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On Conditions for Optimality in 
Least pth Approximation 1 with p -~ oo 
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Communicated by C. T. Leondes 

Abstract.  This paper presents a theoretical discussion of the 
necessary and sufficient conditions for optimality in gencralized 
nonlinear least pth approximation problems for p--~ oo. In the 
limit, the conditions for a minimax approximation are derived, 
as is to be expected. Numerical examples involving the modeling 
of a linear time-invariant fourth-order system by a second-order 
model and the design of quarter-wave transmission-line trans- 
formers illustrate the results, 

1. I n t r o d u c t i o n  

Of great practical importance to network and system designers 
wishing to approximate a specified response by a network or system 
response or desiring to meet or exceed certain design specifications is 
the optimality of their approximation. A number of workers interested 
in minimax approximations (Refs. 1-3) have independently arrived at 
similar conditions for nonlinear minimax approximation problems. 
These are naturally derivable from the Kuhn-Tucker  conditions for 
a constrained optimum because of the close relationship between 
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nonlinear minimax approximations and nonlinear programming. Bandler 
(ReL 3), in particular, derived the appropriate conditions in a general 
form suitable for such problems as filter design. 

Because of the widespread interest in nonlinear least pth approxima- 
tion (Ref. 4), and because of recent results (ReL 5) that permit least pth 
objectives in a more generalized sense to be directly applicable to such 
problems as meeting or exceeding design specifications as in filter design, 
it is felt that a detailed mathematical discussion of conditions for opti- 
mality is highly relevant. Thus, the present paper allows for situations 
more general than the conventional problem of approximation to a single 
continuous function on a closed interval, 

2. Definitions and Assumptions 

Define real error functions related to the upper and lower specifica- 
tions, respectively, as (Refs. 5-6) 

& ¢) - s . ( ¢ ) ) ,  

¢) & w,(¢)(f(¢, ¢) - s,(¢)), 
O) 

where F(¢, $) is the appreximating function (actual response), S~(~b) is 
an upper specified function (desired response bound), S~$) is a lower 
specified function (desired response bound), wu(¢) is an upper positive 
weighting function, w~($) is a lower positive weighting function, ¢ is 
a vector containing the k indepepdent parameters (design variables), and 
~b is an independent variable (e.g., frequency or time). 

In practice, we will evaluate all the functions at a finite discrete set 
of values of $ taken from one or more closed intervals. Therefore, we 
will let 

(2) 

where it is assumed that a sufficient number of sample points have been 
chosen so that the discrete approximation problem adequately approxi- 
mates the continuous problem. I~ and Iz are appropriate index sets. 

2.1. Case I. Specification Violated. In the ease when the 
specification is violated, some of the e~(ff) or --eu(4, ) are positive. In an 
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effort to meet the specification, we can propose the following function 
to be minimized: 

where 

t:(,~ = [e,,,(,)]~ + Z [ - - e , , (* ) l ' )  , (3) 

],, £ {il e,,,(,) >I. O, iEI,,}, 

J~ & {/1 -eu(*)  1> o, ielz}, 
(4) 

and p > 1. 
The  larger the value of p, the more r~early would we expect the 

maximum error to be emphasized, since 

( i~u \ l lp  
m ax[e.,(*).--e,,(*)] -----t,.=lim [e~"(*)] ~' + Z [--e.(*llP) • 

ted~ 
(5) 

2.2. Case  2. Spec i f i ca t ion  Sa t i s f ied .  For the case when the 
specification is satisfied, all the --e.~(,) and e , ( ,  ) will be positive. This  
time, in an effort to exceed the specification by as much as possible, we 
can propose the following objective function to be minimized4: 

X-lip 
v ( , )  = - ( X  [-.. ,(,/ ,)1-. + X w , ( , ) r . )  , 

where we assume 

(6) 

- e ~ , ( , )  > 0, i ~ I~,  
(7) 

eu(*) > 0, i E Is,  

and p >f 1. 
The  larger the value of p the more nearly would we expect the 

min imum error to be emphasized, since 

m~[--%,( ,) ,  e . ( , ) ]  = ~ [--e~,(*)]-" + Z [e . ( , ) ] - ' )  . 
t i I u i¢11 

(8) 

2.3. A s s u m p t i o n s .  It  is assumed that a min imum exists in a 
closed and bounded region of points * and that %t(*) and ezi(, ) are 
continuous for all i with continuous partial derivatives, at least in the 

Since, in this paper, the condition q for optimality are of inte;'est, it is convenient to use 
slightly different objective functions from those proposed in aii earlier work (Ref. 5). 
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neighborhood of the minimum. Then, the objective functions proposed 
are continuous with continuous partial derivatives in the neighborhood 
of the minimum. 

