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Minimax Optimization of Networks by Grazer Search

JOHN W. BANDLER, MEMBER, IEEE, THANDANGORAI V. SRINIVASAN,
AND CHRISTAKIS CHARALAMBOUS

Abstract-A new optimization method called grazer search has

been developed. This method is suitable for nonlinear minimsx
optimization of network and system responses. A linear program-
ming problem using gradient information of one or more highest

ripples in the response error function to produce a downhill direction

followed by a linear search to find a mkdmum in that direction is

central to the algorithm. Unlike the razor search method due to

Bandler and Macdonald, the present method overcomes the prob-
lem of dkcontinuous derivatives characteristic of minimax objec-
tives without using random moves. It can fully exploit the advantages

of the adjoint network method of evaluating partial derivatives of the
response function with respect to the variable parameters. Sutllcient
details are given to enable the grazer search method to be readily
programmed and used. Although the method is intended for the
computer-aided solution of an extremely wide range of design prob-
lems, it is largely compared with other methods on microwave net-
work design problems, for which the solutions are known. Its re-
liability and efficiency on more arbitrary problems, examples of which

are also included, is thereby established.

INTRODUCTION

T

HE MI NIMAX algorithm due to Osborne and

Watson [1 ]– [3 ] deals with minimax formulations

by following two steps—a linear programming

part that provides a given step in the parameter space,

followed by a linear search along the direction of the

step. This algorithm is very similar to the one proposed

by Ishizaki and Watanabe [4] and works very well if

the objective function is not highly nonlinear in the vi-

cinity of the optimum. In cases when the linear approxi-

mation is not very good in the vicinity of the optimum,

this method may fail to converge toward the optimum

for successive iterations.

The razor search method of Bandler and Macdonald

[5], [6], which has been used to optimize microwave

networks by computer [7], was developed to minimize

the maximum deviation of some network response from

an ideal response specification. The direct minimax

formulation that they employed gives rise, in general,

to discontinuous partial derivatives of the objective

function with respect to the variable parameters. For

this reason and because general and efficient methods of
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evaluating derivatives of distributed network responses

with respect to network parameters did not at that time

appear to be available, only methods not requiring

derivatives were considered. The razor search method as

presented by Bandler and Macdonald is based on pat-

tern search [8]. A few random moves are used in an

effort to negotiate certain kinds of “razor sharp” valleys

in multidimensional space [5].

A more recent algorithm due to Bandler and Lee-

Chan [9] exploits the gradient information of the ex-

trema of the error function to get a downhill direction

by solving a set of simultaneous equations. The method

works well except that in the case of linear dependence

of the equations, some problems may arise in the con-

vergence toward the optimum, Another method pro-

posed by Heller [10] uses a quadratic programming ap-

proach to solve the minimax problem, but consumes a

considerable amount of computer time.

A new algorithm called the grazer search method has

been developed in which gradient information of one or

more of the highest ripples in the error function is used

to produce a downhill direction by solving a suitable

linear programming problem. A linear search follows to

find the minimum in that direction, and the procedure is

repeated. This type of descent process is repeated with

as many ripples as necessary until a minimax solution is

reached to some desired accuracy. The algorithm is

compared numerically with the razor search method

and another based on the Osborne and Watson al-

gorithm on the optimization of commensurate and non-

commensurate transmission-line matching networks,

for which the optima are known. Examples of the ap-

plication of the grazer search method in this paper also

include the design of microwave filters. Response gradi-

ents are evaluated using the results of one network

analysis by the adjoint network method [11], [12].

THE GRAZOR SEARCH STRATEGY

The grazer search algorithm is a generalization of the

gradient razor search method [9] and is basically of the

steepest descent type. I n this case, suppose we have the

problem of minimizing

u(+) = I::,x y,(+) (1)

where @ denotes the k independent parameters, 1 is an

index set relating to discrete elements corresponding to



BANDLER etU1.: MINIMAX OPTIMIZATION OF NETWORKS .597

the i, and the yi are real nonlinear differentiable func-

tions generally.

