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Abstract

Two new algorithms suitable for optimization of networks are presented. Least pth approximation is used in

such a way that ~ finite value of p > 1 can be used to produce minimax results very efficiently.

Introduction

The authors have already presented a justification
of the use of least pth approximation techniques with
large values of p for computer-aided network designl.
They showed that the use of a fairly well-conditioned
objective function with efficient gradient minimiz-
ation methods such as the method by Fletcher2, and the
adjoint network method for gradient evaluation,
yields very near minimax designs with little com-
putational effort.

The present paper exploits all the advantages of
that approach in presenting two new algorithms for
practical minimax approximation. A basic difference
in these algorithms is that, instead of requiring
very large values of p, ~ finite value of p
greater than one can be used to produce minimax
solutions.

The paper discusses a six variable example
(namely, a three-section transmission-line transform-
er) where values of p equal to 2, 4, 6, 10, 100,
1000, and 10,000 have all been used to obtain sub-
stantially the same solution. A comparison with
other methods already known to microwave engineers
is made. The Fletcher minimization method is used
throughout. The advantage of the new algorithms is
a combination of efficiency and flexibility which,
it is believed, has not been previously enjoyed by
computer-aided circuit designers.

The New Algorithms

Space in this summary does not permit elaboration
of the details of the algorithms, so brief descrip-
tions will be given.

As in previous workl, error functions with res-
pect to upper and lower response specifications are
defined and sampled at a sufficient number of points.
Norm-like functions are formed with nonnegative

uppererrors and/or nonpositive lower errors if
some of the specifications are violated or with
negative upper errors and positive lower errors if
all the specifications are satisfied. All the
errors are scaled by a number equal to the modulus
of the maximum violation of the specifications or
the minimum amount by which the specifications are
exceeded, whichever is appropriate. This ensures
that no number greater than unity is raised to an
extremely large power, if such a value is used.

The specifications with respect to which the
errors are defined are not the actual ones. They are
artificial ones obtained by introducing an artificial
margin of errors C. A sequence of optimization
problems is initiated. If the given specifications
are violated at the start then both algorithms set
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c=O and optimize with a finite value of p.

In Algorithm 1, the next optimization sets c to
the actual maximum error obtained plus a very small
number of c ,to avoid possible discontinuous de-
rivatives. Algorithm 2 does the same if, after any
optimization, the artificial maximum error becomes
negative. Otherwise, Algorithm 2 sets < between the
previous value and the actual maximum error. Both
algorithms terminate when the absolute value of the
difference between successive c values falls below
some small specified number.

Examples

The algorithms have been applied to a wide range
of design problems. Here, we will compare their
performance using the Fletcher method on a 3-section
transmission-line transformer problem which has al-
ready received attention in the literature4~5. See
Table I. In Table II, s was 10-8. In Tables III
and IV 1 is the fraction of the actual maximum error
that is added to 1-A times the previous c to obtain
the new value of C. In Table IV M is the actual
maximum after the first optimization and m the value
of the smallest ripple.

Conclusions

The results show that there is usually an optimum
value of p for any given problem minimizing the effort

required to reach a specific solution. The sensitivity
with respect to p (for moderate values) does not
seem to be great. Nor is the effort very sensitive
to the value of A. The algorithms are easy to imple-
ment. Their efficiency in comparison with other
methods has also been demonstrated.
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TABLE I

T1lE STARTING POINTS IN THE OPTIMIZATION OF

A 3-SECTION 10:1 TRANSFORMEROVER 100 PERCENT

RELATIVE BANDWIDTH

Parameters Problem 1 Problem 2

@i

Q /t
lq 1.0 0.8

‘1
1.0 1.5

9. /t
2q

1.0 1.2

‘2
3.16228 3.0

!2 /t
3q

1.0 0.8

‘3
10.0 6.0

Maximum 0.70930 0.38813
reflection
coefficient

TABLE II

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER

OVER 100 PERCENT RELATIVE BANDWIDTH USING

ALGORITHM 1

Number of function evaluations to reach
Va 1ue a reflection coefficient of 0.19729

of

P Problem 1 Problem 2

2 178 160

4 143 128

6 142 116

10 112 89

100 136 69

1000 193 66

10000 249 104

Average
number of
function

165 105

evaluations

Grazer

search4
696 498

Osborne
G 4,* 860(0.20831) 237(0.19788)

Watson

Razor
5,* 1300(0.19733)

search
1250(0.19731)

* Number of function evaluations to reach the value
shown in brackets.

TABLE III

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER

OVER 100 PERCENT RELATIVE BANDWIDTH USING

ALGORITHM 2

Value Number of function evaluations to reach a reflection coefficient of 0.19729
of

P Problem 1 Problem 2
1=0 .5 .J=O.6 1=0 .7 a=o.s A=O.6 A=o .7

2 183 146 151 165 128 133

4 193 162 122 151 149 109

6 199 182 138 150 135 112

10 191 159 146 168 136 114

100 185 171 165 126 104 99

1000 211 211 202 83 91 83

10000 248 248 248 103 103 103

Average number of
function evaluations

202 182 168 135 121 108
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TABLE IV

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER

OVER 100 PERCENT RELATIVE BANDWIDTH USING

ALGORITHM 2 WITH A = ~

Value M m Number of function evaluations to reach
of a reflection coefficient of 0.19729

P
Problem 1 Problem 2

2 0.30819 0.11626 161 141

4 0.23680 0.16278 135 123

6 0.21759 0.17612 115 89

10 0.20636 0.18280 95 72

100 0.19781 0.19S62 131 65

1000 0.19734 0.19712 193 66

10000 0.19730 0.19727 249 104

Average number of function evaluations 155 95
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