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Practical Leastpth Optimization of Networks

JOHN W. BANDLER AND CHRISTAKIS CHARALAMBOUS

Abstract—A new and practical approach to computer-aided design

optimization is presented. Central to the process is the application of

least pth approximation using extremely large values of p, typically
1000 to 1000000. It is shown how suitable and reasonably well-

conditioned objective functions can be f ornndated, giving particular

emphasis to more generaf approximation problems as, for example,
in filter design. It is demonstrated how easily and efficiently ex-
tremely near minimax results can be achieved on a dkicrete set of
sample points. Highly efficient gratlent methods can be employed

and, in network design problems, the use of the adjoint network
approach for evaluating gradients results in greater savings in com-
puter effort. A comparison between the Fletcher-Powell method and
the more recent Fletcher method is made on the application of least

pth approximation, using a range of valuesofpupto1000000 000000
on transmission-line transformer problems for which optimal mini-
max solutions are known. This is followed by filter design examples

sub ject to certain constraints.

I. INTRODUCTION

EAST @th approximation with a sufficiently large

L
value of P can, in principle, be used to achieve

near minimax approximations for a wide class of

circuit- and system-design problems. Early reports

[1 ]-[4] simply suggested that appropriate error func-

tions be raised to a power $. This approach, in practice,

can lead to ill-conditioning of the objective function for

values of p greater than or equal to about 10. In certain

design problems the unwary designer may be led to the

conclusion that his problem has many local minima (see,

for example, [1] and [2]) in a region of the parameter

space where, in fact, a unique minimum exists.

Bandler and Charalambous [5] have shown how to

apply least @h approximation to design problems hav-

ing upper and lower response specifications, e.g., as in

filter design. However, the same ill-conditioning could

arise in that particular formulation. More recent theo-

retical work has been published on conditions for opti-

mality in least ~th approximation with & ~ [6]? from

which conditions for a minimax approximation [7] fall

out.

It is the purpose of the present paper to present a

computationally practical approach to least pth ap-

proximation for use in design problems. The important

Manuscript received June 9, 1972; revised August $, 1972. This
work was supported by the National Research Councd of Canada
under Grants A7239 and C 154, and by a Frederick Gardner Cottrell
Grant from the Research Corporation. This paper is based on papers
presented at the 5th Asdomar Conference on Circuits and Systems,
Pacific Grove, Calif., November 1971, and the 1972 IEEE Interna-
tional Microwave Symposium, Chicago, 11!., May 22–24, 1972.

The authors are with the ~ommunicatlons Research ~aboratory,
Department of Electrical Engineering, McMaster University, Hamil-
ton, Ont., Canada.

feature of the approach is the use that can be made of

efficient gradient minimization techniques, such as the

Fletcher–Powell method [8] and the more recent

Fletcher method [9], in conjunction with least pth ob-

j ective functions employing extremely large values of p,

typically 100W1 000000. It is demonstrated how easily

and efficiently extremely near minimax results can be

achieved on a discrete set of sample points.

A comparison between the Fletcher–Powell and

Fletcher methods is made using a range of values of p

up to 1 000 000 000 000 on transmission-line trans-

former problems for which optimal minimax solutions

are known. Filter-design examples with constraints are

also provided. In all cases the ad joint network method

[4] is used to obtain all the required partial derivatives

at a given point in the parameter space from the results

of one network analysis.

II. THEORY

Definitions

The notation to be used in this paper largely follows

that used previously by the authors [3], [5].

The approximating function (actual re-

sponse).

An upper specified function (desired re-

sponse bound).

An artificial upper specified function.

A lower specified function (desired response

bound).

An artificial lower specified function.

An upper positive weighting function.

A lower positive weighting function.

A vector containing the k independent

parameters.

An independent variable (e.g., frequency

or time).

Margin of errors with respect to the arti-

ficial- and desired specifica~ions.

The introduction of the artificial margin ~, which is a

constant during optimization, allows for certain flexi-

bility in formulating the optimization problem. Its

advantage will become evident at a later stage.

Now we can define real error functions related to the

upper and lower specifications as

e.(~, *) Awu(4)(F(& *) ‘.%(+)) (1)

ew’(o, *, t)~wu(t)(~(+, *) –&’(#, H)= e.(+, 4) ‘i (2)
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~u’(~, i) = ~.(+) +&- Letting
(5)

‘$
.s/(+, ~) = .s1(+) – —

W(*) “ (6)

—

ln practice, we will evaluate all the functions at a finite
Y& a+z

discrete set of values of # taken from one or more closed

intervals. Therefore, we }vill define the functions .;

(13)

I–JEh#lk

(V U(4, .9 = ~ [eU/(@, ~)]p
where it is assumed that a sufficient number of sample iGJu (+,f)
points have been chosen so that the discrete approxima-

tion problem adequately approximates the continuous

)

(l/p)-l

+ X [–eti’(@, .9]”
problem. Iu and 11 are appropriate index sets. We as- i@~(+,:)
sume that v-e can choose +, such that the corresponding

@k,’(@, ~) and e,i’(~, t) are continuous with continuous

derivatives \vith respect to +. (
“ ,GJ~o,g, [e.i’(@, .91p-’Ve.i’(4h.9

The Objective Function

Here we have to consider two separate cases, the first

one when the specification is violated and the second

one when the specification is satisfied.