This minimax approximation problem consists of

finding a point $ such that

U(J) = m$ rn~ y,(+). (2)

Theoretical Considerations

Define a subset JcI such that

where ~j denotes a feasible point at the beginning of the

jth iteration and d is the tolerance with respect to the

current maxier yi(+~) within which the y, for i~J lie.

Linearizing y< at +~, we can consider the first-order

changes

($y~(+~) = v~yi(@)A&, ; G J(+f, d) (5)

I I
Function Y

I

I

1

f
I

I
Submutme ANAL

I

where A denotes incremental changes and v denotes the

first partial derivative operator with respect to the
Fig. 1. Block diagram summarizing the computer program structure

and illustrating the relative hierarchy of the subprograms.

parameter vector ~.

A sufficient condition for A@ to define a descent di-
13efore proving the convergence of the algorithm it

rection for U(+j) is

VTY,(+9AW’ <0, -i G J(~~, ej).

Consider

Equation (6) may now be written as

which suggests the linear program: maximize

subject to

may be worth restating the following lemma due to

(fj) Farkas (see, for example, Lasdon [14]).

Let {PO, PI, . “ “ , pn } be an arbitrary set of vectors.

There exist ~, >0 such that

(7)
n

PO = ~ fiiP% (13)
i= 1

(g) if and only if

(9)
PoTq 20

for all q satisfying

(14)

PiTq 2 0, i=l,2, . . ..m (15)

(lo) It therefore is possible to find nonnegative values of

a,$’ in the expression for (7) if and only if

(–A@T(-A@) >0 (16)

where (14) and (15) correspond to (16) and (17), respec-

(12) tively, and –A~~, Vyi(+~), –A+j take the place of

pa, Pi, q.

plus (8) and (9), where & denotes the number of ele- Now (16) is always satisfied, though it may not be

ments of ~(~~, e$). Note that if A@’= O for e~= O, the possible to satisfy (17) if ~j is too large. By suitably de-

necessary conditions for a minimax optimum are satis- creasing d, (17) may be forced to hold.

fied at & (see Bandler [13 ]). Observe that J is non-

empty and that if J has only one element, we obtain the
Practical Inzplementation

steepest descent direction for the corresponding maxi- Fig. 1 illustrates how the different subroutines are

mum of the y~(~). called and their relative hierarchy. Flow charts of sub-
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I
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no
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yes s
Fig. 2. Mathematical flow diagramof subroutine Gruw’oR (ao, ti, /3,

e,e’, v,@’, +i, k,k,, n, n,, UbO, TERM).
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i
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i+ 2,n
)

t

Yx + Yi

I

yes

n= +

t

kd+l

I
*

I ‘n= + ‘i

I ‘“”T + ‘x

L–+ Y=+ Y*

t
Call TGSORT(YOj, jm,nr) to SOrt
the yoj in decreasing values and

.jm identifies the mth highest Of the Yoj

?m + YOjm
m+l ,n

& + *c, jm
r

?

return

‘0 kd + .1

IN

= -1

ZzIcl

Fig.3. Mathematical fl~w diagram of subroutine
SELEC (1#’, +i, in, k, ?2, %, j~).

routines GRAZOR, SELEC, and GOLDEN appear in Figs.

2–4. See Appendix for further details and definitions.

tl($~) is calculated by subroutine LOCATE.

As given by linear programming [15], A@~ is normal-

ized to A+n~=A@~/]lAI$~l] (subroutine NORM). Starting at

~~, a step cY~A@fi~ is taken for cr~=a.j; if no improvement

in U results, a~ is reduced by factors of P until a better

point is obtained or a~ < &. Let aj* produce the first im-

proved point from +j. Then A~ = a~*A@n~ is defined.

