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Abstract

‘User-oriented computer programs in FORTRAN IV for discrete least pth
approximation with a single specified function, and more generalized discrete
least pth approximation with various specifications, which may,also be used
for nonlinear programming, are presented. Values of p up to 10 can be used
successfully in conjunction with efficient gradient minimization algorithms
such as the Fletcher-Powell method and a method due to Fletcher. The programs
may be applied to a wide variety of design problems with a wide range of
specifications. They are suitable for electrical network and system design
and such problems as filter design.

INTRODUCTION

Two complete user-oriented computer programs in FORTRAN IV are
presented which utilize some new ideas on discrete least pth approximation
[1]} Least pth approximation with p=2 gives a discrete least squares approx-
imation. With sufficiently large values of p an optimal solution very close
to the optimal minimax solution can be obtained. Values of p up to 106 have been
successfully employed. Gradient minimization algorithms due to Fletcher
and Powell [2] and, more recently, to Fletcher [3] are used. The user
has to write all the required specifications, the approximating functions and
weighting functions in a straightforward way.

DEFINITIONS
Define real weighted error functions related to the upper and lower

specifications, respectively, as [1]

>

ey(@,x) = w,(x)(F(a,x) - §,(x)) (1)
1 A !
eu(@:%,8) = w () (F(3,%) - S;(x,8)) = ey(a,x) - & (2)

ey(2:) & w () (F(@,2) - S, () (3)

ey @x,8) £ w 0O (Fa,x) - 5,(6,6) = ey(a,0 + £ (4)
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where F(a x) is the approximating function, S (x) is the upper specified functioh,'
s o (%58) 15 the art1f1c1a1 upper specified funct1on S (x) is the lower
spec1f1ed function, S (x,£) is the artificial lower spec1f1ed function, w (x)
is the upper positive welghtlng function, wz(x) is the lower positive welghtlng
function, a is the vector containing the k independent parameters, x is an in-
dependent :ariable and £ is a margin of errors with respect to the artificial
and desired specifications.

When upper and lower specified functions and weighting functions
coincide, respectively, let S(x) = Su(x) = Sz(x) and w(x) = wu(x) = wl(x).
Then from (1) and (3) e(g,x) = eu(z,x) = el(g,x).

In practice we will evaluate all the functions at a finite discrete

set of values of x taken from one or more closed intervals. Therefore, we

will let
e:li(it,e) 4 e;(i,xi,a) » el (5)
@0 f ey (ax ) el (6)
ei(i) & e(i,xi) s iels (7)

where it is assumed that a sufficient number of sample points have been chosen
so that the discrete approximation problem adequately approximates the con-
tinuous problem. iu’ IL and Is are appropriate index sets.
The artificial margin £ allows for certain flexibility in formulating
the optimization problem.
BACKGROUND THEORY

Consider a system of real nonlinear functions

4. i
fi(:,g) eui(i’g) , el (8)

A R N (9)
Bandler and Charalambous [1] proposed the generalized least pth
objective function which is valid for both negative and nonnegative fi for
iel 2 Iu U I2 and which alleviates the ill-conditioning resulting from the

numerical evaluation of [ifi(a,g)}ip for very large values of p, namely,
N
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1

£,(a,) ¢ q
U(a,g) = M(a,£)( ] [M(a ;7] ) for M(a,p) # 0 (10)
ieK
where
M(a,£) & max £, (a,£) - (11) .
v ier 1w
A M(a £) p>1 if M(a,g) >0
= Plys1 if M(a,g)< 0 (12)
IM(a E)l - "’
and A
A J=lilf (a,8) 2 0, icl} if M(a,£) > 0
K = 1 ~ (13)

I if M(a,g)< 0
~

By minimizing the objective function defined by (10) with a large
value of p we should obtain results very close to the minimax optimum [4].

If E =0, f >0 indicates that a spec1f1cat1on or a response constraint
is v1olated and f‘<0 that a specification is exceeded; f =0 indicates that a
specification is met exactly. It is quite possible that some of the fi are
equal to - » in which case they are simply ignored by (10). Also the
generalized objective does not allow any of the fi to be + », If the fi(z,g)
for iel are continuous with continuous partial derivatives, the proposed
objective function is continuous with continuous partial derivatives. The
objective function (10) and partial derivatives still remain continuous even
when, for some i's, the fi are discontinuous or continuous with discontinuous
derivatives, simply because those points are ignored.