In the first case some of the e~i’(~, $) or –e~i’(+, .$) are

positive. To meet the artificial specification [same as

original if ~ = O as indicated by (5) and (6)] we might

propose the following objective function to be mini-

mized:

For the second case all the –e~i’(+, g) and e~i’(o, $)

will be positive. To exceed the specification by the

greatest amount, we might propose the following objec-

tive flunction to be minimized:

(U(+, 9 = – Z [–eui’(r), g)]-’
iET.

for

(16)

(17)

and

p>l.

For larger values of P we would expect the maximum

of the functions to be emphasized, since

1 1t is important to note that the sets ./,, and ~i are dependent on
+ and g. Thus temporarily excluded sample points are immediately
included when the corresponding errors violate the specification, and
temporarily included sample points are immediately excluded when
the correspond ng errors satisfy the specification.

pzl.

Again, for larger values of P we would expect the maxi-

mum of the functions to be emphasized, since
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Differentiating (15) we obtain

)
–(I/p)–l

+ Z [eti’(+, t)]-”
iEr,

In an effort to alleviate the ill-conditioning resulting

from the numerical evaluation of [ ~ etii’]+p and [ Teli’l*P

for very large values of ~, we us; - “ -

M(*, t) Q max [eUi’(*, g), – et,’(% t)], ‘iEI.
i J

j~I1

as follows. Let

‘A[-il;;:]q)”q
and

u-here

and

M(+) .$) ‘1<~<~ for M>O

‘{1<~<~ for‘Q IM(SMI - A!f<o.

(20)

(21)

(22)

(23)

(24)

(25)

If euj(+, ~) for ;CIU and ezj (+, ~) for ;GIZ are continu-

ous with continuous partial derivatives, then, under the

stated conditions, the proposed objective function is

continuous everywhere with continuous partial deriva-

tives. When, for example, both M= O and two or more

z,

30

I

10 ~ ! , \ 1
8 9 10 1,I 12

1, /lq

Fig. 1. Contours of U for @= 1 (see footnote 2).

z,

3,0
I I

,o,~l ‘
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.4, //’q

Fig. 2. Contours of U for P = 2 (see footnote 2).

maxima are equal, the function is continuous but the

derivatives are discontinuous. On the rare occasions

when this situation causes a gradient minimization

algorithm to stall, one can simply change the value of $

and restart the optimization process.,,

Examples

It is convenient to illustrate some of these theoretical

ideas on a simple problem which has already received

attention from the optimization pointof view [1O]–[12 ],

In particular, we will consider a 2-section 10:1 trans-

mission-line transformer over a 100-percent relative

bandwidth [13 ]. The section lengths JI and 1, and the

characteristic impedances Z1 and Z2 may be considered

as design-variables.

Let

eUi’= \pil -0,5 (26)

where p is the reflection coefficient. We have no Io\rer

specification, and we consider 11 uniformly spaced fre-
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Fig.3. Contours of f7forp =10 (see footnote 2).
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~i~. 4. Contoursof Uforp=m (see fOOtnote 2).

quencies in the band 0.5–1.5 GHz. The weighting is

1, ~ = 0.5, while the upper specification is taken as O.

Figs. 1–4 show contours of the function (21) with

K1 = 0 and e,,,’ as in (26) for different values of ~, namely-,

1, 2, 10, and cc . h is held fixed at the optimum quarter-

wave value 1*, and 22 is held at the minimax optimum

normalized value of 4.4721. The contours are plotted

with respect to lJl~ and 21.

Note that the contour M= O, i.e., max; \ pil =0.5, is

common to all the figures, and the presence of discon-

tinuous derivatives (sharp points) on this contour.

Sample points generating particular sections of this

contour are noted. z For P,= 1 with M> O, and for @= w

for all M, discontinuous derivatives are observed else-

where. These situations have been deliberately avoided

in the foregoing formulation.

2 The numbers 1, 6, 7, and 11 indicated in Figs. 1–4 refer to sec-
tions of the contour M = O generated bv the first. sixth. seventh. and
eleventh sample points of t~e 11 uniformly spaced points on the band
f~om 0.5 to 1.5 GH,s.