Next a method based on golden section search (sug-

gested by Temes [16]) is used to find the 7’* correspond-

ing to the constrained minimum value of max;E1 y;(+~

+y~A@’). The jth iteration ends by setting ~’+’= ~~

+yj*A~ and aO~+l =a~*7i*,

In Fig. 4, T = ~ (1 + ~~) is the factor associated with

the golden section. Subscripts 1 and u denote lower and

upper limits, respectively, and a and b denote interior

points of the interval of search. An attempt to bound

the minimum is made. Then golden section search is

used to locate the minimum to a desired accuracy. The

search is terminated when the resolution between two
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7
YL+ra
Y= + Yb

ua+~

,~ + Yt+(Yu-YL)/

yes

Ya + Y~+(Yu-Y~)h2

Y’ + Yb

u4+Lg

/- -1

Fig. 4. Mathematical flow diagram of subroutine
GOLDEN (y*, q, +, +’, AP, +., k, %, U+, U+.).

interior points falls below a factorq of the initial inter-

val.

In Fig. 3, the maxima implied by the functions y;,

sampled in a certain order, are located and sorted out in

decreasing magnitude [17 ].

Fig. 2 shows the grazer search strategy. Note that in

setting up Ax = b, slack variables (x~,+~, x~,+3, . . . ,

XW,+l) are introduced. We try to generate a descent di-

rection based on the gradient of the maximum function

(k, = 1), proceed to the minimum of U in that direction,

and repeat the process. If, at any stage, this process or

the linear program does not yield a direction of decreas-

ing U, or does not provide an improvement greater than

q the procedure is repeated after including the function

corresponding to the next largest of the current n, dis-

crete local maxima (i. e., ripples) if one exists. When all

local maxima have been included and U can still not be

reduced or improved satisfactorily by a value greater

than t, we repeat the procedure with k, functions corre-

sponding to the first k, largest of the candidates, begin-

ning with k,= 1, in another series of attempts to reduce

U. The algorithm terminates only when there are no

Fig. 5.

I 2 3
ZI

Example illustrating how the grazer search strategy follows
the narrow path of discontinuous derivatives.

more suitable functions left and when there are either

no improvements or improvements less than C’ over one

complete cycle of k,, starting from 1 and ending with n,.

Example: Table I, in association with Fig. 5, illus-

trates how the grazer search strategy effectively follows

the path of discontinuous derivatives to locate the op-

timum in the course of minimax optimization of a 2-sec-

tion cascaded transmission-line network [5], [18 ] (il-

lustrated in Fig. 6) when the lengths are fixed at quarter-

wavelength values and the impedances are varied. We

let yi(~) =~]p(+, ii) 1’ and define U’(+) =mu:lp(+, ii) 1,

where p is the reflection coefficient on 11 uniformly

spaced frequencies #i in the band 0.5 to 1.5 GHz. The

grazer search strategy starts at @’( 1.0, 3.0), ~~’(~’)

= 0.709.54, and the values of parameters used are a.= 1

(at start), & =10-’, ~=10, q=O.5, e=lO-’, C’=lO-’.

The first iteration extends from +1 to 45; +2 is the new

point obtained when taking a unit step along the direc-

tion suggested by the negative gradient. Since @ is a

satisfactory improvement, a golden section search is
initiated, yielding +3(7 = 1 +T) which is not an improve-

ment over +z. The interval of search is thus found.

