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Throe gradient optimization methods have been sppliod to tho problem of determining 
an ontimum low-order model for a hieh-order svstom. A com~~arison has been made - 
between the threo methods (tho highly regarded Fletcher-Powell method, the new 
Fletcher method and the Jacobson-Oksman method) by obtaining second- and third- 
order models of a seventh-order system so that tho step-rosponso of tho model approxi- 
mates that of the system in tho least-squares sense. 

1. Introduction 
I n  a recent paper (Sinha and Bereznai 1971), the derivation of optimum 

low-order models for a high-order system was discussed, with respect to any 
specified criterion. I n  particular, the pattern search algorithm (Hooke and 
Jeeves 1961) was applied to obtain second-, third- and fourth-order models of 
a seventh-order system, using a number of different criteria for optimization. 
Because of the poor convergence properties of the pattern search algorithm, it 
is worth while investigating the application of efficient gradient methods to this 
problem. One of the disadvantages of gradient methods is the necessity of 
determining gradients. However, in this case, it is not a serious problem since 
the dominant part of the expression consists of the partial derivatives of the 
response of the low-order model with respect to its parameters, and this is the 
same for any high-order system and any error criterion. 

Among the available gradient methods, that due to Fletcher and Powell 
(1963) is highly regarded. Two other methods have been proposed recently 
(Fletcher 1970, Jacobson and Oksman 1970). Therefore, it was considered very 
desirable to make a comparative study of the application of these three methods 
to the problem of determining optimum low-order models for a given high-order 
system. 

To date, as far as the authors are aware, no comparative study of these 
three gradient methods has appeared in the literature. Since two of the 
methods are very recent, and a t  least one of them is not very widely known, a 
brief review of these methods will be presented in this paper. This will be 
followed by the application of the methods to the determination of second- and 
third-order models of a seventh-order system minimizing the sum of squares of 
the error between the two responses obtained a t  a specified number of sampling 
instants over a given interval. Minimization of the maximum error between 
the two responses will be considered in a subsequent paper. 

2. The new Fletcher method 
To give a basic description of the new Fletcher method it is necessary to 

briefly review the Fletcher-Powell method first. Suppose that it is desired to 
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34 J. 1.1'. Bandler et al. 

minimize a function F ( x )  of an n-dimensional vector x, given by 

whcrc the superscript T stands for transpose. 
Lct g(x) be the gradient of .F(x)  with respect to x  and let G denote the 

corresponding .H:essian matrix. The inverse :Hcsssian G-I mill be approximated 
by thc matrix H .  Uefinc 

6 = A x  (2) 

as the increment in x ,  which is the correction made in the parameter vector x 
in ordcr to decrease F ( x ) .  

The main fcature of the Fletcher-Pond method is that the increment a t  the 
ith iteration 

5 = a s  '. . 
(3) 

is t;~ltcn along the direction 
s =  - Hg, (4) 

whcre a in ( 3 )  is that value of A which minimizes F ( x +  As) along the direction 
of s. J : n  practice, cr is determined by linear search. The matrix H  is updated 
a t  eacli.itcnltion using the formula 

and ' thc '~lper icr i l~t  i denotes tlic value a t  the ith iteration. Initially H  is 
t;~kcn ;&:the iinit matrix, so that H i  is positive definite for all i. 

This method has the'property of quadratic termination, that is, for a 
qut~dratjc finlction the mniimum can be located in a t  most n iterations. How- 
ever, it dcpcds  on accurate location of the minimum along each direction of 
search. This is done' by cubic interpolation which, although it is the most 
cRicient method of sei~rch, requires several function and gradicnt evaluations. 

