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Gradient minimax techniques for system modelling 

J. W. BANDLER, N.  D. MARIIETTOS 
and T .  V. SltlNlVASAK 
Department of Electrical Engineering and 
Communications Research Laboratory, 
McBIaster University, Hamilton. Ontasio, Canada 

[Received 18 July 19721 

Some recently proposotl gradiont motliods for minimax or near minimax approxima- 
tion are applied to producing optimal second-order and third-order models of a high- 
order system. The Fletcher-Powell method, a more recont method by k'letchcr and 
a mcthod hy Jacobson and Oksman are employcd with least pth appro xi ma ti or^, using 
largc valocs of p ,  as proposed by Ranrller and Charalambous and critically compared 
with t,hc graaor search tcchniquc of minimas approximation by Bandler ct al. The 
solutions ohtniztccl nre shown to satisfy t,hc necessary conditions for a minimax 
optimum. 

1. Introduction 
The purpose of determining low-order models for high-order systems is to  

simplify preliminary design and optimization of such systems. System 
modelling using least-squares approximation has been investigated recently 
by Bn,ndler et ul. ( 1072 a) .  They compared, in particular, the relative cffeci- 
encies of three gradient minimiza,tion methods as applied to  least squares 
problems. The system modelled was a seventh-order system which represents 
tlic control system for the pitch rate of a supersonic transport aircraft. 

In the present work, the maximum value of the error between the step 
responses of the above seventh-order system and the model is effectively 
minimized. This may be accomplished either by directly minimizing the 
maximum error (minimax), or by least ptli approximatiou techniques which, 
by selecting a large enough value for p, gives, for practical purposes, a minimax 
solution. The direct minimax method, called the grazor search teclmique, has 
been recently proposed by Bandler, Srinirasan and Charalambous (1972 c). 
The strategy is based on steepest descent directions found by linear pro- 
gramniing. The least ptli approximation approach was based on a paper by 
Handler and Charalambous (1971) where very large values of p-up to 113'~- 
11ave been successfnlly used. For the presmt problem the value of p was 
ehoscn as 1000, on the bask of acceptable alinost minimax results and reason- 
able eomputcr central processing time. A comparison is made between three 
gradient metl~ocls (Fletcher and Powell 1963, Fletcher 1970, Jacobson and 
Oksman 1970) a. description of wliich is given by Bandler et al. (I972 a).  The 
grimor search t,eclinique is also compared with the least ptli approximation 
tqjproach. 

2. Statement of the problem 
1 t . k  required to  find n transfer function of a model of a given order, the 
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318 J .  11'. Bundler e t  al. 

rcsponse of which is the best approximation t o  the response of the actual 
systcm to  a particular input for a specified error criterion. 

In general the transfer function of a given order n may be written as 

where m < n  for physical systems. For this work the input is a unit step and 
the criterion chosen is to  directly or indirectly minimize the maximum error 
over a specified time interval. The problem, therefore, is the determination 
of the parameter vector x, defined as 

such tha t  the maximum error is minimized. 
It is often desirable to  impose constraints on the model. For instance, 

it will be logical to  dcmand tha t  the steady-state value of the model be equal 
to  t1i;~t of the systcm. So, a. steady-state constraint will be imposed on all 
thc problems in this work. 

3. Least pth approximation 
Lcmt p t h  approximation is the minimimtion of the p th  norm of the 

saml,lecl crrors defined as 

whcre x is a k-vector and e,(x) is the error between the system and model 
rcsponscs a t  some samplc point i of a finite set 1, relating t o  a11 the sampled 
points. .I.t is assumcd that  ei(x) is continuous with continuous partial deriva- 
tives with resl)cct to  x for all i. p g  1 .  

:It is desirable to increase the valuc of p as much ;IS possible, since the larger 
the \ d u e  of p the nearcr to  minimax will the solution be. This is shown by 

lim F ( x )  =M(x ) ,  
p- m 

(4) 

where 
i l f (x)  max lei(x) 1. 

id 

r 7 I hcre are, howevcr, two computational limitations. One is that  if 
Je,(x) 1 > I, when using large valucs of p ,  the numbers tend t o  become too 
large for the computer to  handle. 'I'he other is tha t  if le,(x)l < 1 ,  again when 
raised to  a large power, the numbcrs tend to  zero and most of the information 
is lost. 