The £, which is constant during optimization, does not affect the
location of the minimax optimum (p>~). Its important role, however, is evident
for a finite value of p. The value of the parameter £ can be chosen so that
the M(a,£) of (11) is always positive or negative during optimization. When
M(a,g)wis positive , only sample points which belong to index set J (13) are
congidered and, therefore, there is a saving in gradient computation. But in
this case it may happen that M(a,g) = 0, when the function (10) is continuous
but the derivatives may be-disc:ntinuous. On the rare occasions when this
situation causes a failure of the gradient minimization algorithm, one can
change the value of £ and restart the optimization process. If the value of

M(a,£) is chosen to be negative this possible failure is avoided.
n
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THE COMPUTER PROGRAM FMCLP

We will consider first the program written for minimizing the
objective function corresponding to a single specified function. A
function f is chosen to be the absolute value of a single specified weighted
error functlon (7) for all 1eI . To alleviate the ill-conditioning for very

large values of p, a similar scallng as in (11) was proposed [5], namely,

1
U(a) = M(@)( ] [M(a) A PP gor 1< pe w (14)
jeI_ "V
s
where M(a) £ max {ei(a)l.
N n
isIs

A list and a brief description of the 14 subprograms comprizing
FMCLP is given below:
FMCLP Supplies data for the function minimization and coordinates the other
subprograms (see Fig. 1)
S Defines a specified function over an interval
FAPP Defines an approximating function over an interval and the gradients
w.r.t. variable parameters
W Defines a weighting function over an interval
WERR The output of this subprogram has a value of the weighted error at
a single point x for a particular vector a
NEWSET Redefines a sample point set such as to i:clude all the extreme
points in the summation of the objective function (14). Quadratic
interpolation is used to locate the extreme points more precisely
FUNCT Keeps the values of the weighted error of each sample point in an
array, finds the maximum absolute value and computes the objective
function (14) and its gradients
GRDCHK Checks the gradients w.r.t. all variable parameters before the
optimization process starts
FMFPC Minimizes a function using the Fletcher-Powell method

FMNFC Minimizes a function using the Fletcher method
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INPUT Prints the input data for the optimization process

FINAL Prints the optimum solution
WRITE1 and WRITE2 Print the intermediate results, if desired.

S, W and WERR are function subprograms and the others are subroutine
subprograms. A user of FMCLP writes S, FAPP and W.

The program terminates when stopping criteria for the Fletcher-Powell
or Fletcher method are satisfied or when the relative change in the objective
function in two successive iterations is less than a small prescribed quantity.

If the requirement is a minimax approximation it is suitable to sample
points in the neighbourhood of the maxima of the weighted error function. As
one usually cannot know the positions of the maxima in advance, it is common
to space the sample points uniformly. Retaining the maxima and removing from
the objective function those sample points which do not substantially con-
tribute to the summation may save computation time. Even more can be done if
approximations to the actual maxima replace the sample points in their neighbour-
hood.

It is assumed that, in the neighbourhood of an extremum, the function
is adequately represented by a quadratic form. The function is evaluated at
three points, a quadratic interpolation polynomial is fitted to it, and the
maximum of this interpolant is obtained. This point replaces one of the initial
points.

Selection of the extreme points is significant especially within the
first iteration. Once they are found, they do not usually move too far away in
the next iterations.

THE COMPUTER PROGRAM FMLPO

Here, we will consider a program written for generalized least pth
approximation described earlier. A list and a brief description of the 15
subprograms comprizing FMLPO is given below:

FMLPO Supplies data for the optimization process and coordinates the other
subprograms (see Fig. 2)

FUNCS Defines upper and lower specified functions

FCTAPP  Defines an approximating function and its gradients w.r.t. variable
parameters

W Defines upper and lower weighting functions
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FMCLP

