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This paper investigates the feasibility of
eutomated design of lower-order models for high-
order systems where the order of the models can
be increased efficiently according to desired
performance criteria. The modelling can be done
for a variety of objectives with or without con-
straints, so that a realistic on-line or off-
line design can be achieved to satisfy a set of
arbitrary transient and steady-state response
specifications. Suitable examples are chosen to
illustrate the modelling procedure.

Introduction

A number of methods are now available for
‘determining low-order models for high-order com-
plex systems for a variety of performance crit-
eria and objectives. Least-squares and minimax
system models have been derived for high-order
systens recentlyl-3 using direct search4 and
gradient5*7 optimization techniques. These models
were derived on the basis of measured input-out-
put data of the system and the steady-state of
the model was fixed at a certain value.

Minimax objectives have been considered
throughout this paper for purposes of modelling,
though any other objective could also suit the
purpose. It is now possible to tackle constrain-
ed minimax problems rather efficiently8-9, and
a generalized objective function can be formulat-
ed, which can accomodate the steady-state error
between system and model responses, which makes
the whole modelling procedure rather flexible
and meaningful. Thus, arbitrary transient and
steady-state response specifications can be im-
posed on the model for a desired performance
criterion.

The whole modelling procedure can be auto-
mated, so that it is possible to move from optimal
low-order models to higher-order models with-
out degradation in the objective function value.
By this procedure, modelling may be continued and
the order of the model increased, until the error
criterion meets the desired objectives of the
user. This can be done on-line or off-line,
though automated modelling would be quite import-
ant in on-line operations.

Once a set of parameters for a model has
been obtained by optimization, it may be important
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to investigate the solution for optimality, and
recently a program has been developedlo,which is
capable of testing a solution for minimax optim-
ality conditions. If the solution is optimal,
the user may decide to increase the order of the
model for improvement in the objective function,
While if it is not optimal, the user may decide
to use another optimization technique to improve
the results.’

Second- and third-order models have been de-
rived for a nuclear-reactor system described by a
ninth-order non-linear differential equation with
and without steady-state constraint specifications,
and the solutions have been verified to satisfy
the necessary optimality conditiops. It is pro-
posed to apply constraints on the ‘model para-
meters so as to guarantee that the pole-zero lo-
cations of the model in the s-domain may not con-
tribute to instability of the model.

Minimax System Modelling

The modelling problem considered assumes that
input-output data of the system is known, and that
the error criterion considered is minimax (or
Chebyshev). It is required to find a transfer
function of a given order such that its response
is an approximation to the response of the high-
order system in the minimax sense. The problenm
may be tackled by efficient direct? or indirect!ll
minimax algorithms.

In general the transfer function of a given

‘order n may be written as

W B m-1

bys +b ;ST T+...tb;s¢b,
n n-1

sS4 (S t...tasta

Hm,n(s) =

6))]

where m<n for physical systems. For this work
the input is a unit step and the criterion chosen
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is to minimize the maximum error between the
system and the model responses over a specified
time-interval [0,T], whére the vector of vari-
able model parameters is given by

T

$=lag2 ..o bob b))
In this paper
ti is an ith time instant in [o0,T]
cg is the response of the system at
¢ .
i
c:(é) is the response of the approxim-
A

ating model at ti

ei(¢)!c?(¢)-c: is the error between the system
v ~ and model responses at t

i
‘c: is the steady-state value of the
system : :
c: is the steady-state value of the
model

The usual approximation problem that has_
been considered in the past2-3 assumes that <,

is fixed at a convenient value (usually ci or

c; at ti'T)' so that the bbjeétive is to minimize

U($) = max e, (9)] (3
~ tic[ .T] ~
It may, however, be unacceptable to fix cf

at a certain value, in which case a realistic
tradeoff between transient and steady-state errors
can be achieved,