A normalization proposed by Bandlcr and Charalambous (1971), permitted 
the use of extremely largc values of p .  Thc objective function t o  be minimized 
may be rewritten as 

in which case a t  least one of the numbers raised to  p will be equal t o  1. 
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Gradient minimax techniques for system modelling 319 

I n  (6), if the set I is replaced by  J, an  index set relating only t o  the cxtrema 
of the error function, considerable economies in computing time will result at 
a slight risk of creating false optima. As can be seen from the expression of 
the gradient, namely, 

the cocfficients of Ve,(x) will, for most points and h rge  enough p, be very 
small, thus contributing very little to  VF(x). The manner by which Vei(x) 
is derived is indicated for the present examples in the paper by Bandler 
et al. (1972). 

The following values of p have heen used : 10, lo2, 5 x lo2, lo3, LO4, IOU, 
LO8 and 10l2. It was found that ,  although agreement in significant figures 
amongst the extrema increased as p increased, the computer central process- 
ing time increased considerably for values of p above lo3. Thus for com- 
parison of thc minimization techniques p = lo3 was considered suitable. 

4. The grazor search method 
A new algorithm called the grazor search method ha.s been recently 

developed (Bandler el al. 1972 c) in which gradient information of onc or more 
of the largest extrema in the  error function is used to  produce a downhill 
direction by solving a suitable linear programming problem. A linear search 
follows to  find a minimum in tha t  direction, and the procedure is repeated. 
This procedure is repeated with as m m y  extrema as necessary until a minimax 
solution is reached to  some desired accuracy. Thc method is guaranteed to  
convergc under certain conditions. 

Suppose we have the problem of minimizing 

M(x)  = max gi(x), 
L E I  

where x and I are as defined earlier and the yi arc real, non-linear, differentiable 
functions generally. Let $,(x), I =  1 ,  . . ., n,, be the largest local discrete 
maxima (ripples) of y,(x), for i ~ l ,  in descending magnitude. The grazor 
search method consists of solving a linear programme a t  the point 

maximize a,dr+,(~j) 2 0, 
subject t o  

where ?j,(x5), 1 = 1, . . ., k ,  arc the highest ripples under consideration (k, <n,). 
When k c =  I ,  we obtain the steepest descent direction for !j,(xj). 

We next define 
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320 J .  11'. 13undler e t  al. 

which is normalized to  

Starting a t  x j ,  a step ajAxnj is taken for aj=a,j  ; if no improvement in 
dl rcsults, aj is rctluccd by factors of ,tl until a better point is obtained or 
a j <  LG. Lct aj* producc the first improved point from xi. Then AxO=~j*Ax,, i  
is tlcfi~ied. 

Next, a method based on golden section s c ~ ~ r c h  to  find the yj*  ciirrespond- 
ing to  the constrained minimum value of ilil(xj+ yjAx0) is used. The j t h  
iteration ends by setting XI+' = x j  + yj*Ax" and a,j+' = aj*yj*.  

For the system modelling problem, we let 

5. Results 

Thc systc~n modelled was the seventh-order system used previously by 
J3andler el al. (1972 a ) .  The computer used wns a CDC 6100. The time 
interval over which thc approximation was made was 0 t o  8 sec. 101 
uniformly spaced sample points were choscn over the interval. The steady- 
state value of the modcl was set at 0.1 170G, corrcsponding t o  the response of 
the system a t  the final sample point. 

First the following transfer function for a model was used 

where R was the steady-state value and the parameter vector was 

xT = [a, a,]. ( 1 7 )  

The optimum parameters obtained using the grazor search method were 

a,= 3.06472, 

a, = %:383:38, 

resulting in t~ fot~r-ripple crror curvc with a maximum error value 

The response and error curves are shown in figs. 1 (u,) and 1 ( b ) ,  respectively. 
The optimum parameters obtained using least p th  approximation for 

p = I000 were 

resulting in a similar four-ripplc curve with a maximum error value 

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 0
3:

03
 0

8 
D

ec
em

be
r 

20
14

 



Gradien,t rnini,tnclx techniques f b r  s!jsiene modelling 

Fig. 1 

sysrsm response 

model response 

0.10~ 

0.08- 

0.06- 

0.04- 

0.02- 

0 I 2 3 4 5 6 7 8 

time (seconds) 

((1.) 