NEWSET -
{ ]
WERR GRDCHK FMNFC FINAL
4] l AN TT
| e L
s FAPP FUNCT FMFPC WRITET
] L]
WRITE2
Fig. 1. The organization of FMCLP
FMLPO
lV 3
INPUT
| |—
EPSNP ERRO GRDGHK FINAL
] I 1 :

l r { ¢
FCT FCTAPP PuNfaT FMNFG WRITE
l t — N mg

{ i 1 1
FUNCS FMFPG WRITE2
J1

Fig. 2. The organization of FMLPO
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TABLE I RESULTS FOR EXAMPLE 1
n=10, ng =5 n=25, ng =2 n=50, n =]
p=2 a]=1.27339 a]=1.05489 a]=1.01687

2,76.54190x10”"
a;=2.17787x10”!
M(2)=2.05859x1072
t,,=2.51460x10”]
U(a)=4.71528x10"3
f.e.=41
q.1.=2

1.6 sec

a,=-7.67814x10"
2,°1.618192x10""
M(2)=1.32708x10"2
ty=2.46234x10"]
U(4)=1.21662x1072
f.e.=30
q.7.=3

2.3 sec .

2,77.8915x10"

a31.61435x10""
M(a)=1.28696x107
t,=2.04081x10”1
U(a)=2.06679x1072
f.e.=36
q.i.=0

5.1 sec

P=10{ a,=7.37873x10""
a,=9.2622x10""
a3=1.2862x10"1

M(2)=8.9565x107
t=1.67727x107)

U(g)=8.4364x1073

f.e.=38
q.1.=3

1.5 sec

a,°7.46289x10"
a,=-9.23825x107"

a3=1.27596x10°1 :

M(z)=8.76150x10"3
ty=1.73062x10""
U(g)=8.2421x1073
f.e.=32
q.1.=3

2.5 sec

a;=7.43325x10°"
2,=9.29377x10"
a,=1.2812x10”)
M(a)=8.5446x1073
t72.04081x10”"
U(a)=9.1834x107
f.e.=31
q.i.=0

4.5 sec

p=102 -!

a;=6.79369x10
3,=9.55423x10”!
a3=1.21997x10™"
M(3)=8.9563x10"3
ty=1.67727x10""
U(3)=8.2055x1073
f.e.=35
q.i.=1

1.3 sec

2,=6.8047x10”"

=9.5671x107]
1

%
a5=1.2206x10”
M(z)=8.7300x10"3
ty=1.73062x10"
U(a)=8.1866x103
f.e.=35
q.i.=1

2.5 sec

2,=6.88905x10"]
2,=9.52106x10"!
a5=1.2334x10""
M(7)=7.9450x10"3
ty=2.04081x1071
U(a)=8.0045x10"3
f.e.=35
q.i.=0

5.sec

p=10% a,=6.7370x10"]
2,=9.5590x10""
a;=1.2168x107)

M(a)=8.1125x1073
ty=1.67727x10""

2,%6.77142x10”"
a,=-9.5556x10"
az=1.21735xi0”"

M(2)=8.0905x10™
ty=1.73062x10""

2,=6.8510x10""
2,79.5289x10""
a;=1.2294x10”]

M(z)=7.9009x10"3
t,=2.04082x10”"

U(g)=8.1182x10"3 U(g)=8.0957x10'3 l)(,@)=7.9068x10'3
f.e.=28 f.e.=29 f.e.=26
q.1.=0 q.7.=0 q.i.=0

1. sec 2.3 sec 4. sec
Total f.e.=142 f.e.=126 f.e.=128
for 5.4 sec for 9.6 sec for 18.6 sec

f.e. denotes number of function evaluations

q.i. denotes number of quadratic interpolations
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TABLE II RESULTS FOR EXAMPLE 2

Fletcher method unconstrained problem constrained problem

5103 £=0 £=2.337x7072 £=0 £=2.337x1072
a, 3.1525 - 3.1508 2.942§ 2.9422
2y 4.4203x10"! 4.4165x107] 4.1069x107! 4.1070x10°
ag 4.4212 4.4194 4.0 3.9998
a, 4.4159x107" 4.4169x107) 4.1069x10"" 4.1070x107
ag 3.1526 3.1508 2.9429 - 2.9422
M 3.9466x107° -2.3330x10"2 4.7403x10°5 -2.3322x10°2
Xy 3.0700x107! 3.0 8.02x10”! 3.0
v 3.9466x107° -2.3330x10°2 4.7403x10°° -2.3322x1072
Function evaluations 177 79 55 157
Execution time 17 13 31 55
in seconds
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