Thc ncw :Fletcher method dispenses with the linear search. The property 
of quadratic termination, which depends on linear se~~rch,  is replaced by a 
~ropcr ty  which requires, for qnadmtic functions, that the eigenvalues of H 
tend monotonically towards those of G-I. Also AF,  the decrease in F, must 
be srtficicntly large to guarantee ultimate convergence. This is taken care of 
by the following test. The change A.F in .F on an itcration would be expected 
by Taylor's series expansion to be approxiniat~ly g'"6 for a small 6, but much 
less thtrn g"6 in absolute value when the position of the minimum along a line 
is ovcrestimated. The change in P relative to gT6 cannot become arbitrarily 
small if 

where 0 < p <  I,  a pre-assigned small quantity set a t  0.0001. If corrections are 
determined by 

6 =  - AHg, (8) 
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Optimum system modelling using recent gradient methods 35 

then trying values of h = 1 ,  w, w2, w3, . . . for tu = 0 . 1  will eventually produce a S 
that satisfies eqn. (7). 

To avoid ill-conditioning in H, a new updating formula is introduced 

denote Hi+' in (9) as Hli+l and Hi+' in ( 5 )  as Hzi+'. The formula in (9) has 
the property that the eigenvalues of H tend monotonically to those of G-l. 
Note, however, that HIi+' does not necessarily replace H,i+l, as one of the two 
is chosen for updating on the basis of the following test. If 

then Hli+l is used ; otherwise Hzi+' is used. 
The algorithm is terminated when each component of S is less than c which 

mas set a t  1.0 x 

3. The Jacobson-Oksman method 
This method is based on homogeneous rather than quadratic functions. A 

consequence of' this is that convergence is obtained in n+ 2 stcps for a homo- 
geneous function of the form 

where x  is an n-dimensional parameter vector as before, g ( x )  is the gradient of 
F ( x )  as defined previously, 0  is the dcgrcc of homogeneity and 2 is the location 
of the minimum of P ( x ) .  On the other hand, a quadratic objective function 
may be expressed as 

where Q is a, constant positive definite matrix. Thus, i t  will be seen that eqn. 
( 1 2 )  is a special case of the homogeneous eqn. ( 1  1 ) with 0  = 2. 

The basis of the method will now be discussed. Equation ( 1 1 )  may be 
arranged as 

R1'g(x) + 0 F ( x )  - w = x T g ( x ) ,  ( 1 3 )  
where 

w = OF(%).  ( 1 4 )  
Let 

v A x T g ( x ) ,  
Y' [ g T ( x )  F ( x )  - l l T ,  ( 1 5 )  
a'[QT 0  ~ 1 ' ~ .  

For some point xi+,, eqn. (13) becomes 

where a and y  are (n+ 2)-vectors. The vector a contains the unknowns Q and 
w and must be determined. If we evaluate v and y a t  n+ 2  distinct points 
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36 J. H'. Bundler e t  al. 

x,, x,, . . ., x,,,,, so tha t  thc rcsultant yi's are linearly indepcntlcnt, we have 

or, in t l ~ c  matrix form 
Ya=v.  (18) 

Since the yi's are lincarly independent, the matrix Y is non-singular, giving 

Matrix inversion can be avoided by using a recursive formula as  new yi and 
vi arc evaluated. Starting with Po= I ,  an ( I & +  2) x (n+ 2) identity matrix and 
v, = a,, an arbitrary initial guess, successive estimates of the vector a are given 
by 

wlwc  ei+,is a unit (?L+ 2)-vcctor having unity as the (i + I ) th  element and zero 
elsewhere, and where the Pi are obtained successively from the formula 

Lt can be shown tha t  the algoritl~ni finds the minimum, the degree ofhomo- 
gcneity atid'tlie value of the minimum after I L +  2 iterations. 

.. 
4. statementof the modelling problem 

The problem of determining optiniutn low-order models for i~ given high- 
order system may be stated as follows : It is required to  find the transfer 
function of &,model of a given order the response of which is the best approxima- 
tion to  the response of the actual system t o  a particular input in a specified sense. 
For this work, the input was taken as  a unit step. 

