)–(19).

Step 11) Obtain the prospective step by solving (5).
Step 12) Perform parallel EM simulations at star dis-

tribution points around the new center .
Get the feature parameters and at

, and find using (20)–(21). Update trust radius
by solving (22) according to the value of .

Step 13) If the dimension of remains the same as ,
and , then we update the
design variables , set

, and set . Update iteration counter
, and go to step 9). Otherwise, keep

unchanged, set , and go to step 11).

G. Discussion
There are two kinds of challenges for EM optimization of

filter design, the first being the challenge of a computationally
bad starting point, but one with the correct number of feature
frequencies, and the second the ability to correct the number of
feature frequencies if the initial point has the wrong number of
feature frequencies. In this paper, we focus on the solution to the
first challenge. The second challenge, which is equally impor-
tant and a heavy task, is a possible direction of future research.
In our present work, we have used an empirical approach to pre-
process the starting point using derivative information of the re-
sponse shape to guide the correction of the number of the feature
frequencies iteratively. Once the correct number of feature fre-
quencies is reached, the proposed trust region method in the two
different optimization stages will maintain the number of fea-
ture frequencies throughout the proposed optimization process.

IV. EXAMPLES

A. Optimization of a Four-Pole Waveguide Filter
The first example under consideration is a four-pole wave-

guide filter [13]. The tuning elements are penetrating posts of
square cross section placed at the center of each cavity and each
coupling window, shown in Fig. 2(a). The input and output
waveguides, as well as the resonant cavities, are standard
WR-75 waveguides 19.050 mm 9.525 mm . The
thickness of all of the coupling windows is set to 2 mm. , ,
and are the heights of posts in the coupling windows, and

, are the height of the posts in the resonant cavities. The
design variables are .
If the EM simulation uses discrete frequency simulation, then

sufficiently small frequency steps are needed to detect all feature
frequency points. In our work, the EM evaluation is performed
by the ANSYS HFSS EM simulator using the fast simulation fea-
ture. With this simulation feature, we can get the -parameter
response over the entire frequency range of interest without a
discrete frequency sweep. Such a fast frequency sweep uses an
adaptive Lanczos-Padé sweep (ALPS)-based solver to extrapo-
late the field solution across the requested frequency range from
the center frequency field solution. The desired filter responses
have been chosen to be standard four-pole Chebyshev curves of
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Fig. 3. Flowchart of the proposed cognition-driven space mapping technique.

Fig. 4. Comparison of the results for three different optimization methods for the four-pole waveguide filter example. (a) Starting point for all three methods.
(b) Using our proposed space mapping method, all of the feature frequencies move to the passband after the first stage. (c) A good equal-ripple response is obtained
after seven iterations, and our method can avoid being trapped in a local minimum. (d) Using coarse and fine mesh space mapping, the optimization process falls
into a local minimum. (e) Using direct EM optimization, the optimization process falls into a local minimum.

300-MHz bandwidth, 0.02-dB ripple, and centered at 11 GHz.
The specification on the magnitude of in the passband is
23.4 dB, corresponding to 0.02-dB ripple in . The starting

point is (all values in
millimeters). From the second iteration, the parameters are
found to be (all values
in decibels).
Using the proposed technique, the optimal solution

(all values in millimeters)
is obtained after seven iterations, and the final ripple vector

(all values in decibels).

The responses from the initial point, the first and the last itera-
tions are shown in Fig. 4(a)–(c), respectively. Fig. 4(b) shows
that all of the feature frequencies move to the passband after
the first iteration. Fig. 4(c) shows that our proposed method
can avoid being trapped in a local minimum and that a good
equal-ripple filter response is obtained after seven iterations.
The values of objective function for all of the iterations are
shown in Fig. 5. From the figure, we observe that using our pro-
posed space mapping method the filter response can satisfy the
design specifications in two iterations and it can even exceed the
specifications in subsequent iterations. in the first stage and
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Fig. 5. Objective function values of the four-pole waveguide filter response
using: the proposed SM method (o) and coarse and fine mesh space mapping
method (x). The objective function in the coarse and fine mesh space mapping
optimization cannot be reduced further because it falls into a local minimum.
Our proposed method can avoid being trapped in a local minimum and finds a
good filter response in seven iterations.