I 

Two parameter optirnutu ( a )  responses, (b)  error curve. 

Table 1 shows the number of function evaluations required for each of the 
methods to  reach a maximum error value of 3.76619 x 1 W 3 T .  For this problem 
the Fletcher method a n d  the Jacobson-Oksman method appeared to  be the 
most efficient. I n  the sixth column of table I are the results obtained with 
the Jacobson-Oksrnan method when a homogeneous step  r re diction was 
used. That  is, the scdar  h by which the parameter increment was multiplied 
was selected on the assumption that  the function was liomogeneous. If, 
however, thc  degree of homogeneity in tha t  iteration was negative, then i t  
was assumed that  the function was quadratic a t  tha t  stage, and a quadratic 
-- ~- - 

t Some of thc results appeared at  the 1972 Princeton Confcrcncc. The captions 
of tables 1 and 2 of that paper arc in error. The tables actually indicate the number 
of function evaluations required to reach a certain value ilf in the minimization of 
N ( x )  and a certain value F in the minimization of F ( x ) .  
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322 J. 1.1'. Bundler e t  al. 

Tublc I .  Number of function evaluations required to  reach M =  3.76619 x 
for the 2-parameter problem 

Minimization of F ( x )  

Starting Mininiization Jacobson-Oksrnan 
point of M ( x )  

x gnuor L'letclicr l~lct,clicr- Quadratic Homogeneous 
lJowell step step 

prediction prediction 

4.0 129 64 False 41 45 
1 .O optinium 

t Indicates an ARGUMENT TOO LARGE message was given by the computer. 

step prediction was used. The results shown in the fifth column were 
obtained using only a quadratic step prediction. It appeared, for this parti- 
cular problem, that  the quadratic step prediction gave more efficient results. 
III both cases however, if the predicted value h was larger than a preselected 
value p ,  then this preselected value p was taken as the scalar A. In  other 
words p was the upper limit on A. 

By allowing the model to have a zero, we have the following transfer 
function 

6,s + Ea, 
H ( s )  = 

s2 + a,s +a{ 

resulting in a three-variable problem with a parameter vector 

xT= [a, a, b,]. (19) 

The optimum parameters obtained using the grazor search method were 

giving a maximum error value 
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Gradient mi?~i,~nax technipz~es for system modelling 

Fig. 2 

0.12- 

0.10- 

0.0 8 - 

0 . 0 6 -  

0.04 

0.02. 

0 

I - 5' ( b )  

Three-parameter optimum (a) responses, ( b )  error curve. 

system response - - - - - - - - - - _ _ _ _ _ _ _  
model response 

I 2 3 4 5 6 7 8 

4. 

" 3- 
2.4872 2.4872 

time (seconds) 

The response and error curves are shown in figs. 2 (a )  and (b) ,  respectively. 
For p = 1000 the optimum parameters obtained were 

a,= 3.83592, 

a, = 3.00605, 

b,= - 1.77277 x lo-', 

time (seconds) 

-3- 

-4 

giving similar response and error curves as in figs. 2 ( a )  and (b) and 

M = 2.48794 x 

-2.4872 
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'I'i~blc 2. Number of function evaluations require:l to  reach M= 2.48794 x 
for the 3-paramctcr ~problcrn 

. Minimization of F ( x )  
Rlinimiza- - -  

Stiwting tion of Jacobson-Oksrnan 
point, i l l ( x )  

x grazor I~'letc1lcr Fletcher- Quadratic step Homo- 
I'o\\el l prediction geneous 

step 
p = l  p =0.5 ~~etl ict ion 

t Intl~cates timc I t n ~ ~ t  of 64 sec was reached. 
1 Ind~cutes an ARGUMENT TOO LARGE message was given by the computer. 

