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Department of Llectrical Engineering

McMaster University
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Abstract

A practical approach to solving constrained minimax problems is presented. A
method has been proposed recently in which a constrained minimization problem
has been formulated as an unconstrained minimax problem. The essense of this
approach can be used to treat the constrained minimax problem as a nonlinear
Programming problem, and then reformulating it into an unconstrained minimax
problem. A recently proposed optimization algorithm called grazor search can
suitably be used to solve the reformulated unconstrained minimax problem. The
proposed method can handle any set of constraints-parameter constraints in
particular.

1. INTRODUCTION

The problem of unconstrained minimax approximation method consists of solving a linear program at the
is an important one, and has been considered by a point z’
number of authorsll's]. These methods are, how-
ever, not very efficient both in terms of rate of maximize o #l(°J) >0 (2)
~
convergence towards the solution, and the compu- subject to ¥
tation time required to reach the vicinty of the kr
: _oTs 4, Joon L] o i

optimum. A new method[:?lled grazor search has X yi(z ) Z ay th(x ) < “kr*l i l,...,kr
been recently proposed' ', and has been found to L=1 (3
be both efficient and reliable in effectively
handling the solution of unconstrained minimax “i >0 i=l,....kr @)
problems. K

2. GRAZOR SEARCH METHop[4+5] roj

I og=1 (5)

Suppose we have the problem of minimizing =1

where 9L(£J), l=1,...,kr are the highest ripples

U(z) = max yi(z) (1) ) . .
1<is<n under consideration (kr < nr). We next define
where 2 denotes the k independent parameters and j kr iooa
y; are real, nonlinear, differentiable functions Aﬁ = - z °g Zyz(i ) ()
in general. Let 9£(£). =1, ..., n, be the L=l
largest local discrete maxima (ripples) of yi(i), ; which is normalised to

lci<n, in descending magnitude. The grazor search
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Starting at ¢J
direction of A¢J untii an improved point is ob-

» One or more steps are taken in the
tained for a step equal to A¢ . Next, a method
based on golden section search to find the y *cor-
respondzng to the constrained minimum value of
U(¢J +y) A¢ ) is used. The jth iteration ends
by setting

R ‘e
2]01 - zj . YJ A‘O (8
A
This method is guaranteed to converge under cer-

tain conditions.

3. CONSTRAINED MINIMAX PROBLEM

Consider the problem of minimizing (1)

subject to

gj(g) 20 j=1,2,...,m (9)

where gj are non-linear functions of the parameters
This problem reduces to minimizing

-

in general.
z subject to (9) and
z - yi(Q) >0 i=1,2,,..,n (10)
4"

The above problem can be reformulated as an un-
constrained minimax problem by two methods, one
using a recently proposed method due to Bandler
and Charalambous[6], and the other using weight-

ing functions.
Formulation 1
——-—-carion 1

The problem can be reformulated as minimizing

V('?;.:) = l:‘;:fgznz'“l(z'yi(i))p z-aj’lgj (‘t)] (11)
1sj<m
A )
where : = [a1 ay .« .. 8 e1l {12)
aj >0 j=1,2,...,mel {13)
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For a large enough value of u one can obtain, in
principle, the exact opt1mal solution for the
original problem by minimizing this reformulated
objective function.

When implementing this scheme one can, for the
problem defined earlier, slightly modify the
formulation in order to save on computational ef-
fort, so that the minimization function chosen is

Ll .
Vo2) = maxlz,z-a2-5,40), z-a,,15.(0)] (14
A 15‘5", ~ J+1%) A
IGm

Formulation 2

Minimize

WD = maxlyi (9, - wigs () (15)
l<i<n
l<J<m
T
where : ¢ [wl Wy ool Hh] (16)
wj >0 j=1,2,...,m (17)
For purposes of practical implementation, as long

as U(¢) > 0 and one wishes to apply nonzero weights
4]

only to violated constraints of (9), the mini-

mization function may be chosen as

? ] ?
W (¢,w) = max [91' - w.g.(¢)] (18)
v l<g<n I
1<$j<m”
1) A ] ] ? 'r
where : = [wl Wy o e w.] (19)
w. >0 forg.(¢)< 0
J J A
=L,2,....m  (20)
L
w. =0 forg.(¢)> 0
3 J 8 - .

The advantage of this formulation is apparent when
U>0 implies that certain specifications are viol-

ated and U<0 implies that they are satisfied. In
this case, comparison with violated and satisfied

constraints seems appropriate.

By proper choice of the elements of a, w or w ,

~ a
the reformulated functions v, V s Wor w can be



minimized by using a suitable algorithm,

In case of parameter constraints, upper and lower
specifications can be considered as follows

B20-1(4) = ¢; - 45, 20

2=1,2,...k 21
sj(zl >0 (22)
j=2k+1,2k+2...,m

4. RESULTS

The proposed approach was applied to the design
of a 5-section cascaded lossless transmission-
line filter with unit impedance terminations.
The problem has been previously considered[7]
for lengths fixed at a quarter-wavelength of
lq=2.5 cm corresponding to 3 GHz, and for a
required attenuation of 0.4 db in the passband
(0-1 GHz).
characteristic impedance values when a stopband
The functions

Optimal values have been derived for

frequency of 3 GHz was chosen.
chosen for the problem were

= - r f.,e0-1 GHz
(23)
yi@) =1-le;|  £; = 3 Gz
where pi=p(fi) is an ith reflection coefficient
magnitude at a discrete frequency fi’ and r
corresponds to an attenuation of 0.4 db, res-
pectively. Twenty-one uniformly-spaced points

were chosen in the passband.

The lengths 2, were initially fixed at zq and
the impedances Zi were varied. The impedance
constraints imposed were 0.5<2,<2.0, i=1,2,...,5
while the minimization function was chosen to be
N'. Further, n=22, m=10 and wj=1000 (for un-
satisfied constraints) or 0 (for satisfied con-
Table I shows the
results of optimizing the impedances, and it is

straints) for j=1,2,...,m.

observed that some of the impedances of the con-

strained solution lie on constraint boundaries.
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Para- Unconstrained Constrained solution
meters optimal solution
(1) (ii)
Zl 3.151 0.5683 1.760
z, 0.4416 2.000 0.5000
Z3 4.419 0.5000 2.000
Z4 0.4416 2.000 0.5000
2s 3.151 0.5683 1.760

S 3

U 3.951x10° 3.255x10°°> 3.255x10"

3

¥ 2.419x10 3.255x10"° 3.255x1073

Table I 5-section filter design problem

Moreover, there are two distinct solutions, for
which the impedances are reciprocals of each
other.

As a further step, it was desired to improve the
performance, if possible, by allowing both the

lengths and impedances to vary, and imposing the
following constraints: 058,52, 0.4416<2;<4.419
(corresponding to lower and upper limits of the

unconstrained optimum of Table I) for i=1,2,...,5,
S

0< 2555, where ¢, = 23/%,. The function to be
i=1

minimized was chosen as V, while n=22, m=22,

ajtlo for j=1,2,...,m+l1,

corresponded to optimal values when the lengths

The starting parameters

are fixed at £ and the above mentioned impedance
constraints are imposed. It was observed that no
improvement could be achieved from the starting
point and that the starting point satisfies the

necessary conditions for a minimax optimunis].

S. CONCLUSIONS

The experience with the approach seems to indicate
that the method is very useful in tackling con-
strained minimax problems effectively, now that

a reliable unconstrained minimax algorithm is
available. The method has a number of applica-

tions, including high-order system modelling and



control system designs, where constraints may
have to be imposed on the pole-zero locations of
the system responses.
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