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F A new approach to network design to obtain optim-
al parameter values simultaneously with an optimal
set of component tolerances is proposed. An auto-
‘mated scheme would start from an arbitrary initial
jacceptable or unacceptable design and under approp-
1riate restrictions stop at an acceptable design

'which is optimum in the worst case sense for the
‘obtained tolerances.

i Introduction

It is the purpose of this paper to present a new
.concept in the network design and tolerance selection
.problem. The concept of a "floating and expanding
polytope" suggests the two procedures of finding an
acceptable nominal point and an optimal set of i
‘tolerances be replaced by one automated scheme. !
Using a suitable nonlinear programming technique,
;any arbitrary initial acceptable or unacceptable
design may be used as a starting point. The scheme
would stop at an acceptable design which is optimal
‘in the worst case sense of obtained tolerances. The
most suitable objective function to be minimized !
would seem to be one that best describes the cost of !
fabrication of the circuit, as suggested by some |
authorsl-6, Several obJect1ve functions have been
1nvestigated and the results are discussed.
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A possible outcome of a circuit with a nominal design

'x %and tolerance £ falls somewhere in or on the poly-

tope. Depending on the location of x and the size

of £, a circuit with parameters x may or may not be !

‘ ~

acceptable. l
!
i

The Acceptable Region

! The following discussion refers to the frequency
domain design of linear, time invariant circuits but
‘the results can be applied to the time domain as well.
Let the set cf frequency points under consideration

;be W= (ul, Woy wees B }. Upper

u’ “us1 0 Yusyg

ispecifications Su(mi), i=1,2, ..., u are assigned
;to the first u frequency points and lower specific-
‘ations SL(wi)’ i = u+l, ..., utt to the rest.

Frequency points that have both upper and lower
lspecifications may appear twice in the set. Let the
response of the network at frequency wg be f(x w, )

|

| A network is acceptable if
l

Su(wi) - f(:'wi) 20 1=1,2,...,u (3
‘and ;
; f(z,wj) - sz(”j) >0 j = usl,...,usl (4)
! Let (3) and (4) be denoted by
: gi(x,mi) >0 i=1,2,...,04u (5)

and assembled into a column vector
able region Ry is then defined as

-fxlg(x) > 0)

Obviously, a design {x°,e} is an acceptable design
only if R g; R

5(5) > g.lAn accept-

6) :

l
!
A Theorem
| It is impossible to test all the points in R, to

see whether they are in the acceptable region R . In

'order to make the problem tractable a number of s1mp11—
fying assumptions could be made to obtain a solution
[to the problem with reasonahle computational effort.
‘Obviously, if R, is convex and if all the vertices
iof R, are interior or boundiry points of Ra’ then
Rt-— R_.
vex1ty is unnecessarily restrictive.
i Theoremlz' If the vertices of Rt are in Ry» then
Ra if, for all j = 1,2,...,k, the assumption that

It can be shown that the assumption of con-
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implies that x = x® . A(xb(j) - x‘) ¢ R_ for all
N A N ~ a
;A satisfying 0< A < 1. Under such assumptions, only

the vertices of the polytope need be tested to ensure
that Rtg; Ra' Other constraints such as parameter

comstraints can be considered. These constraints de-
fine a feasible region R.. Then it is required that |

R € (N R)=R.

i The Nonlinear Programming Problem
A mew vector 3 of dimension 2k is defined as
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;A fonction Ul(¢) to be minimized may be
N .
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|
where o, is a weighting factor. U, is an approxim- i

‘ation to the total cost of the components. Typically4;
fci =8+ ui/ti where L - 100 :i/xg %, the per- \

centage tolerance, and Ci is the cost of the ith com-
3ponent, and where ay and Bi are coefficients de-
‘termined by curve-fitting to some known cost data. i

Other possibilities are

i koL koo ,
UZ = 2 i S 2 e 1 (9)
3ok €
! iel i=1
‘and
! k ¢ k <° ‘
! . i i
! U, ) a; log, v = J a, log, 5 (10) .

i=1 i=1 , ;

.In (10) we would be minimizing the ratio of the volume'
of the polytope defined by the space diagonal x° and

A .
the volume of the polytope defined by 3 if the ui=1. i

The constraints are gij(:i’”j) > 0 for all ieH
and uj:W.

frequency constraints. There are 2k vertices for a
polytope of k dimensions. A total of 2X(f2+u) con-

straints have to be considered. Other constraints can
be added. ) |

That is, at each vertex éi, there are f+u

‘ A suitable method for solving the nonlinear pro-
‘gramning problem is to define

u+g Zk

T
F(r.:) U(z) +7 1 E;;TET
j=l im1

1)

and minimize F with respect to ¢ for appropriately
N

The adjoint network technique9
are used in this work in the

decreasing values of r.
1and the Fletcher method
‘optimization process.

10

Examples

‘Two-section Lossless Transmission-line Transformer

7

! A two-section transformer with a load-to-source
{impedance ratio of 10:1 and 100% relative bandwidth
1ds studied to illustrate the concepts and procedures.
iThe lengths of the lines are assumed to be fixed at
.the quarter-wave value at center frequency. The
ivariables Xy and x, are the normalized characteristic

impedances of the transmission lines. Fig. 1 shows
the contours of M = maxlp(z,wi)i, w;eW where p is the

reflection coefficient. The chosen set of normalized

frequency points is ¥ = {0.5,0.6, ..., 1.5}. i
- A minimax solution without taking the tolerances ‘

into account is 5: (see Fig. 1) at which M = 0.4286.