~’(y = r) is found to be no improvement over +2. The

golden section search is now terminated, since the cur-

rent resolution between two interior points of search falls

below the minimum allowed value. +5= +2 is thus the

best point attained at the end of iteration 1. At the end

of iteration 5, U(~2’) — U(~36) < q so k, is increased from

1 to 2 in the next iteration. For a similar reason, k, is
increased from 2 to 3 for iteration 12, and reset to 1 from

3 for iteration 13. During iteration 18, the parameter

values remain the same to 5 significant digits, and the

improvement in U at the end is less than e’; all successive

attempts to achieve a better point with an improvement

greater than t’ (by considering 1, 2, and 3 ripples) fail,

and the procedure is terminated.
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TABLE I

SUMMARYOF IMPORTANT STE~S IN THE EXAMPLE ILLUS~RATING THE GRAZOR SEARCH STRATEGY

o= (2.23605, 4.47210), U’(($) =0.42857

Iteration Points of
Number Iteration Starting Point of Iteration

Values of Scale Factors Numberof
Ripples

Point Scale Factor Considered

+’=(l.O ,3.0)

U’(*’) = 0.70954
&
+4
+5=+2

CX*=l.00
-y=l+T
7*=1.000

Cx=l.oo
CY*=O.1O
7*=2+7

r2=o.l(T+2)
~=().ol(r+z)

~* =().1301(7+2)

Y*=T+l

a=9.472x10–3
CZ *=9.472X10-4
-y*=l .000

a*=l. oxlo–6

7*=7+1

CZ*=9.472X10-4

~* =1.096x10:

7*=T+2

7*=1.000

y* =60.69

a*=2.279x10–s

-y*=l .000

.y*=30.03

7*=1O.47

1 1-5 1

1

1

1

1

2

2

2

2

2

2

3

1

2

3

+5= (1 .99996,3. 00893)

U’(@s) =0 .63086
w
07+12

2 5-12

+“= (1 .69865,3 .20921)
&3

+14

3 12-20 U’(+’z) = 0.48073
415

+20

+20 =(1 .70806,3 .20821)

U’(l+”) = 0.4784320-264

&,= (1. 70723,3. 20865)

U’(+”) =0 .47794

@30

+35
5 26-35

4J5 = (1 .70723,3. 20866)

u’(@3’)= 0.47794
+36

$64
6

7

8

9

10

11

12

13

35-64

64-72

72-78

78-96

96-103

103-117

117–126

126-132

+’4 = (2 .05489,4. 18669)
U’(@4) = 0.44084

+7’= (2.09028,4.17411)
U’(+”) = 0.43199

+7’ =(2 .09380,4. 17280)
U’(r$”) = 0.43146 496

+98

&03

+“=(2.18832,4 .38018)

U’(&’) = 0.42929

@03 = (2.19040,4.37924)
U’(@’”’) = 0.42886

4J17 = (2 .22029, 4.44082)
U’(c+’”) =0 .42864

$117

+126

4W’ = (2 .23088, 4.46221)

U’(c$’”) = 0.42862

+133 = +126

@l,,

&36

a*=2.279x10–3

7*=7+2

7“=1 .000

13

18

133-136

169–1 76
$16s= (2 .23595, 4.47237)
U’(4J,9) = 0.42861 $176

= +169

EXAMPLES

Example 1

The grazor search algorithm has been compared

numerically with the razor search method and the

Osborne and Watson algorithm on the problem of

minimizing max Ipl on 11 frequencies I#i in the band 0.5

to 1.5 GHz for the network shown in Fig. 6.

For the grazer search and Osborne and Watson algo-

rithms we took yi(+) = ~ Ip(~, ~;) I z. Gradients were

evaluated using the adj oint network method [11], [12].

In the 2-section examples, the 11 frequencies were uni-

formly spaced. In the 3-section examples, the fre-

quencies were 0.5, 0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23, 1.30,

1.40, and 1.50 GHz. The progress of the algorithms from

identical starting points with respect to the number of

function evaluations (one corresponding to 11 evalua-
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~------—

~------—————+—
L-p

Fig.6. Them-section resistively terminate dcascadeof transmission
lines, Optimum matching over 100-percent band centered at 1
GHz for R=1O occurs for the following parameter values. 2-
section: ll=lt=lq, ZI =2.23605, Z2 =4.4721. 3-section: 11=13=13
=lq, Z, = 1.63471, Zt =3.16228, Z, =6,11729.1, =7.49481 cm is the
quarter wavelength at center frequency.
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[0)

maxlp[

‘r

ekk

oo~m

funcllon woluotlons
[b)
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.4

o~
50 I00 i50 200

function evoluat, ons
[c)