Often it is desirable to  impose certain constraints on the model. :For 
instancc, it may be required tha t  the initial slope of the step-response of the 
modcl bc the same as  tha t  of the high-order system, and tha t  the steady-state 
v;~lu& of the two responses be equal. Tn general, the transfer function of the 
model may bc written as  

b,,.~~~'+ b ,,,-, snl-I+. .. + b,s+ b, 
. ~ H ( s )  = 

sIL + a,-,sn-l + . . . + als + a, ' 

where nL is less than or cqual t o  I L  for physical systems. The problem is, there- 
fore, the determination of the parameter vector +, defined as 

such that  the'itep-response of the modcl approximates the step-rcsponsc of the 
system i i ~  & optimal manner. 
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Optimum syslem modelling using recent gradient methods 37 

The choice of the criterion for optimization depends on the purpose for 
which the model is to be used, and the portion of the response on which emphasis 
should be placed. Thus, a least squares criterion may be used if it is desired 
to distribute the error. On the other hand, a weighted least-pth with a large 
p,  or a minimax criterion may be used if most emphasis is placed on the maxi- 
mum deviation (Bandler 1969). Also, if i t  is desired to make the approximating 
response look close to the actual response, the perpendicular error criterion 
(Bereznai and Sinha 1970) may be used, where the maximum perpendicular 
distance between the responses is minimized. 

The optimum model is obtained by starting with an initial choice of the 
parameter vector and then using one of the three&dientmethodsto successively 
obtain the oplimum choice. The use of these techniques makes it necessary 
to obtain the first partial derivatives of the objective function with respect to  
the various parameters. Analytical expressions for the gradient with respect 
to thc parameters of the step-response of second- and third-order models are 
shown in the appendix. 

5. Example 
I n  order to compare the perforlnance of the three minimization techniques on 

the modelling problem, it was decided to consider the seventh-order system used 
in a previous paper (Sinha and Bereznai 1971), namely, the control system for 
the pitch rate of a supersonic transport aircraft. The transfer function of the 
system is given by 

375000(s + 0.08333) 
G ( s )  = 

s7+ 83.64sG+ 4097s5+ 70342s4+ 853703s3+ 2814271s2+ 3310875s+ 281 250 

with a steady-state value of 0.1111. 
Second- and third-order models of this system were obtained, of the follow- 

ing forms 

a , ( s )  = Eao 
s2 + als + a,' 

b,s + Ea, 
= s2 + als +a,' 

b2s2 + bls + Ea, x,s2 +x4s + Ex1x3 
H3(s) = - - 

s3 + a2s2 + uls + a, ( s  +x3)(s2 +x2s +q)' 

For each of the models, the parameter b, was made equal to Ea., inorder that 
the steady-state response of the model could be equal to E, which was either the 
steady-state response of the system to a unit step or the value of that respouse 
a t  8 sec. It was found necessary to introduce this constraint, as otherwise the 
problem did not have a unique solution. The response was approximated over 
a,n interval of 8 sec using 21 uniformly spaced samples. 

First the two-parameter problem resulting from eqn. (25)  was tried. The 
computer used was a CDC 6400 and typical C.P .  times for this problem were 
about 4 sec. E was 0.1 1 1 1 .  Three different starting points were considered 
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38 J. 1V. Bandler et a1 

Pig. 1 

system response - - - - - - - - - _ _ _ _ _ _ _ _ _  

model response 

l ime (seconds) 

((L) 

System response 
0.12. 

model response 

0.1 . 

, . 

time (seconds) 

( b )  
(a) Rcsponsc of the two-parameter model with steady-state value 0.1111. ( b )  

Rcsponsc of the two-parameter model with steady-state value 0.1 1706: 

for cach of the three methods and in every case the algorithms ultimately con- 
verged to the same optimum parameters, a, = 3.1 9591 2 and a, = 2.281056, with 
the optimum value of the objective function 7.50768 x 1 0-4 and the components 
of the gradient less than 1.0 x Figure 1 ( a )  shows the corresponding res- 
ponse: Table 1 compares the number of function evaluations required for each 
method for tlie objective function to reach the value of 7.50759 x this 
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Optimum system inodnlling using recent gradient methods 30 

value being 1.0 x higher than the  optimum ultimately obtained. Frotn 
table 1 i t  can be seen tha t  both the new Fletcher method and the Jacobson- 
Olrsrnan method show an improvement over the  Fletcher-Powell method, with 
the Jacobson-Oksman method being slightly better than the  new Fletcher 
method. 

