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Department of Electrical Engineering and

Communications Research Laboratory,
McMaster University, Hamilton, Ontario, Canada

[Received 18 July 1972]

Some recently proposed gradient mothods for minimax or near minimax approxima.-
tion are applied to producing optimal secund-order and third-order models of a high.
order system. The Fletcher-Powell method, a more recent method by Fletcher and
a method by Jacobson and Oksman are employed with leagt pth approximation, using
large values of p, as proposed by Bandler and Charalambous and critically compared
with the grazor search technmique of minimax approximation by Bandler et al. “The
solutions obtained are shown to satisfy the necessary conditions for a minimax
optimum.

1. Introduction

The purpose of determining low-order models for high-order systems is to
simplify preliminary design and optimization of such systems. System
modelling using least-squares approximation has been investigated recently
by Bandler et al. (1972 a), They compared, in particular, the relative effeci-
encies of three gradient minimization methods as applied to least squares
problems. The system modelled was a seventh-order system which represents
the control system for the pitch rate of a supersonic transport aircraft.

In the present work, the maximum valuec of the error between the step
responses of the above seventh-order system and the model is cHfectively
minimized. This may be accomplished either by directly minimizing the
maximum error (minimax), or by least pth approximation techniques which,
by selecting a large enough value for p, gives, for practical purposes, a minimax
solution. The direct minimax method, called the grazor search technique, has
been recently proposed by Bandler, Srinivasan and Charalambous (1972 c¢).
The strategy is based on steepest descent directions found by linear pro-
gramming. The least pth approximation approach was based on a paper by
Bandler and Charalambous (1971) where very large values of p—up to 10'2—
have been successfully used. For the present problem the value of p was
chosen as 1000, on the basis of acceptable alinost minimax results and reason-
able computer central processing time. A comparison is made between three
gradient methods (Fletcher and Powell 1963, Fletcher 1970, Jacobson and
Cksman 1970) a description of which is given by Bandler et al. (1972 a). The
grazor search technique is also compared with the least pth approximation
approach.

2. Statement of the problem
It is required to find a transfer function of a model of a given order, the

8.8. Y
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response of which is the best approximation to the response of the actual
system to a particular input for a specified error eriterion.
In general the transfer function of a given order » may be written as

b, sm+b, _ ™4+ . +bs+b,

H(s)= ,
S"+a, "N+ F a8t a,

(D

where m <= for physical systems. TFor this work the input is a unit step and
the eriterion chosen is to directly or indirectly minimize the maximum error
over a specified time interval. The problem, therefore, is the determination
of the parameter vector x, defined as

x=[aya, ...a, ; byb;...5,]T, (2)

such that the maximum error is minimized.

It is often desirable to impose constraints on the model. For instance,
it will be logical to demand that the steady-state value of the model be equal
to that of the system. So, a steady-state constraint will be imposed on all
the problems in this work.

3. Least pth approximation

Least pth approximation is the minimization of the pth norm of the
sampled errors defined as ‘

Ii{p
F(x)= (; |ei(x)\”) , (3)

where x is a k-vector and ¢{x) is the error between the system and model
responses at some sample point ¢ of a finite set /, relating to all the sampled
points. 1t is assumed that e,{x) is continuous with continuous partial deriva-
tives with respect to x for all &. p=1.

It is desirable to increase the value of p as much as possible, since the larger
the value of p the nearer to minimax will the solution be. This is shown by

lim F(x)=M(x), (4)
T)—DCD
where
M(x) & max |e[x)]. (5)
el

There are, however, two computational limitations. One is that if
le;(x)| > 1, when using large values of p, the numbers tend to become too
large for the computer to handle. The other is that if |e;(x)| <1, again when
raised to a large power, the numbers tend to zero and most of the information
is lost.