A Generalized Objective Function

It has been recently proposed8 that a con-
strained minimization problem can be formulated
8s an unconstrained minimax problem. This ap-
proach has been used by Bandler and Srinivasan?
to consider the constrained minimax problem as
@ nonlinear programming problem, and then reform-
ulating it jnto an unconstrained minimax problem.
It is now possible to apply this method to system
modelling so that a generalized objective function
can be defined to take into account both the
transient and steady-state response errors. The
following additional notation is required,

S is the upper bound of the system
specifications at steady-state

Sl- is the lower bound of the system
specifications at steady-state

e _=c.s is the error between upper system
& Uso A
specifications and model steady-state
value
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e, =c"-S is the error between lower system

Lo "w “fe :
specifications and model steady-state
value

The problem may now be formulated into two
forms as follows.

Formulation 1

V(t 8, 0 )=max

(z,z-a(z-|e. (6)]),2-q, e, ,
ti;[ooT] T t=t-

2o e ] 4)

where o, a w and a _ are positive. For sufficien-
tly large Values of a, ap, and %, ONe can obtain,

in-principle, the exact optimal solution for the
original problem by minimizing this reformulated
objective function. If cM is fixed such that

®e and ~€ ., 2Te positive, the objective function
(4) reduces essentially to U(¢).
. ~

Formulation 2

Minimize LN

W('?;,W uswu¢)=max ”ei»(i)lx'w Qet‘,:" e ]

tie[O,T] us ue
(s)
where

= 0 for - e <0

¥
> 0 for - €t >0
=0 for e <0

W

U

>0 for e >0
ues

If ¢" is fixed within satisfied specifications
the above objective function reduces to U(¢).
A

Comments

In cases where suitable constraints - includ-
ing parameter constraints - are imposed, the a-
bove procedure may be used to incorporate this
in the objective function®. In many cases it is
Convenient to choose SZ =5 =c°,
C N VT T Y

Automated Lower-order Models

One of the major problems that is encounter-
ed during modelling is to decide vhether a cer-
tain lower-order model is acceptable or not. 1If
the model is too simple so that computing time
for optimizing model parameters is small, the
approximation to the original systen may be very
bad, while if the model] is complex, then the
very need for system modelling is lost. If one
were to strike a reasonable compromise between
the speed with which the model is optimized, and
the accuracy of the approximation, it would not



be unreasonable to devise a scheme whereby one
could increase the complexity of the model in an
automated fashion after a certain number of it-
erations or computer Time. It is, however, im-
portant to keep in wind the desirability of
making this increase inm complexity as smooth as
possible, so that the objective function value
is not degraded. Thus, either the number of
parareters could be increased for a model with
a certain order, or the order of the model it-
self can be increased.

L
Let Hm 0 denote an optimized model of the

H

form (1). Three possibilities occur as follows.

Incyease in Parameters Only

B (s) +H . ()

B, R mep o0
Here bnép' bm+p_1, coes bm+1 are fssumed to be
initially zerc so that H = H in the

first iteration. Bp,R m,n

Increase in Order

@
Hm,n(s] e Hm#q,r{fq (s)-
Here q poles of H&*q,n#q

with q zeros initially, so that H

{s} are assumed to cancel
*
.. = H
meq ,neq m,n
in the first iteration. In this case, initial
guesses for q poles (or zeros) are necessary.

Increase in Order and Parameters

#
Hm‘n(ﬁ) - qu'p#q S0+

(s}

ceas bm+q41 are assumed to be zero

initially and that there is a cancellation of g

zeros and q poles at start, so that “m+p¢q,n¢q

flere bm*Q+

®
= H in the first iteration.
8,0

A careful choice of initial parameters can
make the increase in model complexity smooth so
that the whole modelling procedure can be automat-
ed on a small digital computer on-line.

Optimality Conditions

ogen

2, it may

P 5
ain i

Once a cert
optimized u :
be necessary to i
tion for minimax optimal
the necessary optimality conditions seem
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it is now possible to investigate the solu-
tions after a certain number of iterations of the
modelling algorithm, or when a certain convergence
criterion is reached, so that one may decide
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whether to carry on with further optimization, to
increase the order of the model, or to terminate
altogether.