Fig. 6. Feature space objective functions and (i.e., ) for the four-
pole waveguide filter example. The first stage goes in the first iteration, and the
second stage runs from the second iteration to the seventh iteration. Both
and converge fast.

the variances of in the second stage of our proposed method
are shown in Fig. 6. We set the threshold . Smaller (or
larger) values for tend to make the ripple heights more (or
less) uniform using more (or less) overall computation time. In
this example, both and the variance of converge fast.
For comparison purposes, we use the baseline coarse and

fine mesh space mapping optimization method [14] to optimize
this filter. The coarse mesh EM optimizations for the surro-
gate training and for surrogate optimization are both carried out
using High-Frequency Structure Simulator’s (HFSS’s) internal
quasi-Newton optimizer. The value of the objective function for
each iteration is shown in Fig. 5, from which we found that the
coarse and fine mesh space mapping optimization process falls
into a local minimum. The space mapping iterations stopped at
this point because the updates by surrogate optimization cannot
lead to any improvement in the fine model responses. The com-
parison of the results for different methods, including direct EM
optimization (using HFSS Optimetrics quasi-Newton optimiza-
tion), coarse and fine mesh space mapping method and our pro-
posed method is shown in Fig. 4 and Table I. In the coarse and
finemesh SMmethod, the training time and the design optimiza-
tion time are very long because of coarse mesh EM simulation.
In our method, the training process, which means solving map-
ping matrices , , and , and the design optimization process,
which is to solve (5), only do algebraic calculations, so our fea-
ture SM method saves much time. Our proposed method uses
eleven (i.e., ) EM simulations per iteration, which is more

TABLE I
COMPARISONS OF THREE METHODS FOR THE WAVEGUIDE FILTER

than by existing techniques, such as coarse and fine mesh space
mapping. Because these eleven simulations are completely in-
dependent of each other, our technique is well suited for parallel
computation, making the total computation time (6 min) for the
11 EM simulations to be only incrementally more than a single
EM simulation (4 min). The total number of optimization itera-
tions is much reduced in our technique because of the increased
amount of useful information available from EM sim-
ulations in each iteration. As observed in Table I, our method
can increase the optimization efficiency and find a better result
within less time compared to coarse and fine mesh EM SM and
direct EM optimization.
As a further experiment about robustness of the proposed

optimization for this filter example, we use a much worse
starting point
(all values in mm) to rerun our proposed method.
Using the proposed technique, the optimal solution

(all values in
millimeters) is obtained after eight iterations, and the final
ripple vector (all
values in decibels). The responses from the initial point,
the last iteration of the first stage and the last iteration of
proposed method are shown in Fig. 7(a)–(c), respectively. A
preprocessing step was used to create a usable starting point,
which is shown in Fig. 7(a), with the correct number of feature
frequencies, i.e., four. During the optimization process, if EM
simulations occasionally produce the wrong number of (e.g.,
three) feature frequencies, our trust region mechanism will
shrink the step size until the number of feature frequencies
returns to 4, at which point the optimization update then takes
place. Fig. 7(b) shows that all of the feature frequencies move
to the passband after the first stage. Fig. 7(c) shows that our
proposed method can avoid being trapped in local minima
and that a good equal-ripple filter response is obtained after
eight iterations. The values of objective function for all the
iterations are shown in Fig. 8. From the figure, we observe that
using our proposed space mapping method the filter response
can satisfy the design specifications in eight iterations. in
the first stage and the variances of in the second stage of our
proposed method are shown in Fig. 9.
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Fig. 7. Comparison of the results for three different optimization methods for the four-pole waveguide filter example with bad starting point. (a) Bad starting point
for all three methods. (b) Using our proposed SM method, all of the feature frequencies move to the passband after the first stage. (c) Good equal-ripple response
is obtained after eight iterations, and our method can avoid being trapped in a local minimum. (d) Using coarse and fine mesh space mapping, the optimization
process falls into a local minimum. (e) Using direct EM optimization, the optimization process falls into a local minimum.

Fig. 8. Objective function values of the four-pole waveguide filter response
with bad starting point using: the proposed spacemappingmethod (o) and coarse
and fine mesh space mapping method (x). The objective function in the coarse
and fine mesh SM optimization cannot be reduced further because it falls into a
local minimum. Our proposed method can avoid being trapped in a local min-
imum and finds a good filter response in eight iterations.

Fig. 9. Feature space objective functions and (i.e., ) for the four-
pole waveguide filter example with bad starting point. The first stage goes from
the first iteration to the fourth iteration, and the second stage runs from the fifth
iteration to the eighth iteration. Both and converge fast.