A normalization proposed by Bandler and Charalambous (1971), permitted
the use of extremely large values of p.  The objective function to be minimized
may be rewritten as

lip
) (®)
n/

in which case at least one of the numbers raised to p will be equal to 1.

ey(x)
M(x)

mn=Mm(Z

iel
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In (6), if the set I is replaced by J, an index set relating only to the extrema
of the error function, considerable economies in computing time will result at
a slight risk of creating false optima. As can be seen from the expression of

ey(x)

the gradient, namely,
1i{p-1 ei(x)
) (Z M
M|, A RIY

VF(x)= ( Y
iel
the coefficients of Ve,x) will, for most points and large enough p, be very
small, thus contributing very little to VF(x). The manner by which Ve;(x)
is derived is indicated for the present examples in the paper by Bandler
et al. (1972).

The following values of p have heen used : 10, 10%, 5x 102, 103, 10%, 108,
10% and 1012, It was found that, although agreement in significant figures
amongst the extrema increased as p increased, the computer central process-
ing time increased considerably for values of p above 10*. Thus for com-
parison of the minimization techniques p =103 was considered suitable.

e(x)
R "

4. The grazor search method

A new algorithm called the grazor search method has been recently
developed (Bandler et al. 1972 ¢) in which gradient information of one or more
of the largest extrema in the error function is used to produce a downbhill
direction by solving a suitable linear programming problem. A linear search
follows to find a minimum in that direction, and the procedure is repeated.
This procedure is repeated with as many extrema as necessary until a minimax
solution is reached to some desired accuracy. The method is guaranteed to
converge under certain conditions.

Suppose we have the problem of minimizing

M(x)=max y,(x}, (8)
iel

where x and [ are as defined earlier and the y; are real, non-linear, differentiable
functions generally. Let #,(x), I=1,...,n, be the largest local discrete
maxima (ripples} of y,(x}), for ief, in descending magnitude. The grazor
search method consists of solving a linear programme at the point x/

maximize a,_,(x7) >0, {9)
subject to
kl‘
_VTﬁm(‘j) 2 aljvgl(xj) ‘<~ —ak,-+lj.’ m= ] I ERRRS] kr: (10)
=1
af 20, I=1,..,k, (1)
kr .
2 ai=1, (12)
1=1
where %,(xf), I=1, .., k. arc the highest ripples under consideration (k,<n,).

When k. =1, we obtain the steepest descent direction for #,{x?).
We next define

k.-
Axi= — 3 afV§, (%), (13)
=1

Y2
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which is normalized to
Ax, 7= Ax/[|| Ax/]). (14)

Starting at %/, a step o?Ax,/ is taken for /=2y ; if no improvement in
M results, of is reduced by factors of B until a better point is obtained or
al <& Let od* produce the first improved point from x/. Then Ax®=a/*Ax,/
is defined.

Next, a method based on golden section scarch to find the p/* correspond-
ing to the constrained miniinum value of M (x/+y/Ax%) is used. The jth
iteration ends by setting x/+! =x/ + 4/*Ax? and o+l = al*yi*,

For the system modelling problem, we let

yi(x) = |ei(x)|, el (15)

5. Results

The system modelled was the seventh-order system used previously by
Bandler ef al. (1972 a). The computer used was a CDC 6400, The time
interval over which the approximation was made was 0 to 8sec. 101
uniformly spaced sample points were choscn over the interval. The steady-
state value of the model was set at 0-11706, corresponding to the response of
the system at the final sample point.

First the following transfer function for a model was used

Ea
Hg)=5—T—, (16)
s+ a5 +a,
where % was the steady-state value and the parameter vector was
xT'=a, a,]. (17)

The optimum parameters obtained using the grazor search method were
= 3-06472,
ay = 238338,
resulting in a four-ripple error curve with a maximum error value
M =3-76347 x 1073,

The response and error curves are shown in figs. 1 («) and 1 (b), respectively.
The optimum parameters obtained using least pth approximation for
p= 1000 were

@y = 3-06549,
a,=2-38414,
resulting in a similar four-ripple curve with a maximum error value

M =3-76510 x 1073,
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Fig. 1
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Two parameter optimum (a) responses, {b) error curve.