III. EXAMPLES

Example 1

To compare the performance of two efficient opti-

mization methods, the Fletcher–Powell method [8] and

the F] etcher method [9], for widely different values of

P we will consider the design of 2- and 3-section 10:1

transrnission-line transformers [1 3 ], as previously, over

a 100-percent band. In this case let

eUi= IPJI (27)

and the 11 sample points are, in gigahertz,

~0.5, 0.6,0.7,0.8,0.9,1.0, 1.1,1.2,1.3,1.4, 1.5}

for the 2-section case (as previously) and

~0.5, 0.6,0.7,0.77,0.9,1.0, 1.1,1.23,1.3,1.4, 1.5}

for convenience, for the 3-section case. The weighting is

1, ancl both&= O and the upper specification is O. Appro-

priate gradient vectors with respect to length and char-

acteristic impedance of transmission lines are calcu-

lated by the adjoint network. method [4].

The progress of the two algorithms used on a CDC

6400 computer from indicated starting points is sum-

marized in Tables I and I I and Figs. 5–9. For conve-

nience we show results for different values of n where

~ = 1(P. The figures are plots of ill of (20) against N,

the number of function evaluations at the beginning of

an iteration, One function evaluation includes the evalu-

ation of appropriate gradients.

Exam file 2

For the circuit shown in Fig. 10, suppose it is desired

to have solutions to the following two problems.

1) An insertion loss in the passband, O–1 GHz, of no

more than 0.01 dB while maximizing the minimum stop-

band insertion loss at 5 GHz.

2) An insertion loss in the passband, O–1 GHz, of no

more than 0.01 dB while maximizing the minimum stop-

band insertion loss over the range 2 .5–10 GHz.

The characteristic impedances are to be set fixed at

the values [14]

21 =2,=25=0.2

2.2=24=5

and the section lengths used as variables. It was decided

initially to select 21 uniformly spaced sample points

from O–1 GHz, letting

eU~~= Ipil - (0.047960+0, i = 1,2, ~ ~ .,21 (28)

where 0.047960 is the passband reflection coefficient

corresponding to 0.01 dB, and a lower error function at

5 GH z for problem 1, and at 16 uniformly spaced ,sample

points from 2.5–10 GHz for problem 2, i.e.,

+=\ pil-(l -g)
{

i =22 for problem 1
(29)

i=22,23, . . 0,37 for problem 2.

In problem 1 we set $ = 0.00204 and in pr~blem 2 we set
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Fig. 5. Optimization from Zl=l.O, Zz=3.O. (a) Fletcher.
(b) Fletcher-Powell.
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Fig.6. optimization from Zl=l.O, Zz=6.0. (a) Fletcher.
(b) Fletcher-Powell.
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Fig. 7, optimization from Z,=3.5, Z,=6.O. (a) Fletcher.
(b) Fletcher-Powell.

.$= O. Since the response at zero frequency is independent

of the parameters, and to avoid numerical difficulties,

the frequency point 0.02 replaced O in problem 1.

Optimization using the Fletcher method in accordance

0 10 20
N
(0)

L2 3,6,9,12

1
30 0 10 20 30

N
lb)

Fig. 8. Optimization from Z,= 3.5, Z, =3.0. (a) Fletcher.
(b) Fletcher-Powell.

N

[0)

.47

j+yZ2;Mj~-
N 25 50 100 150

N
{b)

Fig. 9. optimization from 2X= 1,5, Z2 =3.0, Z8 = 6.0, ll/lq = 0.8,
lg/la = 1.2, Z,/Z. = 0.8. (a) Fletcher. (b) Fletcher-Powell.

I

L--P

Fig. 10. 5-section transmission-line low-pass filter.

with the foregoing ideas with p = 1000 gave the results

shown in Table I I 1, where lq is the quarter-wave value

at 1 GHz.

The responses are depicted in Figs. 11-13. The final
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TABLE I

OPTIMIZATION OF A 2-SECTION 10:1 QUARTER-WAVE TRANSFORMER

OVER 1OO-PERCENT BANDWIDTH WITH VARIABLE CHARACTERISTIC

IMPEDANCES Z, AND Zz

Number of Function
Evaluations NII

Starting Point
Fig- n where Fletcher Fletcher–
u re ZI z, p=ll)n [9] Powell [8]

5

6

7

8

1.0

1.0

3.5

3.5

3.0

6.0

6.0

3.0

1;
2

9
12

2
3
6

1;

b

b
15
b

102
14
19
21

31
49
56
56
56
26

1::
172
198

;:
101
118
118

;2

s The number of N listed are those required to brin M within
0.01 percent of the known optimum value, namely, 0.4285 $

b Missing entries are due to pararne>ers becoming nega~ive—con-
straints were not imposed during optimization.

