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Abstract

This paper investigates the practical implementation of testing
the optimality conditions of a solution to an approximation problem with
minimax objectives. Two methods are presented to test the conditions, one
using a linear programming approach, and the other the solution of a set of
linear independent equations. Full details of a user-oriented computer pro-
gram written in Fortran IV are given so that the user may choose a number of
options to define the optimality of a design or a proposed solution in a
meaningful way. A suitable example has been chosen to indicate how the
program can be handled by the user.

INTRODUCTION

Optimization techniques for minimax objectives have been of great
interest to the system designer, and a lot of momentum has been gained in the
last few years in this area. Computer-aided design for minimax and near-
minimax objectives have been carried out using both the direct search [1] and
gradient algorithms [2-5] on a variety of problems, including optimization of
electrical networks and systems [6,7].

Depending on the optimization method employed, a satisfactory
solution may be obtained for a problem after a number of iterations of the
algorithm on the computer. Once a solution for minimax objectives is obtained,
it may be required to investigate the solution for conditions for minimax

optimality [8] so as to verify whether the solution is optimal or not. Though

the necessary optimality conditions may seem to be straightforward to verify,

This work was supported by the National Research Council of Canada under
grants A7239 and C154. A listing of the program is available from J.W. Bandler
at a nominal charge.
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it is both tedious and difficult to implement in practice.

CONDITIONS FOR A MINIMAX OPTIMUM [8]
Let 91(£), L=1,..., n, be n, discrete maxima in descending magnitude
at a given point 2 in a k-parameter space. If 92(2), 2=1,...,kr are taken as
equal, then for ¢ to satisfy the necessary conditions for a minimax optimum,

N\
there exist u, > 0 for 2=1,...,k_ such that
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I u =1 (2)
g=1

When testing the conditions for optimality at a point 2, we attempt
to solve (1) and (2) for kr=1,2,... until for a value of k: &r&) (1) and (2)
are satisfied. If this is not possible then the necessary conditions are
not satisfied.

PRACTICAL IMPLEMENTATION

A computer program has been developed which can test a solution
for the necessarvy conditions for a minimax optimum by two different formulations.
One uses a linear programming approach, and the other the solution of a set
of linear independent equations.
Method 1

Equations (1) and (2) are solved here by minimizing ukr+1 > 0 such

that (2) is satisfied and
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Linear programming ensures that u, > 0 for 2=1,2,...,kr+1.

L
Method 2
Here, we solve a set of linearly independent equations
kr 892 : :
] u, = ()= 0, ieJ (4)
L3, ‘&

2=1

and (2), where J is a suitable subset of {1,2,...,k}.

> 0 for #=1,...,k_. When

There is no guarantee, however, that u, r

kr-l is greater than the number of elements of J, the system of equations
(2) and (4) have more unknowns that equations, and we use Method 1 to get the
u .
PROGRAM DESCRIPTION
The user may call the package from his main program as follows:

CALL MINIMAX (K, KR, NR, YMAX, GRAD, NRMAX, DELTA, EPS, ICRIT, IDATA, IPRINT,
MET, NORM, RELTOL, UNIT, K1, K3, MR3, MR1, MR2, X1, X2, X1SUM, X2SUM, R1, R2,
RINORM, R2NORM, OPTIM1, OPTIM2, A, B, C, X, PS, JH, XX, YY, PE, E, D, H, Q, IROW,
ICOL, LL, MM).

The variables in the argument list of the above subroutine are ordered
as input, output and storage variables respectively, and are listed below in

that order.

The input variables are k, k_, n_, y([¥; . . . ¥ ]T),
r’ r’ M1 n,
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ICRIT

IDATA

IPRINT

MET

NORM

RELTOL

V9n ]T), followed by
by

maximum possible number of the 92.

nuﬁérical approximation to zero.

a user-specified factor; if “rlﬂ or Ihzn < ¢ and the multiplier
vector u or 22 > 0 the conditions are sat1sf1ed for Method 1
or 2; otherw1se not.

for ICRIT = 1, the user specifies the value of RELTOL and
considers 91 for which (1-92/91) < RELTOL for 2=2,...,nr,

to be active while when ICRIT = 2, the user specifies the

value of k_(<n_).
T T

logical variable which, if .TRUE., enables the input data
to be printed out; otherwise not.

logical variable which if .TRUE., enables all intermediate
and final results to be printed out, and no print-outs
otherwise.

when MET=1,2, or 3, the package uses Method 1, Method 2

or both the methods, respectively.