Table 1 shows the number of function evaluations required for each of the
methods to reach a maximum error value of 3-76619 x 10-3'.  For this problem
the Fletcher method and the Jacobson-Oksman method appeared to be the
most efficient. In the sixth column of table L are the results obtained with
the Jacobson—Oksman method when a homogeneous step prediction was
used. That is, the scalar A by which the parameter increment was multiplied
was selected on the assumption that the function was homogeneous. If,
however, the degree of homogeneity in that iteration was negative, then it
was assumed that the function was quadratic at that stage, and a quadratic

t Some of the results appeared at the 1972 Princeton Confercnee. The captions
of tables 1 and 2 of that paper are in error. The tables actually indicate the number
of function evaluations required to reach a certain value M in the minimization of
M(x) and a certain value F in the minimization of F(x).
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Table 1. Number of function evaluations required to reach M=3-76619 x 103
for the 2-parameter problem

Minimization of F(x)

Starting  Minimization Jacobson-Oksman
point of M(x)
x grazor letcher Fletcher—  Quadratic Homogeneous
Powell step step
prediction prediction
3-0 107 42 59 36 36
20
[0 130 78 334 91 127
1-0
10 1656 96 718 834 t
4-0
40 129 64 False 41 45
10 optimum

t Indicates an ARGUMENT TOO LARGE message was given by the computer.

step prediction was used. The results shown in the fifth column were
obtained using only a quadratic step prediction. It appeared, for this parti-
cular problem, that the quadratic step prediction gave more efficient results.
In both cases however, if the predicted value A was larger than a preseleeted
value p, then this preselected value p was taken as the scalar A. In other
words p was the upper limit on A.

By allowing the model to have a zero, we have the following transfer
function

b8+ Ea,

H(8)=——————, 18
(®) 2+ a,5+a, (18)

resulting in a three-variable problem with a parameter vector
xT=[a, a, bl (19)

The optimum parameters obtained using the grazor search method were
a,=3-83255,
a, = 3-00365,
by=—1-76390x 102,
giving a maximum error value

M =2-48724 x 103,
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Fig. 2
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Three-parameter optimum {a) responses, (b) error curve.

and error curves are shown in figs. 2 (a) and (b), respectively.

For p=1000 the optimum parameters obtained were

a,= 383592,
a, = 3-00605,
by=—177277x 102,

giving similar response and error curves as in figs. 2 (a) and (b) and

M =2-487%4 x 10-3.
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Table 2. Number of function evaluations required to reach M =2-48794 x 10-3
for the 3-parameter problem

—e Minimization of F(x)

Minimiza-
Starting tion of Jocobson-Oksman

point M (x)

x grazor Fletcher Fletcher— Quadratic step Homo-

Powell prediction geneous
step
p=1 p=0-5 prediction

2:5

2:0 149 339 500 279 I 339
—2-0

1-0

1-0 368 362 1 104 276 137
10

40 :

3-0 165 242 184 142 97 260

0-01

3:5

1-5 358 280 342 217 151 1
—-10 :

50

1-0 325 193 + 1 205 1
—-1-0

5-0

10 406 245 1 159 119 I

3-0

1 Indicates time limit of 64 sec was reached.
I Indicates an ARGUMENT TOO LARGE message was given by the computer.

The number of function evaluations required for the three parameter
problem to rcach the value M =2-48794 x 10~3 are shown in table 27, The
grazor search technique and the Fletcher method required a smaller number
of function evaluations. The Jacobson—-Oksman method, with the homo-
geneons step prediction strategy deseribed earlier, failed in 509, of the cases
tricd. This failure was due to large variations in parameter values and
numbers, in the estimation of the objective function, becoming too large.
By using only a quadratic step predietion, a noticeable improvement in
efficicncy of the algorithm occurved. The results are shown in table 2. 1In
addition to the quadratic step prediction, the value of p which was normally
kept at 1-0, was now set at 0-5, resulting in improvement from some starting
points.