Fig.8. The3-section transformer problem. Solid points distinguish
the grazer search algorithm from the algorithm based on the Os-
borne and Watson method. (a) h=li=k=lv Starting point
ZI=l.0, ZZ=3.16228, ZS=1O.O. (b) Starting point 11/l*so.8,

k=t, =l.2, h./l, =0.8, Z1=l.5, Z2=3.0, Z3=6.O. (c) Starting point
1,/1, =1,/1, =ls/l, =1.0, ZI=l.0, Z,=3.16228, Z,=1O.O.

TABLE II

OPTIMIZATION OFA 2-SECTION 10:1 QUARTER-WAVE TRANSFORMER
OVER 1OO-PERCENT BANDWIDTH

Starting Point Function Evaluations’

z~ Z2 Razor Search Grazer Search
—

1.0 3.0 157 126
207

1.0 6.0 83
1%

3.5 6.0 223 52
100

3.5 3.0 210 29
163

* Number of function evaluations required to bring the reflection
coefficient within O.01 percent of its optimum value.

Fig. 7. The 2-section transformer problem. Solid points distingLlish
the grazor search algorithm from the algorithm based on the

the grazer search algorithm is, in general, faster than

Osborne and Watson method. (a) l,=h=l,. Starting po~nt
Z1=l.O, Z2=3.(). (b) Z,and Zzfixed atoptimum values. Starting

the razor search technique for the 2-section case when

point lJlg=.0.8, h/1,=1.2. (c) &and Zzfixed at optimum values.
the lengths are kept fixed and the impedances are varied.

Starting point l&=l.2, Z1=3.5. (d) Starting point 11/~~=1.2, From Table II 1, it is clear that the grazor search algo-
1,/1, =0.8, Z1 =3.5, ZZ=3.O. rithm is the best. The Osborne and Watson algorithm,

though fairly fast initially, may in some cases fail or

tions of p) is recorded in Figs. 7 and 8. The points shown slow down near the optimum.

mark the successful end of a linear search or the be- The grazer search method and the Osborne and Wat-

ginning of linear programming. son algorithm were further compared on the 3-section

Tables II and III compare the two algorithms with transformer problem when the lengths were fixed at

the razor search method. From Table II, it is clear that quarter-wavelength values and the impedances were
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TABLE III

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER OVERA 1OO-PERCENT BANDWIDTH

Fixed Lengths Variable Lengths and impedances
—

Maximum Maximum Maximum
Reflection Reflection Reflection

Parameters Coefficient S::;i# Coefficient s~#i# Coefficient

@i Starting Point at Start at Start at Start

11/1, 1.0 1.0
ZI 1.0

0.8
1.0

l,/lq 1.0
1.5

1.0 1.2
z, 3.16228 0.70930 3.16228 0.70930

1,/1, 1.0
3.0 0.38865

1.0
z, 10.0

0,8
10.0 6.0

final maximum
reflection

Razor
0.19729 0.19733

coefficient
search
algorithm number of

function 406 1300
evaluations

0.19731

1250

final maximum
reflection

Grazer
0.19729 0.19729

coefficient
search
algorithm nljmber of

function 219 696
evaluations

final maximum
reflection

Algorithm
0.19729 0.20831

coefficient
due to Osborne
and Watson [1] number of

function 199 860
evaluations

+1+!4L41+J +4-+-!+

Rg(w) 22 23 24 25 % +

Fig. 9. Cascaded transmission-line filter operating between l?.(u)
5

=RL(I.J)=377/41 – (f./f)2, wherejc =2.o77 GHz and 1= 1.5 cm.
4
3

m .2.

varied. For a starting point, of ZI =3.16228, 22= 1.0, “:0 [
and 23 == 10.0, the former took 184 and 218 function c z

evaluations, while the latter consumed 151 and~219 ~ .I
[

0.19729

498

0.19788

237

—
Q

:

:
~

least Ioth Optmm - 10

function evaluations to reach within 0.01 and ~001 E 01 ‘ I

percent of the optimum value of the maximum reflec-

tion coefficient, respectively. This case illustrates how

the two algorithms compare when both methods work

efficiently.

