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This chapter deals with formulations and methods which can be 
implemented in the ever increasing number of situations when the 
classical synthesis approach, whether analytic or numerical, is inappro­
priate. When the so-called closed-form solution is, for some reason, out 
of the question, the modern approach is to use efficient, iterative, 
automatic optimization methods to achieve a design that meets or 
exceeds certain requirements. Not infrequently, exact methods may be 
used .to great advantage in providing the initial feasible design for 
optimization. 

In order to make the mathematics tractable, usable synthesis 
methods are usually restricted to ideal commensurate networks. As 
soon as we have to take into account active devices, a narrow range of 
element values, parasitic effects, high frequency operation, nonlineari­
ties, frequency-dependent elements, noncommensurate elements (e.g., 

. mixed lumped and distributed elements, uniformly distributed trans­
mission lines with unequal or variable lengths, etc.), elements charac­
terized by measurement data, response constraints, and so on, classical 
methods of design provide, at best, only approximate answers. In some 
cases these an�wers adequately approximate the solution to the actual 
design problem, but in many cases they do not. 
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212 Computer-Aided Circuit Optimization 

The author is not advocating numerical methods for their own sake. 
Generally speaking, for the same job, iterative methods require more com­
putation time than more specialized methods which do not require iteration 
(if they are available). Computing time is not, however, the only criterion an 
engineer has to consider. For example, in deciding whether or not to devote 
his own time to deriving an analytic algorithm, as distinct from a numerical 
algorithm, he also has to ask himself how often the algorithm would be used, 
how well it would represent real situations, how widely applicable it would 
be, and last but not least, how accurate the numerical results would be. After 
all, as engineers, we are ultimately working toward producing meaningful 
numbers as the solutions to realistic design problems. 

Methods for automating the optimal design process will be emphasized. 
Ad hoc cut-and-try techniques using a general purpose analysis program are 
discouraged, particularly for filter design problems with anything other than 
the simplest of design specifications and a handful of variable parameters. 
The pitfalls are the same as with automated methods, the strategy for dealing 
with them is inevitably less sophisticated, and in the long run it will ahnost 
certainly cost more. It is desirable that the decision 11Jaking process should, 
as far as possible, be left to the computer. 

Poor or unacceptable results in' computer-aided circuit optimization (or 
with any design process) are felt to be most likely due to bad preparation of 
the problem, a lack of understanding of the hazards that can be encountered, 
and the wrong choice of algorithm. This chapter, therefore, attempts to show 
how problems within the scope of filter design may be formulated effectively 
as optimization problems, to explain the differences between these formula­
tions, to indicate appropriate optimization methods, and to indicate how the 
results might be interpreted. Details of optimization algorithms, proofs of 
convergence, etc., are beyond the scope of this work. Adequate references to 
the original papers and relevant text books will permit the reader to investi­
gate these for himself. 

Following a section on basic concepts which are essential for an under­
standing of optimization theory, a formulation and description of typical 
objectives and objective functions is presented. Constraints and some 
methods of dealing with them are discussed in fair detail in the next section, 
including the ·conditions for a constrained minimum. Minimax approxima­
tion, including conditions for a minimax optimum, is then dealt with. This is 
followed by sections on c;me-dimensional search methods, direct search 
methods, and methods using gradient information. Least pth approximation 
comes naturally after a discussion of gradient methods. A fairly long section 
is devoted to the adjoint network method of gradient evaluation. 
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The problem of optimization may be stated as follows. Minimize the scalar 
objective function* U where 

U le U(q,) 
subject to the inequality constraints g(<j,)�O 
and equality constraints h(<j,) = 0. 

(6.1) 

(6.2) 

(6.3) 

In (6.1) to (6.3), <j, is a vector of k independent variables or parameters,t thus 

(6.4) 

defining a k-dimensional space. In general, we m1ght have m inequality 
constraints and s equality constraints so that 

r(·}i 
g(q,) le 02j<li) 

(6.5) 
Om(<!i) 

and, 

['·(·}] 
h(q,) le h2j<li) 

(6.6) 
h,(q,) 

The feasible region R is defined by all vectors <j, satisfying (6.2) and (6.3). 
This may be written 

R le {<Ii I g(q,) � 0, h(<j,) = 0). 
* Also called cost function, performance index, or error criterion. 

tTypically element values, residues, critical frequencies, etc. 