The number of function evaluations required for the three parameter 
problem to  rcach thc value N = 2 . 4 8 7 0 4  x are shown in table 2 t .  The 
grazor scurch technique and thc Fletcher method required a smaller number 
of function evaluations. Thc .Jacobson-Oksman method, with the homo- 
geneous step prediction strategy described earlier, failed in 50% of the cases 
tricd. This failure was duc to  large variations i l l  parameter values and 
numbers, in the estimation of the objective function, becoming too large. 
By using only a quadratic step prcdiction, a noticeable improvement in 
efficiency of the algorithm occurred. The results are shown in table 2. 111 
addition to  the quadratic step prediction, the value of p which was normally 
kept a t  1.0, was now set a t  0.5, resulting in improvement from some starting 
points. 

t See footnote on p. 321 
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Grad,ient minimax techniques for sy t e tn  naodellinq 325 

For thc final problem the following transfer function was considered 

which, for computational efficiency, was used in the  form 

resulting in a five-variable problem with parameter vector 

x'r = [zl x2 x3 zq x5J 

Fig. 3 

time (seconds) 

( a )  

-3. 

-4-  

-5. ( b )  

Five-parameter six-ripple optimum (a) responses, ( b )  error curve. 

5- 

4- 

," 
e 3. 

j k 1 
a 

0 

-1. 
. 

-2- 

1.0206 

/ 1.0206 1.0206 

I 

-1.0206 -1.0206 
time (seconds) -1.0169 
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326 J .  W. Bundler e t  al. 

The optimum parameters obtained using the grazor search method were 

2, = 4.34547, 

X, = 3.36809, 

x,= 1.08248 x lO-I, 

x,=5.11475 x lo-', 

x,= - 3.561 80 x 

resulting in a six-ripple error curve with a maximum error value 

M =  1.02062 x 10-3. 

Table 3. Number of function evaluations required to  reach the shown value of 
I000 M for the  5-parameter problem 

Minimization of F ( x )  

Starting Minimization Jacobson-Oksman quadratic 
point of M ( x )  step prediction 

x grazor Fletcher 
p= l p=0.5 

3.0 
3.0 
1.5 
0.5 

-0.1 

1 3 
3.0 
2.5 
1 .o 
0.1 

4.0 
3.0 
0.1 
0.5 

-0.03 

3.0 
5.0 
0.2 
0.3 

-0.1 

5.0 
4.0 
0.5 
1 .o 

-0.5 

Least- 
squares 

optimum 

t Indicates time limit of 128 sec was reached. 
$ Indicates an ARGUMENT TOO LARGE message was given by the computer. 
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Gradient minimax techniques for systein modelling 327 

The response and error curves are shown in figs. 3 ( a )  and (b ) ,  respectively. 
The optimum parameters obtained using p = 1000 were 

2, = 4.31682, 

x, = 3.36738, 

2, = 9.96086 x 1 0-2, 
x,= 5.14728 x lo-', 

2, = - 3.56154 x 

giving curves sinlilar to  those of figs. 3 (a)  and (6 )  and a maximun~ error 

Some runs with the Fletcher-Powell method, on the five-parameter 
problem, indicated the method was the slowest and since this was already 

Fig. 4 

t ime (seconds) 

(a) 

system response 
-------__.____.. 

model response 

0.10 0 . ~ ~ 1  

t ime (seconds) 

0.08- 

0.06- 

0.04. 

0.02 

- 
0 

( b )  
Five-parameter five-ripple solution (a )  responses, ( b )  error curve 

- I 2 3 4 5 6 7 8 
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csti~blishetl in tltc ~.)revious problems, further runs of the Fletcher-Powell 
tncthod wcrc considered unnecessary. The Jacobson-Oksman method, used 
with a homogcncous step prediction, as explained earlier, failed from each 
sta,rting poil~t .  With a buadriltic step prediction however and with p =  1.0 
t l ~ c  mcthocl succectlctl in locating the optimum in 50% of the cases tried. 
13y reducing p to  0.5 the method fisilcd to  locate the optimum only once. 
Thc rcsults are shown iu table 3. 

Thc l~lctchcr  mct,l~od reached a uniquc six-ripple solution in all the  cases 
txicd, t~l t l~ough tilere was a. large vi~rii~tion in the numher of function evelua- 
tiions required. The grazor search technique rei~ched the six-ripple solution 
in onc of thc c:~scs shown, while in some of the other cases it terminated in a. 
fivc-ripplc solution. 

I n  some insttsnces, the real pole of the model had the tcndcncy to  move to  
thc right-l~and side of thc s-plane end since this woulcl produce an  unstable 
model, the last ~ ~ a r m ~ e t e r s  giving stable results werc taken as the final values. 
1.n i ~ l l  ci~scs, Irowever, the red pole secrns to lie very close to  the j w  axis and any 
constraint, tt~lthongll easily implemented in the form of squisrc transformation, 
\voulti Imvc made the pole go to  zcro. 