Example 2

The grazer search method was used in the optimiza-

tion of a 7-section cascaded transmission-line filter as

shown in Fig. 9. This interesting problem has been con-

sidered by Carlin and Gupta [19]. The frequency

variation of the terminations is like that of rectangular

waveguides operating in the Hlo mode with cutoff fre-

quency 2.077 GHz. All section lengths were kept fixed

at 1.5 cm so that the maximum stopband insertion loss

would occur at about 5 GHz. The passband 2.16 to 3

GHz was selected, for which a maximum passband in-

sertion loss of 0.4 dB was specified,

I I

I~ P“s’b”nd--k

u-in’””’
2

I

02
~ K“>~ &__l,o

Frequency GHz
4

Frequency G14

Fig. 10. Responses of the network of Fig. 9. The response of Carlin
and Gupta [19] is the initial one. The least 10th response was
obtained by Bandler and Seviora [12]. The minimax response
was produced by the grazor search method.

Fig. 10 shows the response of Carlin and Gupta which

was used as an initial design. The other responses in

Fig. 10 are a least 10th optimum obtained by Bandler

and Seviora [12] and a minimax optimum obtained by

the grazer search strategy. In both cases only the pass-

band was optimized. The minimax response has a

maximum passband insertion loss of 0.086 dB. Table IV

gives the appropriate parameter values.

Fig. 11 shows the results of applying the grazer

search method to optimize the sections in a filtering
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/“”7
40 be able to handle, without much difficulty, filter design

problems with upper and lower specifications over

30 many frequency bands. It is felt, however, that in the

microwave area, the algorithm will find most use in de-

y
///’/’/’///

I ‘n;/1
20 ~ sign problems for which exact methods are not available.

I
APPENDIX

10 +
%= NOMENCLATURE

01 I v v v ~~, o
2 33 The following is a list of some of the arguments and

Frequency GHz Frequency GHZ important variables of the grazer search package as

Fig, 11. Response of the minimax desire of the network of Fig. 9 indicated in the flow charts of Figs. 2–4.

‘with 0.4-dB passband insertion loss pr;duced by the grazer sea-rch
method. a

TABLE 11’

COMPARISON OF PARAMETER VALUES FOR THE 7-SECTION FILTER a.

Characteristic Carl in Minimax Minimax .
Impedances and Design Design

(Normalized) Gupta [19] (Fig. 10) (Fig. 11) ;

z, 1476.5 1305.2 3069.4 T*

z, 733.6 607.8 2856.4
z, 1963.6 1323.3 25871.2
z, 461.8 362.7 10573.3 c

z, 1963.6 1323,2 2.5874.0
Z6 733.6 607,9 2856.7
z, 1476.5 1305.2 3069.8

sense. Thus it was desired to meet the 0.4-d B passband

insertion loss while maximizing the stopband insertion

loss at a single frequency (5 GHz). We let [20]

{

*[] P(+) 1’- Y’], in the P=band ~18)

‘L(o)= +[1- IPt(+) 1’1, in the stopband

where

+=[z,z,. ..z,]~

and r is the reflection coefficient magnitude correspond-

ing to an insertion loss of 0.4 dB and pi(+) is the reflec-

tion coefficient of the filter at the ith frequency. Here

22 uniformly spaced points were selected from the pass-

band. Table IV gives the resulting parameter values. A

similar response was attained by the grazer search

technique when the section impedances were assumed

symmetrical, i.e., ZS =2s, ZG = Z,, 27 =21.