T Sece footnote on p. 321.
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For the final problem the following transfer function was considered

which, for computational efficiency, was used in the form

resulting in a five-variable problem with parameter vector

H(s)=

H(s)

bys?+bys+ Ea,

S+ a8+ a5 +ay

258  + 248+ Hayzx,

(s +aa)(st+zgs +y)

xV={x, z, x; 2, z;].

(20)

(21)

(22)

Fig. 3
system response
0.12 o —— e e S
model response
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0.06
0.04
0.02
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Qo
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Five-parameter six-ripple optimum (a) responses, (b} error curve.
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The optimum parameters obtained using the grazor search method were

2, =4-34547,

= 3-36809,

X, =1-08248 x 1071,

Ty=1514475 % 1071,

Zg= —3-56180 x 102,

resulting in a six-ripple error curve with a maximum error value
M =1-02062 x 103,

Table 3. Number of function evaluations required to reach the shown value of
1000 M for the 5-parameter problem

Minimization of F(x)

Starting Minimization Jacobson-Oksman quadratic
point of M(x) step prediction
x grazor Fletcher
p=1 p=0:
30
30 437 530 886 778
156
05 1-2i39 1-0207 1-0206 1-0206
—01
1-5 ,
30 782 768 931 325%
2-5
10 1-2473 1-0207 1-0206 45-086
1
40
30 489 177 114% 108
0-1
05 1-0206 1-0207 1-5061 1-0206
—0-03
3-0
50 634 862 248 350
0-2
0-3 1-1720 1-0207 1-0206 1-0207
—01
50
40 817 484 17 582
05
1-0 1-0337 . 1-0207 19-660 1-0207
—0-5
Least- 537 799 263t 12087
squares
optimum 1-2472 1-0206 1-8954 1-0283

T Indicates time limit of 128 sec was reached.

1 Indicates an ARGUMENT TOO LARGE message was given by the computer.
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The response and error curves are shown in figs. 3 () and (b), respectively.
The optimum parameters obtained using p=1000 were
z,; =4-34682,
2z, = 336738,
g = 9-96086 x 10-2,
z,=514728 x 1071,
x,= —3-56154 x 102,

giving curves similar to those of figs. 3 (¢) and (b) and a maximum error
M =1-02063 x 10-3,

Some runs with the Fletcher—Powell method, on the five-parameter
problem, indicated the method was the slowest and since this was already

Fig. 4

system
0.12 o L System r f!f;lo_n_s(_a_

model response
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2 3 9 5 6 7 8
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5
4
3
2 1.2140
/ 1.214C

error x10®
=)
=

-1.2140 -12127
-z time (seconds)
-3
-4
-5
(b)

Five-parameter five-ripple solution (a) responses, (b) error curve.
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established in the previous problems, further runs of the Fletcher-Powell
method were considered unnecessary. The Jacobson-Oksman method, used
with a homogeneous step prediction, as explained earlier, failed from each
starting point. With a quadratic step prediction however and with p=1-0
the method succeeded in locating the optimum in 50%, of the cases tried.
By reducing p to 0-5 the method failed to locate the optimum only once.
The results are shown in table 3.

The Kletcher method reached a unique six-ripple solution in all the cases
tricd, although there was a large variation in the number of function evalua-
tions required. The grazor search technique reached the six-ripple solution
in one of the cases shown, while in some of the other cases it terminated in a
five-ripple solution.

In some instances, the real pole of the model had the tendency to move to
the right-hand side of the s-plane and sinee this would produce an unstable
model, the last parameters giving stable results were taken as the final values.
In all cases, however, the real pole seems to lie very close to the jw axis and any
constraint, although easily implemented in the form of square transformation,
would have made the pole go to zero.

1t was further noted that when the Fletcher method, used with p=1000,
was started from one of the five-ripple solutions where the grazor search
technique terminated, a direction was found which decreased F(x) while
temporarily increasing #(x) and the method econverged towards the six-
ripple minimax solution, though slowly. When the same procedure was
repeated with p =108, the algorithm failed to move from that point. Figures
4 (a) and (b) show the responsc and crror curves for a five-ripple solution
obtained by the grazor scarch method.