Results

For the examples considered, two second-
order models and a third-order model were chosen.

b

0
o (s) =
02 2
sT+a;s+a,
B,s+B
Hyy(s) = bt
s +A s+A
1779
2
X ST4X s+X,
Hpsls) = — 3
(s+x3)(s *xzs+x1)

The transition between the three models can
be made smooth by making the following substitut-
ions at the start of the new model.

® ® ®
-+ H : A.=a_ ,A =a

Hop > Uy ¢ Ap=ag.Ag =3,

*
Bo—bo, Bl=0

« % ~ ®
H02 -+ HZS Tox=ag, Xy=ag, x3 F positive value

E ] *
X4=X3bg, Xg=by, Xg=0

® #*
xl=A0, x2=A1, x3= positive value
* ® & &
x4=80x3, xszslx3+B B x6--B1
Two cases were considered for both examples.
™ Fixed
@

In this case,

Uso
and
u@e) = max  fe;(0)]
~ t.e[0, v
i
cg varied ,
In this case,
Yo = Wi T W,
and
U(¢) = max [le; (#)],-w e, _,we ]
v t.ef0,T i Lo e ue
Example 1

A Sth-order nuclear reactor systemla was
chosen, where a step input is considered so that
the power level of the reactor system changes
from 50% to 100% of the full power. T was equal
to 10 seconds.

The results, shown in Table I, indicate that
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the increase in order of the model did not pro-

. duce any large improvement in U, the minimum value

of U, and in this case a model increase is quite
wasteful from the computing viewpoint. On the
other hand, an improvement in the transient error
at a slight expense on the ‘steady-state error is
obtained.

Table I. ﬁesults for Example 1

Case Model 1000 U 1000 max[-e,_,e ]
] Hop 29234 0.
€o fixed Hy,  2.7018 0
8
at c, Hys  2.4040 0
c: varied
H 1.2167 1.2166
23
W, o= 1
1
Sb_-su_-cu
Example 2

The system considered was a 7th-order control
system for the pitch rate of a supersonic air-
craft?»3, T was equal to 8 seconds though the
résponses shown in Figs. 1 to 3 were taken up to
20 seconds, ¢, Was equal to 0.11111. The results
are summarized in Table II.

Table II. Results for Example 2

) 7
Case Model 1000 U 1000 max Fig.
[_elw’euw]
Hoo . 3.7635 1
c® fixed at Hyy 2.4872 2

s
e for tisT H23

(6 ripple)  1.0207 3
(5 ripple) 1.2140 -
<? varied o2 4.1656  4.1656 1
W, =1 H, 4,1582  4,1582 2
3
Ste"Sye=Ce  Hyg 1.0201  0.91785 3
< varied Hy, 7.7657 7;‘6215356 -
6 .
W, = 10 H, 7.8624 0- R
Sge"0-11061 Hyq 1.0201  9.8483 -
§,0=0.11161 107
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The results indicate that when c: is fixed
increasing the order of the model does improve
the transient errors, and it has-been shown that
for the third-order model both the S-ripple and
6-ripple solutions satisfy the necessary minimax
optimality conditions3. It is interesting to
note that in all the cases considered, the third-

_order model gives the best result corresponding

to the same transient error and three different
Steady-state errors. Some of the optimal para-
meters when c” is fixed tend to have nearly zero
Teal parts which may make the model oscillatory,
Using appropriate parameter constraints (as in-
dicated in an earlier section) satisfactory results
Cdn be obtained which would guarantee a minimum
damping of the model for a step input.

Conclusions
——chsions

‘Lower-order modelling of high-order systems
can be automated rather easily, and, with the
availability of efficient optimization techniques,
on-line system modelling and control is entirely
feasible. The proposed ideas can be effectively
used to get desired optimal models in the minimax
sense within user-specified computing times and
error allowances.
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