TABLE II

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER OVER 100-

PERCENT BANDWIDTH WITH VARIABLE LENGTHS AND

CHARACTERISTIC IMPEDANCES

Starting Point: ZI=l.S, Z2=3.0, Z,=6.0, 11/1.=0.8, 12/1,=1.2,

J&=O.8, where lg k the quarter wavelength at center frequency

Number of Function Evaluations Nto Reach the
Value of M Shown in Bracketsa; the Optimum

Value of M is 0.19729

-n where p=l Ofi Fletcher [9] Fletcher-Powell [8]

3 .57 (o. 19734) 115 (0.19733)
4 86 (0.19730) 378 (O, 19729)

418 (0.19729) 702 (o. 19740)
; 634 (o. 19730) 661 (o. 19740)

12 668 (O. 19736) 645 (0,198S1)

‘ A time limit of 64 s/run was imposed, at which time the opti-
mum for large @had still not been reached.

TABLE III

OPTIMIZATION OF THE CIRCUIT SHOWN IN FIG. 10

USING VARIABLE LENGTHS

Parameters Starting Point Problem 1 Problem 2

1, 15
—.....—
lq 1,

0.07 0.09593 0.09098

1,

~
0.15 0.16278 0.18928

lb 1,
—.—
1, 1,

0.1.s 0.19798 0.15821

05
[

041
,03

I

!A

Inltml

I
02
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knfiI
,<j,,1

~, , , ;;,/ ,,/ . . . ~,: ,

01

0246s,

frequency GHz

Fig. 11. Optimized response of the circuit of Fig. 10 subject to
theconstraints imposed for problem 1.

60

50

1

Fig.

frequency GHz

2. Optimized response of the circuit of Fig. 10 subject to
the constraints imposed for problem 2.

04 -
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z 03 - initial
~

:.=
.

: 02
.-

0 5 1,0

frequency GHZ

Fig. 13. Passband details of theoptimized respon* shown in Fig. l2.
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results are the same whether or not symmetry is as-

sumed. Problem 2, for example, was solved using the

Fletcher–Powell method without the symmetry as-

sumption.

Three comments on the responses shown in Figs. 1 l–

13 are in order. The first is that perfectly equal-ripple

responses should not be expected in general nonlinear

approximation problems, with or without constraints.

The second is that, unless interpolation methods [3],

[11 ] are used, actual extrema in the response errors will

usually lie between adj scent discrete sample points. The

third is that, in the present examples, slight deviations

from the passband specification are to be expected, since

the stopband specification is unattainable in practice.

IV. DISCUSSION

From a minimax point of view (p= ~), the value of

the parameter ~ does not affect the location of the opti-

mum. For finite values of P, however, it can play an ex-

tremely important role. It can be chosen, if desired, so

that the M of (20) is always positive or, alternatively,

always negative. In the first case an economy in gradient

computation may be realized since only sample points

satisfying the conditions in (1 O) and (11) are considered.

This is a subset of all the possible sample points. In the

second case all the sample points would generally have

to be considered, but in our experience convergence to

a good solution is usually faster. In this case, of course,

we avoid the mild possible hazards mentioned in Section

II encountered in the transition region when M= O.

Theoretically, if ~ is chosen such that .M= O is optimal,

then a j’imite value of @ will yield the minimax solution!

In practice, a good estimate for $ may allow relatively

low values of P to yield results much closer to the mini-

max solution than a bad estimate. As Figs. 5–9 indicate

the lower the value of @ the faster M is reduced in the

early stages of optimization. This is not unexpected

since the minimization algorithms used are based on

quadratic models. As p increases the objective function

will generally deviate further and further from a quad-

ratic form so that the algorithms will progressively slow

down.

It is, incidentally, always good practice to monitor

the current minimum value of M and the associated

G while U is being minimized, since a lower, and hence

presumably preferable, value of M may be realized on

the way than might prevail at the minimizing point

for U.

V. CONCLUSIONS

An approach to computer-aided minimax design of

microwave circuits employing highly efficient optimiza-

tion methods has been presented. Typically, less than

1 min of CDC 6400 computer time is sufficient to opti-

mize the type of examples given in this paper to a high

degree of accuracy.

Other recent work on least ~th approximation using

very large P is the work by Fletcher et al. [15] on linear

approximation problems, and the work by Bandler et al.

[16] on optimum system modeling problems in the time

domain. The latter paper, in particular, compares the

grazer search method [12 ] with the present approach.

No attempts at modifying the minimization methods

to improve convergence for extremely large values of @

nor a detailed study of other possible effects of numeri-

cal ill-conditioning have as yet been carried out. But,

if the success we have had is widely repeatable, then far-

-reaching consequences are foreseen, not only in non-

linear approximation, but in the closely related field of

nonlinear programming [17 ].
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