For comparison purposes, we also use the baseline coarse and
finemeshSMoptimizationmethod[14] tooptimize thisfilter.The
value of objective function for each iteration is shown in Fig. 8,
from which we found that the coarse and fine mesh space map-
ping optimization process falls into a local minimum with filter

TABLE II
COMPARISONS OF THREE METHODS FOR THE WAVEGUIDE FILTER WITH BAD

STARTING POINT

The number of EM simulations, which are not accepted during trust region
adjustment

Fig. 10. Structure of the waveguide cavity filter.

responses still violatingdesign specifications.Wealsoperformed
direct EM optimization of this filter example for a further com-
parison. With the same starting point and same design specifica-
tions, the direct EM optimization also falls into a local minimum
withfilter responses violatingdesign specifications.The compar-
ison of the results for different methods, including direct EM op-
timization, coarse and fine mesh space mapping method and our
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Fig. 11. Comparison of the results for three different optimization methods for the cavity filter example. (a) Starting point for all three methods. (b) Using our pro-
posed space mapping method, all the feature frequencies move to the passband after the first stage. (c) Good equal-ripple response is obtained after four iterations,
and our method can avoid being trapped in a local minimum. (d) Using coarse and fine mesh space mapping, the optimization process falls into a local minimum.
(e) Using direct EM optimization, the optimization process falls into a local minimum.

Fig. 12. Objective function values of the cavity filter response using: the
proposed space mapping method (o) and coarse and fine mesh space mapping
method (x). The objective function in the coarse and fine mesh space mapping
optimization cannot be reduced further because it falls into a local minimum.
Our proposed method can avoid being trapped in a local minimum and finds a
good filter response in four iterations.

proposed method is shown in Fig. 7 and Table II, demonstrating
that the proposed method has the shortest optimization time and
best quality of solutions among the different methods compared.

B. Optimization of an Iris Coupled Microwave Cavity Filter
Consider an iris coupled cavity microwave bandpass filter

shown in Fig. 10 [29]. The filter has seven geometrical design
parameters described as follows. The heights of the big cylin-
ders , , and positioned at the cavity centers are re-
sponsible for tuning the frequencies in the cavity. The required
coupling bandwidths are accomplished via the iris widths ,

, , and for a pre-tuning. The design variables are
.

EM evaluation is performed by the HFSS EM simulator
using the fast simulation feature. We provide the design
specifications 20 dB at a frequency range of

Fig. 13. Feature space objective functions and (i.e., ) for the
cavity filter example. The first stage goes in the first iteration, and the second
stage runs from the second iteration to the 4th iteration. Both and
converges fast.

TABLE III
COMPARISONS OF THREE METHODS FOR THE CAVITY FILTER

703–713 MHz and 10 dB at frequency range
of 690–701 MHz and 715–720 MHz. The starting point is
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Fig. 14. Comparison of the results for three different optimization methods for the cavity filter example with bad starting point. (a) Very bad starting point for all
three methods. (b) Using our proposed space mapping method, all the feature frequencies move to the passband after the first stage. (c) Good equal-ripple response
is obtained after twelve iterations, and our method can avoid being trapped in a local minimum. (d) Using coarse and fine mesh space mapping, the optimization
process falls into a local minimum. (e) Using direct EM optimization, the optimization process falls into a local minimum.

(all values in millimeters). From the second iteration, the
parameters are found to be

(all values in decibels).
Using the proposed technique, the optimal solution

(all values in millimeters) is obtained after four iterations, and
the final ripple vector

(all values in decibels). The responses from the initial
point, the first and the last iterations are shown in Fig. 11, from
which we observe that our method can avoid being trapped in a
local minimum and achieve a good equal-ripple filter response
in four iterations. The values of objective function are shown in
Fig. 12, which further shows our method avoids being trapped in
a local minimum. We set the threshold . in the first
stage and the variances of in the second stage of our proposed
method are shown in Fig. 13, and both and converge
fast. From the final filter response in Fig. 11(c), we find that the
best equal-ripple filter solution has already been found.
For comparison purposes, we use the coarse and fine mesh