3. Theorems 

Theorem 3.1. 
ation problem, 

where 

At an optimum point ~ for a minimax approxim- 

fEK u i~K l 

uu ~> 0, iE K~, 

and where e,,i(d~ ) 
maxima. 

Proof  for Case 1. Differentiating Eq. (3), we have 

= (,?. + 

[e.,(¢)]. v eu,(¢) 
x (E ~.o~ t,~,(e)]" +E,o,,t-,,,(,)3" ,.,(¢) i ~ j u  4.a ,  u 

[ - e . ( ~ ) ] '  v ,,,(~) 
- E E,o~ [.~,(,)1" + E,~., [-~,,(,)1" [-,~.,(~)] )" ge / l  

The necessary conditions for an optimum of U(ss) are that 

vu(,~,) = o, 

v A [a1~41, e/e4. ..... , e/e¢~k] T, 

for i E K  u and --eu(#~ ) for i¢  Kz are the equal 

(9) 

(10) 
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where 6~ denotes the optimum parameter vector for particular values 
of p. Let 

m(~) = [~..(4;,)1, ( t l )  
Z,~,. [,..(~,)1~ + X,o,, [- , , ,(~,)l" ' 

[-~"(~')1" 02) 
~(P) = E,,, .  [,.~(6,)1" + E,o,, [-~,,(~,)F ' 

,,., = ~ ~.(p). 03) 

" = L~ ~'(~) 04) 

Then, assuming that the above limit exists, it is clear that, as p --~ ~ ,  
the necessary conditions for optimality applied to Eq. (9) yidd 

and 

~=0,  iCK,,, 
u"~o ,  i~K., (ts) 

!----- 0, i ¢ K, ,  (16) 
uu[>~O, ieK~, 

]~ - . ,  + E ~,, = I. (l~) 

Therefore, as p -~ o% 

Y u., v, . ,(6~) = Z ~,, v ¢,,(6~). 
~¢g'u i~Kt 

and the theorem is proved. 

08) 

P r o o f  for  Case 2. Fotlo~qng a similar procedure to the one 
used for Case 1, the same conditions can be derived, but in this case we let 

t, dp) = [-*"($')]-" 09) 
Z,~,. [-e. ,(~,)]- ,  + X,~,, [e,,(~,)]-, ' 

[e,,(~,)]-" 
y,o,. [-e. .(~.)]- ,  + X,~,. b,(~.)]-" 

~<p) = (20) 

Theorem 3.2. If the relations in Theorem 3.1 are satisfied at a 
point ~® and the eu~(# ) are convex for i ~ I u and the el¢(~ ) are concave for 
i ~ I t , then ~® is optimal. 
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P r o o f  for  Case 1. Assuming the e~i($ ) are convex 
--elt<¢ ) are convex, we ha-re 

,,,,.((i - a) ¢,  + a¢~) < (t - ~) e,,,(¢9 + ae..<¢"). 

- e . < ( 1  - a) ~ + a¢-) < - ( 1  - a) e,,(¢,) - xe,,(~:). 

and 

for 0 <~ A < 1. Therefore, for p >/ I, 

I x  t..,~.- ~ ~' +-:~J" + ~ t-.,;((,- ~)~' +- '>I.)" 

(.x_to - a)..,(~) + .,,,(¢)],, 

+ E [ - o  - a),,,(@) - ~,,(¢)],.)"" 

(iE~j_~ . ~, , . l i p  +.~ [,,..(~-')l' + E [-~,,(*-)1") . 
i e J  ! 

from Minkowski's inequality (Ref. 7). Hence, 

v(( l  - a) ¢,  + a¢-) ~ 0 - a) u ( , , )  + auc¢-'). 

Therefore, U(6) is convex, and Theorem 3.2 follows. 

P r o o f  for  Case 2. Using Eq. (21) we have, for p 7> 1, 

i i ~ l  l 

>i (,~.. [ - ( l  - a) ~ .X@) - a,..,(4,,)]-,' 

+ E [0 - ~),.t.9 + ~,.<~'}1- ')"" 
i~ l l  

(1 -- h)(~,: [--e'"(#l)]-" + ,~t,Z [*'i(#t)]-P) -I'p 

+.~ [-,,..1~')1-" + E [~,,(,#~)1-") . 
i e l  I 
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the 

(2n) 

(22) 

(23) 

(24) 
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This  inequality (Ref. 7) is a counterpart to Miakowski's inequality. 
Hence, 

- -  U((1 - -  A) , '  + A¢ 2) >I - - (1  - -  A) U(¢')  - -  AV(,Z). (25) 

Therefore,  U(¢) is convex, and Theorem 3.2 follov~s.. 