6. Conditions for a minimax optimum

It §,00), I=1, 2, .. ., k, are taken for practical purposes, as equal, then for
x to satisfy the necessary conditions for a minimax optimum (Buandler 1971),
there exist non-negative multipliers w,, =1, .. ., k, such that

ke
l;u,V!;‘,(x) =0, (23)
kr
l;“:—_' 1. (24)

These conditions were applied to the final parameter values arrived at through
optimization by the grazor search method, and found to be satisfied in all
cases, as indicated below.

(@) 2-parameter solution: n.=4,k =3
l Time instant Error maximum Multiplier
(1000 4,) (u)
1 0-24 376347 0-75047
2 0-88 3-76347 0-16519
3 2-16 3-76347 84342 x 102
4 440 2-55235 —
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&
3w, Vi, =[0-0 0-0]"
=1
ke
Y u,=10,
i1

(b) 3-parameter solution: n =4, k=3

{ Time instant  Error maximum Multiplier
(1000 g,) ()

1 400 2.48724 0-90758

2 0-24 2-48724 42744 x 102

3 0-96 2-48724 4-9680 x 102

4 2-00 2-00700 x 101 —

l‘r
Y Vi =100 0-0 1-1 x 10-5T
=1

A

Y ay=1-0.

i=1

{c) 5-parameter solution
(1) Six-ripple solution : n_ =6, k. =6.

i Time instant Error maximum Multiplier
{1000 #,) (1))

1 1-84 1-020616 3-6510 x 102

2 072 1-020616 8:4333 x 102

3 0-08 1-020616 0-51806

4, 376 1-020616 2-7915 x 10~2

5 0-24 1-020616 0-32227

6 8-:00 1-016870 1-0910 x 10-2

kr
S Vi, =[0-0 0-0 0-0 0-0 0-0]"
=1

ks

Y u,=1-0.

i=1

(ii) Five-ripple solution: =n =35, k =5,

l Time instant Error maximum Multiplier
(1000 g,) (1)

1 0-32 1-213988 0-23428

2 512 1-213988 0-19815

3 0-08 1-213988 0-39281

4 0-96 1-213986 0-10217

5 0-32 1-212651 7-2598 x 10-2

329
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k, .
> uVi=[—15x10"% 0-0 0-0 0-0 0-0]T
1=

ke
2w =1-0.
=

For cases (b) and (¢, ii), k£, is equal to k and there are k,+ 1 equations and
k. unknowns for the solution of (23) and (24). The dependent eqns. in (23)
are kept aside, while the independent eqns. of (23), together with (24), are
solved for the u;, I=1, .., k. The values of the u; are now substituted back
into the dependent eqns. of (23) to check if the residual values are nearly
zere.  The non-zero values of the components of

ke
2wV,
=
for cuses (h) and (¢, ii) correspond to the residuals of the dependent equations.
In interpreting these results one may associate (¢) and (¢, i) in saying that
the main criterion is how close to equal the ripples are and (b) and (c, ii) in
how small the size of the linear combination is in comparison with the sizes
of the individual gradient vectors. In the first case we are satisfied with
the criterion from a practical point of view, in the second the linear combina-
tion is about 2 to 4 orders of magnitude smaller than thc gradient vectors.

7. Conclusions

The grazor search algorithm is found to be more efficient than the Fletcher—
Powell method on the problems chosen. The method proposed by Fletcher
appears to be the most efficient of the methods used in that firstly it required,
for most cases, a smaller number of function evaluations and secondly it was
consistent in reaching the optimum. The Jacobson—Oksman method, al-
though giving good results, appeared to be sensitive to scaling. This is
shown by the improvement that occurred when p was redueced to 0-5 from
1-:0. In the revised edition of the Jacobson—-Oksman paper (private com-
munication) a strategy is suggested where p is reduced automatically in the
algorithm by using a certain criterion. This might improve the method for
the type of problems solved in this paper.
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