1 New Fletcher I 2 1 I 22 I 19 1 

Table 1. Number of function evaluations required to  reach the objective func- 
tion value 7.50759 x for the two-parameter problem 

Fletcher-Powell I 1 

Starting point x / ~ ~ ~ 3 . 0 ,  u,=2.0 a o = 0 5 ,  a,=O.i  

For the three-parameter problem represented by eqn. (26)  with E = 0.1111, 
typical computer C.P. times were about 6 sec on the CDC 6400. Again three 
different starting points were tried with each method and in each case the 
algorithms converged to  the  optimum a,=1.997397, aI=l .66O663,  
b ,  = 4.37071 5 x with the minimum value of the  objective function 
1.582215 x 10-* and the  components of the gradient less than 1.0 x 

ao=l .O,  a,=l.O 

Figure 2 ( a )  shows the  corresponding response. Table 2 cornpares the number 
of function evaluations required to reach the objective function value of 
I .ti88225 x in each case. Here again i t  is seen tha t  the Jacobson-Oksman 
and the  ncw Fletcher methods are superior to  the Fletcher-Powell method and 
the  Jacobsoti-Oksman method is slightly better than the new Fletcher method. 
However, there was one case, not shown, when the Jacobson-Oksman method 
failed. This was due to  a very large step tha t  made the objective function too 

Table 2. Number of function evaluations required to  reach the objective 
function value 1.582225 x for the three-parameter problem - 

\ Method 
Starting \ 
point x \ 

Jacobson-Oksman New Fletcier Fletcher-Powell D
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40 J. 1V. Bandlcr e t  al. ~ 

Fig. 2 

system response 

0 I 2 3 4 5 6 7 8 

l ime (seconds1 

(4 

syslem response 
0.12. - - - - - - - - -  - - - - - - - - - 

model response 

0.1 . 

0.08- 

0.06- 

0.04. 

0.02. 

0 I 2 .  3 4 5 6 7 8 

time (seconds) 
. . .  

(6 )  

(a) Rcspot~se of thc three-parameter model with steady-state value 0.1111 
Itcsponsc of the three-parameter model with steady-state value 0.11706. 

li~rgc for the computer to handle. In  situations like this, one is tempted to 
limit thc step size. However, i t  was decided not to interfere with the algo- 
rithm'in any way, as this might slow down the method a t  the beginning. 

Since thc approximation is over 8 sec and in tha t  time the system does not 
rcnch steacly state, the steady-state value of the model, E, can be fixed t o  the 
system response -. . value a t  8 sec. Figures 1 (b) and 2 ( b )  show the corresponding 
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Optimum system n~odelling using recent gradient methods 4 1 

Table 3. Number of function evaluations required to  reach the objective 
function value of 1.027406 x and central processor time if i(is less 
than 64 sec, or the value of the objective function reached in the  time 
limit of 64 sec 

Method 
Starting New Fletcher Fletcher-Powell Jacobson-Oksman 
point x \ 1 

1.25 
2.8 N =535 225 88 
2.3 P= 1.027406 x 1.027406 x 10-G F =  1.027952 x 
0.7 C.P. Tinie=48 sec 22 scc 

-0.1 

16 sec > 64 sec 

3.2 
0.8 465 745 
5.3 1.027406 x 10-G 8449308 x 

- 2.6 45 sec > 64 sec 
2.1 

298 
1.027406 x 

30 sec 

responses for the two- and three-parameter problems, respectively, with the 
value of E e q u d  t o  0.1 1706. For the two-variable case the optimum para- 
meters were a, = 3,475712, a, = 2,766808 with P = 4.750160 x For the 
three-variable case the optimum parameters were a, = 3.975313, a, = 3.039002, 
b, = - 2-087874 x lo-? with F =  2.261484 x 

For the  five-parameter problem represented by eqn. (27), with E = 0.11706 
a number of starting points were considered in an effort to  get some con- 
vergence with the Jacobson-Oksman method, but  with the exception of one 
case, i t  always failed. The fa~lure was, computationally, due to  the objective , 
function becoming too large, as a result of large variations in the parameters. 
The new Fletcher method converged to  the same optimum in every case, 
given by x, = 1.027405, x, = 2.855360, x, = 2.301252, 2, = 0.662057 and 
s, = - 0.076045. The Fletcher-Powell method was much slower, and in only 
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42 J. 1Y. Bander et  al. 

otic case it converged within the central processor time limit of 64 sec ; this 
particular case being when the starting point was very close to the optimum. 
!I!he rcsults for five starting points are shown in table 3, where in addition to the 
nutnbcr of function evaluations, the minimum value of the objective function 
obtaincd as wcll as the central processor time required are also given. The 
response for tho optimum is shown in fig. 3. 

