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Least pth optimization of recursive digital fil-
ters using large values of p, typically 10,000 is
presented. The Fletcher method is used in conjunction|
;with the Bandler-Charalambous method. Local optim-
,ality and stability checking of the solution along
;with an option for increasing the order complexity
‘of the filter is implemented.

Introduction

This paper descfibes the application of the
' Bandler-Charalambous® method involving least pth ap-
proximation using extremely large values of p,
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| typically 1,000 to 1,000,000, for choosing the co-

i efficients of a recursive digital filter to meet |

carbitrary specifications of the magnitude character-
istics. The local optimality of the least pth sol-

| ution is checked by perturbation. The order complex-
ity of the filter can be increased through growing of

. filter sections to meet the prescribed specifications.
A pole inversion technique2 to meet the stability re-
quirements is also implemented. A_comparison is made

.between the Fletcher-Powell method3 and the more

| recent Fletcher method® in conjunction with the ap-

! plication of least pth optimization to a recursive

;digital filter design example. An example where

! effectively negative values of p were used is also

! presented.

i The Problem

| Suppose that upper and lower bounds on the mag-
| nitude characteristics of a recursive digital filter
| are prescribed at a discrete set of frequencies
4f1,...,fm. These corrgspond to a discrete set of

! values of the variable z evaluated on the unit circle
!1n the z-domain
i

Jgw
‘ zi = e y i=1,.00,m
;where : Zfi
01=T , 1i=1,...,m
! s

i and f; is the sampling frequency. The transfer

;function of a recursive digital filter is chosen to
: be of the cascade form, namely,

I

i

' K 1+ a 27+ b 2

| H(z) =A T - —
k=1 1 + 2zt dk z

“All the poles of the transfer function should lie
within the unit circle in the z-domain in order that
the filter be stable.

The inversion of a pole of the transfer function
with respect to the unit circle in the z-domain is
equivalent to multiplying the transfer function by a
particular all pass function, implying that the in-

" version of a pole of the transfer function with re-
. spect to the unit circle does _not affect the shape of
the magnitude characteristics2, Thus, all the poles
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;ﬁhat do not lie within the unit circle in the z-domain
!can be inverted with respect to the unit circle to in-
isure the stability of the filter.

The problem is to find the n-dimensional para-

meter vector 2 = [a b1 c, d a2 2 S, d2 ... AT, }

where n=4K+1, to minimize an appropriately chosen
objective function comprising real error functions
related to the upper and lower specified boundsl.

The following notation is used? i

S W) upper specifiéd function (desired response '
| bound)

i
S (w £) artificial upper specified function

Sz(w) lower specified function (desired response
; bound) :

S, (¥,£) artificial lower specified function
wu(w) upper positive weighting function ;
'wz(w) lower positive weighting function

3 margin of errors with respect to the artificial
and desired specifications :

q p sgn(maximum artificial error) f

Description of the Program

A general computer program package CADRDF was

I developed utilizing the aforementioned ideas. The
user should specify the initial number of second-
order filter sections, the maximum acceptable number
of filter sections, the required precision, an option
for local optimality checking either by perturbation
of the parameters or by increasing £ and then re-
starting the optimization process. The user should
also specify the upper and lower bounds on the magni-
tude response, the discrete set of frequency points
and the required optimization algorithm (Fletcher
method? or Fletcher-Powell method ).

Starting with the initial number of filter sec-
tions, the coefficients of the digital filter are
evaluated by minimizing an objective function using
the chosen optimization algorithm. It is to be noted
that the value of p is increased successively and the
optimization is carried out for each subsequent value
‘of p, until the absolute value of the relative change
i in maximum error becomes less than some small quantity
(taken to be 0.001). To insure the stability of the
filter a stability checking is provided whereby all
the poles that do not lie within the unit circle in
the z-domain are inverted with respect to the unit
circle. i

Local optimality of the solution & is checked by
either perturbing ¢ or increasing ¢, réstarting the
’optimization process using the highest attained value
of p and comparing the solutions before and after per-
turbation. It is to be noted that a minimax optimum
will not be affected by increasing §.

| If the specifications are not satisfied and the




maximum specified number of second-order filter sec-
tions has not been exceeded, a second-order filter
isection is grown by increasing the number of the
'independent parameters n by 4, assigning a starting
value of zero for each of the grown filter co-
lefficients a, bk’ € and dk' then repeating the

lwhole design process.

{ Examples

‘Example 1
Consider the design of a low pass digital filter
of the cascade form whose ideal magnitude response
is specified by
: 1 for weW
Ideal magnitude response = P
0 for wtws

:whero wp = [0. , 0.09] is the passband and
‘"s = [0.11 , 1.0] is the stopband.

: Let
su(w) = sz(w) = 1 for vewp

i 5,(¥) = 0 for yeN_

I

w,(¥) = w, (¥) = 1 for wcwp U W,
‘A1l the functions of ¢ will be evaluated at a finite
idiscrete set of values of y taken from the closed in-
;tervals wp and ws as follows:
<¢-0.0,0.08(0.01) H Su(wi)lsz(wi)-l; i=1,...,9
¥=0.0801,0.09(0.00045) ; S_(v,)=S, (¥,)=1; i=10,...,32
¥v=0.11,0.2(0.01) H Su(wi)-o ; 1=33,...,42
¥=0.3,1.(0.1) H su(wi)-o ; 1=43,...,50
Using a second-order filt*r section of the
‘cascade form 2=[a1 b1 < d1 A]". A starting point
£0=[0 00 -0.25 0.1]T was taken. Test quantities for

the Fletcher and Fletcher-Powell methods were 10°°,

.and £=0.