NORM=]1 corresponds to the Euclidean vector norm and NORM=2
corresponds to the maximum absolufe value of the elements
of the vector.

tolerance relative to 91 within which some of the 92""’9n

lie.
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UNIT integer variable specifying the data set reference
number of the output unit.
This is followed by k1(=k+1), k3(=2k+1) and mr3(=2k+1+nr)
For the output variables that follow, subscripts 1 and 2 correspond to methods
1 and 2, respectively, as shown below.
A . . .
mo1sMs number of yl(for z-l,...,nr) considered when optimal

conditions are reached.

e as T T
21,:2 vector of multipliers [u11 S e U 1, [u21 . U, ]
n n rl T2
Tl T2
r,,Tr residual vectors J u, V¥, , } u,, V¢
n1°82 12 72 29 278
2=1 =1
“{1“”%2” norm of vectors I T,

OPTIM1,0PTIM2 1logical variables; indicate that the necessary
conditions for minimax optimum are satisfied if
.TRUE., and not satisfied otherwise.

The above output variable list is foilowed by storage variables,
which form the rest of the argument list. The size of the storage arrays and
vectors is determined by ﬁr, kl’ k3 and mr3’

The program package can be called from the user's main program and
either of the two, or both the methods, can be used to test the optimality
conditions. The user can either specify the value of kr or RELTOL. The
necessary conditions for optimality are satisfied when the norm ﬁiﬂ of the
residual vector r = Xr uy 392’ for m, = 1""’kr falls within a user-

v =1
specified value ¢ for U, 2 0 and (2) is satisfied, in which case OPTIM is set
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.TRUE., The values of ¢ and § as specified by the user should be realistic so

that the program may give meaningful results.

REQUIRED SUBPROGRAMS

The user has to have a subprogram by which the discrete values of
n, functions §2 (arranged in descending magnitude) and their derivatives (Z XT)T
with respect to the parameters ¢1, ¢2, cees ¢k are explicitly available.
The package uses the following subroutines, the listings of which are available
as indicated in References [9]-[13].

ARRAY converts data array from single to double dimensidn or vice
versa [9] while MINV inverts a matrix and calculates its determinant [101.
MFGR determines the rank and linearly independent rows and columns of a given

matrix [11]. SIMPLE is a linear-program solving subroutine [12],[13], and

SOLVE solves a set of linear simultaneous equations [14].

EXAMPLE

The problem chosen was the lower-order modelling of a ninth-order
nuclear reactor system [15] when the operating reactor power level is in the
90-100% range of the full power. A second-order model was chosen and the
step-response of the system was approximated by that of the model for a
minimax objective over a time-interval of 0~16 seconds. A solution was
obtained by the grazor search method [5], and the program was used to test
the solution for optimality.

Fig. 1 shows a typical printout of the package for this example.

4 6

The input parameters are: k=2, ﬁrmls,ﬂfz4,5=30“ ,e=10"~, ICRIT=1, IDATA=IPRINT=.T.,

MET=3, NORM=2, RELTOL:0.01, UNIT=6, k =3, k,=5, m_,=20, while Vy is given by
1 3 3 4 )
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[ .38711013 x 1077 . [-.20632883 x 1071
vy, = » Yy, = .
V1 1-.14208087 x 1073 ¥ 2 | .10876118 x 107

[ .79840875 x 107°] ] 4

\ i x 10 . .17968278 x 10
V¥g = 2y, = -3
~ | 68487328 x 1072 ~ -.14014776 x 1073

and ¥ is given by
n

A 2

§, = .29234162 x 1072, §_ = .29234034 x 1072

3

A 2 A

5 = .23141899 x 1077 , ¥,

.62431057 x 10~

DISCUSSION

The importance of this investigation cannot be underestimated
especially when there may be a number of solutions obtained by the same, or
different optimization methods for a given problem and one wishes to test
these solutions for optimality so as to be able to detect local optima, and
to compare the methods for convergence towards the optima. This program may
be used in such a way that it is possible to investigate the solutions after
a certain number of iterations of the algorithm, or when a certain convergence
criterion is reached, so that one may decide whether to carry on with further
optimization, or to terminate altogether.

The program also makes it possible to find the maxima which are active
in the vicinity of the optimum, so that the user may gain insight into the |
various scaling factors associated with the problem. The program has been
successfully applied to problems of minimax optimization involving filter designs
[5] and system modelling [7].

This program was run and tested on a CDC 6400 computer. The package

requires roughly 40,000 octal units of memory for k=15 and ﬁr=15.
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