Fig. 3 

. --. System response. 

t ime (seconds) 

Response of the five-paran~eter model with steady-state value 0.11706. 

6. Conclusion 
From these examples i t  appears that both the new Fletcher method and the 

Jacobson-Oksman method converge much faster than the Fletcher-Powell 
tncthod, as might have been expected. Although the Jacobson-Oksman 
method gave a slightly better performance than the new Fletcher method in 
a number of cases, it often failed, especially if the number of variable parameters 
was increased. This difficulty could perhaps be overcome by limiting the step- 
size but probably it may slow down the initial performance of the algorithm. 
As the new Fletcher method gave consistently good results, the authors feel that 
it is the most suitable algorithm for problems of this type. 
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Optimum system modelling using recent gradient methods 43 

Appendix 1. The two-parameter problem 

For step input, 
1 

B(s )  = -. 
S 

Hence, 

C(s )  = Baa =-- E E(s  +a1) 
s(s2 + a,s +ao) s s2 + als + a,' 

aC(s) E(s + a,) -- - 
aao (s2 + a,s + ao)2' 

The sensitivity function ac(t)/aa, and ac(t)laa, can now be evaluated by 
taking the inverse Laplace transforms of eqns. ( A  4) and ( A  5).  These can be 
easily obtained frotn standard tables. For example, if the poles of the trans- 
form frtnction are complex, i.e. 

then from eqns. ( A  4) i~nd ( A  5)  we have 

ac(1) E exp ( - a t )  
-= 

2P3 
[(a + Ig2t) sin Ig1- ~ r p t  cos Igt], 

aao 

ac(t) Ea, cxp ( - at) 
-= - 

ZP3 
(sin pt - Igt cos 81). 

aa1 

Appendix 2. The three-parameter problem 

b,s + Eao 
H2(s) = s2 + a,s +a,,' ( A  9) 

b,s + Ea, E E(s+ a,) - b, 
C(s )  = =-- 

s(s2 + a , ~  + a,) s s2 + a , ~  + a, ' ( A  10) 

aC(s) E(s  + a,) - b, -- - 
aa,, (s2 + a,s + ( A  11) 

acw -- - - b,s + Eao 

3% (sZ + a . , ~  + ao)Z' (A 12) 

am) -- - I 

ab, s2 + a,s + a,' 
( A  13) 

The sensitivities in the time domain are again obtained by taking inverse 
Laplace transforms. 
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44 Optimnum s?ystem naodelling using recent gradient methods 

Appendix 3. The five-parameter problem 

acb) - x5s + x4 - Ex, -- - 
a ( S  + ~ ; < ) ~ ( s ~  +x,s +xl)'  

BANDLEH, J. I\'.! 1060,Z.E.8 .E.  Trans. microw. Theory Tech., 17, 539. 
:I~.EHEZNAI, G .  T., and SINHA? N. K., 1970, Electron. Lett., 6,  847. . 
: v ~ ~ ~ ~ l ~ ~ l ~ ,  R.,  1070, Computer J.,' 13, 317. 
FLETCIIER, R.,  and POWELL, M. J. D., 1963, Computer J.? 6, 163. 
HOOKE, R., and JEEVES, T. A,,  1961, J. Ass. Comput. Mach., 8, 212. 
, ~ n c o n s o ~ ,  D. H., and OKSMAN, W., 1970, Harvard Univ. Tech. Rep. No. 618. 
STNIIA, N .  K . ,  and BEREZNAI, G. T., 1971, Znt. J .  Contr01, 14, 551. 
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