The results are shown in Table 1. Growing |
another filter section and restarting the optimization
process gave the results shown in Table 2. The mag- }
nitude response is depicted in Figs. 1 and 2, and the !
pole-zero configuration is shown in Fig. 3. It is to ;
be noted that 201 equidistant values of ¢ were used !
for response evaluation and plotting in each frequency
band.

bExamEIe 2
onsider the design of a low pass recursive
digital filter of the cascade form, for a 10 kHz ;

sampling rate, whose upper and lower magnitude res- K
ponse bounds-are specified by
f = 0,900(100) H Su(f) =1.1; Sl(f) = 0.9
f = 1200 H Su(f) = 0:1
£ = 1500,5000(500) ; Su(f) = 0.1
The specifications can be prescribed as

$=0.,0.18(0.02); Su(wi)ul.l; Sl(wi)=0.9; i=1,...,10
¥=0.24 : Su(¢1)=0.1 ; i=11

v=0.3,1.(0.1) ; sucwi)-o.z ; 1=12,...,19 |
Using a second-order recursive digital filter section, !

the same starting point as that used by Suk and MitraS,
namely, 2 = [01-10.50.1]T was taken.

'!Weightihg fnctbrs, test quantities and £ were as in

Example 1.

Optimization using the Fletcher method gave the
results shown in Table 3. Growing another filter !
section from the one section locally optimum solution !
and restarting the optimization process gave the |
results shown in Table 4. !

|

The magnitude response is depicted in Figs. 4
and 5, and the pcle-zero configuration is shown in
Fig. 6.

The aign of q wan positive so long as the magni-
tude response did not lie within the specified bounds,
but a change of sign of q to negetive, occurred, when
the specifications were met, but that did not stop
the optimization process as it went on to produce a
locally optimum solution for the case when the
Bpecifications were met. As the magnitude response

as initially specified at a discrete set of frequency
points, the magnitude response of the final solution
was considered only at that discrete set of frequency
points as shown in Pigs., 4 and 5. Increasing the
value of £ did not affect the least 10000th solution.

Conclusions

The application of the Bandler-Charalambous method

using extremely large values of p, typically 10,000,

to recursive digital filter design problems seems

to yield reasonably well-conditioned objective

functions. Effectively negative values of p can be

used to obtain the coefficients of a recursive digital

'filter that meets or exceeds the prescribed specific-

ations. The use of the Fletcher method in conjunction
ith least pth optimization seems to be more efficient

than that of the Fletcher-Powell method.
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- Maximum Objective Number of Function
Q%P  Error Function Evaluations
Fletcher Fletcher-
method Powell
method
2 0.446136 0.905656 106 245
10 0.278126 0.308162 33 173
100 0.248415 0,251337 27 71
1000 0.246809 0.247100 37 60
10000 0.246713  0.246741 29 §6
‘Table 1. Results for Example 1 using' one section.

The final solution is

g=[-1.816464 0.999999 -1.837254 0.896054 0.241338)7

Maximum Objective Number of Function
q=p Error Function = Evaluations Using
Fletcher method
2 0.094612 0.183426 130
10 0.046434 0.055707 80
100 0.043999  0.044486 58
1000 0.043639 0.043688 49
10000 0.043610 0.043614 52
Table 2. Results for Example 1 using two sectioms.

e final solution is

¢=[ 1.870741 0.999999

-1.874095 0.953439 -1.520276

1. -1.752557 0,787996 0.043369]

Number of Function

"The final solution is
§§=[-1.166418 1.000001

Maximum Objective
q=p Error Function Evaluations using
Fletcher method
2 0.192456  0.244387 44
10 0.109918 0.121980 60
100 0.101718 0.102881 27
1000 0.101302 0.101417 43
10000 0.101271 0.101282 24
fTable 3. Results for Example 2 using one section.

-1.545223 0,764801 0.210399]

Maximum Objective Number of Function
‘q = -p Error Function Evaluations using
Fletcher method
; -2 -0.062826 -0.016925 182
-10 -0.068650 -0.059397 85
. =100 -0.073797 -0.072980 94
-1000 -0.074321 -0.074240 58
. =10000 -0.074369 -0.074361 71
Table 4. Results for Example 2 yging two sections.
The final solution is
¢=[ 1.404118 0.999999 -1.585808 0.888486 -0.227133
0.999999 -1.456438 0.584344 0. 035707]
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the ‘low pass filter of example 1.
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Magnitude characteristic of the pass band of
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the low pass filter of example 1.

Magnitude characteristic of the stop band of

Fig.3.

Pole-zero conf:guration for the low pass filter
of example 1.
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(Fig.4. Magnitude characteristic of the pass band of

the low pass filter of example 2.
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jFig.S. Magnitude characteristic of the stop band of

the low pass filter of example 2.

Pole-zero configurat1on for the low pass f11ter

Fig.6.
of example 2.
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