However, suppose we have an upper specification of
lp(%,ui)[ £0.55. The problem now is to find an optimal

‘nominal point x° and an optimal set of tolerances.
iTable 1 and Fi¥. 1 show some results. Note that some
iof the relative tolerances are equal, which can be
jproved analytically. A reduction of 37% of the orig-
'inal cost is achieved by moving the nominal point to
'an optimal position when using u,.

{

A Bandpass Filter

‘ The bandpass filter shown in Fig. 2 was studied
by Butler?, Karafin® and Pinel and Roberts?. An upper
ispecification of 3 dB for the passband and a lower
'specification of 35 dB for the stopband relative to

‘0 dB at a central frequency at 420 Hz are assigned.
See Fig. 3. W ={360,420,490,170,240,700,1000} in
which the first three frequencies are assigned to the
iupper specification and the last 4 to the lower spec-
jification. Parameters X3 and x, are assumed equal to
!

'A constant Q is assumed for the three inductors and
therefore the three corresponding resistances are de-
‘pendent variables. Nominal values used by Pinel and
Roberts and a half-percent tolerance for each compon-
‘ent were used as a starting point. Parameter values
.are scaled by normalizing to avoid ill-conditioning.
.Each cycle of the SUMT method takes about 50 function
‘evaluations (about 1 minute on a CDC 6400) except for
the first cycle. Initially, r=1 . r was reduced suc-
cessively by a factor of 10. See Table 2 and Fig. 3
for some results. ’ |
: |
i Monte Carlo simulations were made for a number of -
‘tolerance sets with a nominal point obtained by mini-
mizing U,. The same assumptions were made as Pinel
‘and Roberts4 that the component distribution is uni-
formly concentrated within .05t of the extreme values.
There were no failures for 1000 simulations with the
tolerances shown under U, in Table 2, as well as with
ithe percentage tolerance; {5,5,5,5,5,5,5,5} and {5,7.5,
5,7.5,5,5,5,5}. There were 90 failures for {5,10,5,10,
5,5,5,5}.

X and Xg» respectively, from physical considerations.
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Conclusions

It has been shown that, by moving the nominal
ipoint, a set of larger tolerances is obtained.

S minutes of computation time (for CDC 6400) is re-
quired for most practical cases.

A complete solution to the problem is not claimed,
‘however, it may be concluded that this is a promising
'approach to network design, specially in the area of

-growing and removing components on the basis of re-
‘duction of cost.
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Fig. 1. Contours of M = maxlp(:,wi)l, w W,
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! Fig. 2. Bandpass filter example.
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Fixed Nominal

Variable Nominal

— Karafin's response

——- optimized nominal
response using U,

700

-10
rs=10 v, v, Uy v, u, Uy
x] 2.2361 2.1487  2.5244  2.1487
x) 4.4721 4.7308 5.4395 4.7308
y 0.1865  0.2200 | 0.1943 0.2739 0.3783  0.2739
<, 0.3443  0.2872 |0.3310 0.6030 0.4937 0.6030
t, .8.34 9.84 8.69 * 12,75  14.98  12.75
| t, 7.70 6.42 7.40 12.75 9.08  12.75
: Cost= + 1 0.250  0.257  0.250 0.157  0.177  0.157
! tH %
Area= €c,  0.0642  0.0632 0.0643 0.165  0.187  0.165
| €12 '
; 5 0.00642 0.00632 0.00643  0.0163 0.0136 0.0163
? X% l
| Table 1. Comparison of the results for fixed and varviable nominal
f points‘ n the 2-section transformer.
5 Karafins,
, Pinel azd Ul uz
: Roberts !
"o 0 0 0 ,
'x]  1.824x10 2.4822x10°  2.3630x10°  2.5926x10°
- - - & 60
8 7.870x107%  6.0408x10"° 6.4491x207° 5.8278x10 s 1
0 1.824x0°  2.4822x10°  2.3630x10° 2.5926x10°,
E - - . - ©
0 7.870x107%  6.0408x107 6.4491x10° 5.8278x107% ©
] )
) -1 -1 -1 -1 8
xg  4.272x10 7.7065x107"  6.5797x107"  7.9646x107 2
' o -7 -7 -7 -7 5
Xg  9.800x10 5.7990x10°" 7.0295x10"° 5.6244x10 2
i o
- - - - 3
20 Lazmaot 2.7920x1070 2.6777x1070 2.8529x10 1
- - - .7 2
,xg 3.400x10"7  9.9596x10°% 1.8840x1077 1.7161x10 ? 5
t, 3,331 6.70 2.59 7.1
| T T T 1 T
', 5, 2.4 7.12 12.56 8.04 ; 170 240 360 420 490
. ' i frequency Hz
ty 5 ,3.30 6.70 2.59 7.71
i i
t, 3,241 7.12 12.56 8.04 | ;
|
tg 2, 1.15 5.19 3.43 4.26 |
i ;Fig. 3. Bandpass filter response.
tg 2 ,1.90 6.98 3.37 729 | '
) | Biographies
t, 3 ,7.82 5.55 6.63 5.64
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. ‘The authers regret that all the results relating to the
bandpass,f'lter example are incorrect. The numbers 1n the‘text,
Table 2‘and the curves in Flg. 3 are affected