. I t  was further notctl that  whcn the Fletcher method, used with p= 1000, 
was st i~rted from olte of the fivc-ril~l~lc solutions wherc the grazor search 
tcchniquc terminntcd, dircction was found which decreased F ( x )  while 
temport~rily increasing d l ( x )  and the method converged towi~rds the six- 
ripple minimi~x- solution, though slowly. When the same procedure was 
rcl)catccl with p =  loG, thc algorithm failed to  movc from tha t  point. Figures 
4 ( a )  and ( 6 )  show the response and crror curves for a five-ripple solution 
obttsined by the grimor sei~~.ch  neth hod. 

6. Conditions for a minimax optimum 
:I:f g , ( x ) ,  1 = I, 2,  . . ., k ,  arc h k c n  for practical purposes, as  equal, then for 

x to satisfy the necesstq conditions for a minimax optimum (Bundler 1971),  
thcrc exist non-neg:~tivc multipliers u,, 6 =  1 ,  . . ., k, such that 

'I.'hcsc conditions were t~pplied to  the  final parameter values i~rrived a t  through 
optimization by thc grimor search g net hod, and found to  be satisfied in all 
cascs, :ls indicntcd below. . 

(a) 2-prrra~~ceter solution: 1s,= 4, k, = 3 

1 Time instant Error maximum Multiplier 
(1000 Sr) (4 
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Gradient 11aini7nuz techniques for system modelling 

( b )  3-parameter solution: n,= 4 ,  k,= 3 
- 

1 Time instant Error mnsi~uurn Multiplier 
(1000 $ 1 )  ( ~ 1 )  

I.. 

( c )  5-parameter s o l u t i o ~ ~  

(i) Six-ripple solution : n , =  6 ,  k c =  6 .  

I Time instant  Error tnasirnum Multiplier 
(1000 ? j , )  ( U I )  

1 1.84 1.020GlG 36510 x lo-" 
2 0.72 1~02061G 8,4333 x lo-" 
3 0.08 1.020616 0?5180(i 
4 3.76 1.020616 2.7915 x 
5 0.24 14E061 6 0.32227 
6 8.00 1.016870 1.0910 x 

.(ii) Five-ripple solution : n,= 5 ,  k ,  = 5 .  

I Time instant Error maxinium Multiplier 
(1000 81) (14 
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J .  W .  Bandler e t  al. 

For cascs (6) and (c, ii), k c  is equal t o  k and there are k,+ 1 equations and 
k, unknowns for the solution of (23) and (24). The dependent eqns. in (23) 
are kept mide, while the independent eqns. of (23), together with (24), are 
solvcd for the u,, 1 =  1, . . ., k,. The values of the  u, are now substituted back 
into the clependent eqns. of (23) to  check if the residual values are nearly 
zero. Il'he non-zero values of the components of 

for cascs ( 0 )  t ~ n d  (c, i i )  correspond to  the residuals of the dependent equations. 
:In interpreting thesc results one may associate (a) and (c, i )  in saying tha t  

thc main criterion is how close to  cqual the ripples are and (6) and (c, i i )  in 
how smull the size of the linear combination is in comparison with the  sizes 
of the individual gradieut vectors. :In the first case we are satisfied with 
the criterion from a practical point of view, in the second the linear combina- 
tion is about 2 t o  4 orders of magnitude smaller than the gradient vectors. 

7. Conclusions 
The grazor search algorithm is found to  be more efficient than the  Fletcher- 

I?owell method on the problems chosen. 'J'he method proposed by  Fletcher 
appews to  bc the most efficient of the methods used in tha t  firstly it required, 
for most cases, s smaller number of function evaluations and secondly it was 
consistent in reaching the optimum. The Jacobson-Oksman method, al- 
though giving good results, appeared to  be sensitive to  scaling. This is 
sho\vn by the improvement tha t  occurred when p was reduced t o  0.5 from 
1.0. :I:n the revised edition of the Jacobson-Oksman paper (private com- 
munication) a strategy is suggested where p is reduced automatically in the 
algorithm by using a certain criterion. This might improve the method for 
the type of problems solved in this paper. 
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