4. E x a m p l e s  

E x a m p l e  4.1. The  first example is to find a second-order model 
of a fourth-order system when the input  to the system is an impulse for 
different values of p. The  transfer function of the fourth-order system is 

o(s) = 0 + 4)/(, + I)(~, + 45 + 8)(s + 5). 

The  transfer function of the second-order model considered is 

n( , )  = eli(, + ~,)~ +/~'-]. 

Therefore, in our case, we have 

S(t) = (3,120) exp(- t )  + (V52).exp(-5t) 

-- [exp(--2t)/65](3 sin 2t + I 1 cos 2t), 

r(~ ,  0 = (c//~) exp(-~t)  sin ~t, 

# = [~,/Lff,  

ff~ = t~, 0 -<< t~ ~< 20, 

e(,~, t) = F(~,  ~) - s(~),  

101 

(26) 

(27) 

(28) 

(29) 

(3o) 

(30 

(32) 

s Techniques for least pth approximation with extremely large values o fp  are descr~ed 
elsewhere (Ref. 8). 

T h e  above objective function, which corresponds to the situation 
8u = St-----S and ,.,,~-----w I = 1 in Case 1, was set up using 101 
uniformly spaeed points over the range 0 and 20 see. The  values of p 
used for optimization 5 were 2, 6, 10, 20, 30, 40, 50, 70, 80, 100, 200, 
1000, and 10,000 (see Fig. 1). 

(33) 
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Fig. 1. Opt imum error for least-squares and least-t0,000~h approximation for 
Example 4.1. 
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Fig. 2. ~ ( p )  or AI(P), as appropriate, calculated at specified values of t ime and for 
certain values o f p  for Example 4.1. 
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The  values of tzi(p) and ~ ( p )  were calculated for different values 
of p and for different values of t. Seven values of t were considered, of 
which four were the points where the approximately equal extrema 
occurred. Figure 2 demonstrates the validity of Eqs. (15) and (16). 

E x a m p l e  4.2. Here, we consider the design of 10-ohm to 1-ohm 
quarter-wave transmission-line transformers taking, for convenience, 
0.3 as an upper specification for the magnitude of the reflection coefficient 
p over  a specified 100% frequency band. The  basic problem .has been 
previously defined and analyzed in the context of optimality by Bandler 
(Ref. 3, see also Refs. 9 and 10). The  opt imum two-section transformer 
violates the specification. T h e  optim~am three-section transformer, on 
the other hand, satisfies the specification. The  value of p for both cases 
in the optimization process was 10,000. I01 uniformly spaced sample 
points were used. 

The  maximum values of eui(~;p), where .F  = [p I and S~ = 0.3, 
and the frequencies at which they occur are shown in Tables 1 and 2. 
Using Eq. (11) and Table 1, nonzero multipliers in the ratio 

3.001 : 2.001 : 1.000 

can be ftmnd; and, using Eq. (19) and Table 2, nonzero multipliers in 
the ratio 

2.999 : 2.807 : 1.759 : 1.000 

Table 1. 

i 1 , 1  

Maximum of e,,,(c~) 

Optimum two-section transformer with p = 10 Z 
(specification violated, Case 1). 

i 

0.12857552 0 .12857031  0,12856139 

Frequencies 
at wh/ch maximum occurs, GHz 0.5 1.0 1.5 

i i i i i 

Table 2. Optimum three-section transformer with p = !0 4 
(specification satisfied, Case 2). 

i ' .  i 

Maximum of --e,~(¢~) 0.10270671 0.10270739 0.10271219 0.10271799 

Frequencies 
at which maximum occurs, GHz 0.5 0.77 1.23 1.5 

_ t i J l l  i l l m l  i i . . i . r  II 
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can be found. These results may be compared with those of Bandler 
(Ref. 3). 

5. C o n c l u s i o n s  

It has been shown (Ref. 5) that, for violated specifications in 
generalized least p th  approximation, we have a close anak.gy with 
minimization of a penalty term designed to bring one closer to the 
boundary of the feasible region, whereas, for satisfied specifications, 
we have an analogy with minimization of a penalty term designed to 
steer a feasible solution deeper into the feasible region. Conventional 
approximation problems fit into the former category, but conditions of 
optimality are required for both. 

In the limit, the conditions for a minimax approximation are obtained 
as is to be expected. It is felt that new insight into minimax algorithms 
is gained, since appropriate algorithms might attempt to force these 
conditions in an iterative manner by using extremely large values of p. 
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