CONCLUSIONS

The results indicate that the grazer search algorithm

is generally more reliable in reaching an optimal mini-

max solution than the Osborne and Watson algorithm,

and is faster than the razor search technique. Typically,

1 min is sufficient time to optimize a six-parameter de-

sign, and 2 to 3 min are sufficient to optimize a ten-

parameter problem, depending on how far from the

optimum one starts and how close one wishes to get, on

a CDC 6400 computer.

The grazor search algorithm has been successfully

applied to problems of cascaded lumped LC filter de-

signs, antenna modeling circuit designs, and modeling

high-order control systems [21 ]. The algorithm should

‘n

n,

u+

U+.
Yi

9%
V’yi

Y.]
TERM

Scale factor for determining the magnitude of

the parameter step to be taken at the end of

linear program.

Initial specified value of a, previous value of a

which gave a satisfactory improvement.

Minimum allowable a.

Reduction factor for a.

Factor of the step A@ which gives the best new

point, when starting from ~.

Number of discrete maxima under considera-

tion k, is increased by one (if k,<n, – 1) or set

equal to one (if k,= n,) if the improvement of

the objective function at the new best point as

compared to the value at the previous point

is less than this quantity.

Main program is eventually terminated if the

improvement of objective function at the new

best point as compared to the value at the

previous point is repeatedly less than this

quantity.

Specified factor of the initial interval of linear

search which determines the final resolution be-

tween two internal points of the search.

Current point.

Starting point, current best point.

Increment from @ which gives the first im-

proved point obtained in each iteration on en-

tering the linear search.

ith sample point.

Sample points corresponding to the jO

Sample points corresponding to the yOi.

Logical variable; if . TRUE. the Vyi are calcu-

lated, otherwise they are not calculated.

Identifies the ith highest of the yoi.

Dimensionality of parameter space.

Number of local discrete maxima 5; under con-

sideration.

Number of sample points IJi.

Available number of discrete local maxima ji.

Value of the objective function at @

Value of the obj ective function at @’.

Function value at IJ; for a given +.

ith highest discrete local maximum.

Gradient of y ~ with respect to +.

Discrete local maxima implied by the y,.

Logical variable, initially set to . FALSE., k re-
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set to . TRUE. only If there are failures or im-

provements in objective function value; less

than d after considering values of k, from 1 to

nr in one complete cycle.

The variables ao, &, /3, E, d, q, ~, +i, k, k,, and n are

initially assigned values on entry to the grazer search

package. The subroutine ANAL(+, +;, DERIV, k, yi, Vyi)
is an analysis program to evaluate yi and/or Vy~ at a

given point +. The function subprogram Y(I+, ~;, k)
calculates the y; corresponding to the point + by calling

ANAL. The subroutine LOCATE (+, ~;, k,
the objective function Ud by calling

i=l,2, ,,, ,n.
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Anomalous Loss at a Ferrite Boundary

LEONARD LEWIN, ASSOCIATE MEMBER, IEEE

Absfrac f—The occurrence of anomalous loss and its explanation

in terms of surface waves is discussed. For this type of explanation

to be possible the region of occurrence of the surface wave must at

least straddle the region of anomalous loss. It is shown that this is

so, particularly for the case when there is a mixed air-ferrite surface

layer for which this result is not obvious: as the air content de-

creases, a ferrite-metal surface wave appears and takes over the

function of the layer wave.
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The means by which these waves are generated, and the deter-

mination of their amplitudes, appear to require a new physical prin-

ciple to be applied. A new type of “edge condition}! is postulated.

I. INTRODUCTION

T

HE FIRST intimation that something peculiar

could be happening in a waveguide-ferrite con-

figuration appeared in a paper by Lax and Button

[1] and led to the so-called “thermodynamic paradox,”

in which energy could apparently be conveyed in only

one direction in a lossless medium. Bresler [2] at-