space mapping method [14] to optimize this filter, and the value
of objective function for each iteration is shown in Fig. 12,
from which we observe that the coarse and fine mesh space
mapping optimization process falls into a local minimum. The
comparison of the results for different methods, including direct
EM optimization, coarse and fine mesh space mapping method
and our proposed method is shown in Fig. 11 and Table III.
Our proposed method uses 15 (i.e., ) EM simulations
per iteration, which is more than by existing techniques, such
as coarse and fine mesh space mapping. Because these 15
simulations are completely independent of each other, our
technique is well suited for parallel computation, making the
total computation time (40 min) for the 15 EM simulations
to be only incrementally more than a single EM simulation
(30 min). The total number of optimization iterations is much
reduced in our technique because of the increased amount of

useful information available from EM simulations in
each iteration. Our space mapping method can increase the
optimization efficiency and find a better result within less time
compared with coarse and fine mesh EM space mapping and
direct EM optimization.
As a further experiment on the robustness

of the proposed optimization for this filter
example, we use a much worse starting point

(all values in mm) to rerun our proposed method.
Using the proposed technique, the optimal solution

(all values in mm) is obtained after 12
iterations, and the final ripple vector

(all values in dB). The responses from initial point, the last
iteration of the first stage and the last iterations are shown in
Fig. 14(a)–(c), respectively. A preprocessing step was used to
create a usable starting point, which is shown in Fig. 14(a),
with correct number of feature frequencies. Fig. 14(b) shows
that all of the feature frequencies move to the passband after
the first stage. Fig. 14(c) shows that our proposed method can
avoid being trapped in a local minimum and that a good
equal-ripple filter response is obtained after 12 iterations. The
values of objective function for all of the iterations are shown
in Fig. 15. From the figure, we observe that using our proposed
space mapping method the filter response can satisfy the
design specifications in 11 iterations. in the first stage and
the variances of in the second stage of our proposed method
are shown in Fig. 16. Both and converge fast.
For comparison purposes, we also use the baseline coarse

and fine mesh space mapping optimization method [14] to op-
timize the filter, and the value of objective function for each
iteration is shown in Fig. 15, from which we observe that the
coarse and fine mesh space mapping optimization process falls
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Fig. 15. Objective function values of the cavity filter response with bad starting
point using: the proposed space mapping method (o) and coarse and fine mesh
space mapping method (x). The objective function in the coarse and fine mesh
space mapping optimization cannot be reduced further because it falls into a
local minimum. Our proposed method can avoid being trapped in a local min-
imum and finds a good filter response in twelve iterations.

Fig. 16. Feature space objective functions and (i.e., ) for the
cavity filter example with bad starting point. The first stage goes from the first
iteration to the ninth iteration, and second stage runs from the tenth iteration to
the twelfth iteration. Both and converge fast.

TABLE IV
COMPARISONS OF THREE METHODS FOR THE CAVITY FILTER WITH BAD

STARTING POINT

The number of EM simulations, which are not accepted during trust region
adjustment.

into a local minimum. With the same starting point and same
design specifications, the direct EM optimization is also per-
formed for additional comparison. The direct EM optimization
also falls into a local minimum with filter responses violating

the design specifications. The comparison of the results for dif-
ferent methods, including direct EM optimization, coarse and
fine mesh space mapping method and our proposed method is
shown in Fig. 14 and Table IV. Our space mapping method
can increase the optimization efficiency and find a better result
within less time compared with coarse and fine mesh EM SM
and direct EM optimization.

V. CONCLUSION
In this paper, a cognition-driven formulation of space map-

ping optimization ofmicrowave filters has been proposed. In our
method, two sets of intermediate feature space parameters, in-
cluding the feature frequency and ripple height parameters, are
used to build two kinds of mapping. A trust region approach has
been incorporated to control the optimization updates, thus en-
suring convergence of the proposed cognition-drive optimiza-
tion. By using the proposed cognition-driven formulation of
optimization directly in the feature space, our method can in-
crease optimization efficiency and the ability to avoid being
trapped in a local minimum over our baseline approaches of
coarse and fine mesh EM space mapping and direct EM opti-
mization. This technique is well-suited to the EM based design
of Chebyshev- and elliptic-type filters, which are characterized
by equal-ripple responses.We believe that further exploration of
the cognition-driven formulation and the use of feature param-
eters for design optimization is highly promising. One possible
future direction is to develop a systematic method for prepro-
cessing the optimization starting point to correct the number of
feature frequencies. Another possible direction is to incorporate
more specific filter design knowledge into the cognition-driven
formulation to further enhance optimization. The third possible
direction is to expand the cognition-driven concept with more
general feature parameters to advance EM based design beyond
Chebyshev- and elliptic-type filters to more generic filters and
other microwave circuits.
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