(6.7) 



214 Computer-Aided Circuit Optimization R is said to be closed if, as in (6.2), eqnalities are allowed. If no equalities are 
allowed it is said to be open. A proper minimum of U located by a vector cf, 
on the response hypersurface generated by U(cj,) is such that 

0 fe U(cf,) < U(cj,) (6.8) 
for any feasible cj, close but not equal to cf,.* Since we cannot generally 
guarantee to find a global minimum, we usually have to resign ourselves to a 
consideration of local minima. Our objective then is to find a feasible cf,, if it 
indeed exists, such that 

U(cf,) = min U(cj,). 
<l>eR 

Figure 6-1 is an illustration of the problem in two dimensions, and it con­
tains a number of features usually encountered in optimization problems. 
Note that only inequality constraints, i.e., constraints of the form of (6.2), are 
indicated. 

Constraint boundary 

Feasible re
��

ion 

�onf�asible 
� 

1
� region 

FIGURE 6-1 Some features encountered in optimization problems. 

* U(cJ>)::;; U(<f>) can also define a minimum, but «1, �ay then be nonunique. 
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Examples of unimodal, multimodal; strictly concave, and strictly convex 
functions of one variable are shown in Figure 6-2. A unimodal function for 
our purposes is one having a unique optimum in the feasible region. It may 
or may not be continuous with continuous derivatives. A strictly convex 
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u 

V 
'- -- - - - - ---+,P 

Unimodal function 

u 

'---- - - - - - - ------ -"'"' 
Well-behaved multimodal function 

u 

L._ _ _  L_ _ _ _  _L_,..q, cpa cpb 
Strictly convex function Strictly concave function 

FIGURE 6-2 Functions of one variable. 

function is one which can only be overestimated by a linear interpolation 
between two points on its surface. Thus, for <I>" ,fo <j,•, 

U(<j," + J.(<j,• - <!>")) < U(<j,") + J.(U(<j,•) - U(<j,")) 
O<J.<1 (6.9) 

for a strictly convex function. See Figure 6-3. A strictly concave function is 
one whose negative is strictly convex. Note that if we omit strictly, then we 
imply that equality of the function and a linear interpolation can occur, i.e., 
(6.9) would have to admit equalities. 
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FIGURE 6-3 Illustration of convexity. 

A region R is convex if for all 4>•, <I>' E R all points 

<I>= <1>· + 1(<1>' - <1>·) 

0;5;.<;5;1 (6.10) 
lie in R. Illustrations of convex and nonconvex regions are given in Figure 
64. 

The first three terms of a multidimensional Taylor series expansion of 
U (<I>) are given by 

U(<!> +A<!>)= U(<!>) + VUT A<!>+½ A<!>TH A<!>+··· (6.11) 
where the vector 

[At/>,] A<!>,;, Af2 

At/>, (6.12) 

contains k parameter increments, A<l>T is the transposed (row) vector, 
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Convex region 

Nonconvex region 

FIGURE 6-4 Convex and nonconvex regions. 

au 
acp, 
au VU£ 8</>2 

au 
acf,, 

(6.13) 

is a vector containing the first partial derivatives of the objective function 
called the gradient vector, and 

a2u a2u a2u 
acpf acp, 8</>2 acp, acp. 
a2u a2u a2u 

H£ ac/>2 acf,, acf,� 8</>2 acp, 
(6.14) 

a2u a2u a2u 
acf,, acp, acf,, 8</>2 acf,f 
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is a symmetric k x k matrix containing the second partial derivatives and 
called the Hessian matrix. At a minimum of a continuous function with 
continuous first and second partial derivatives VU(cp) = 0 and H(cp) is 
positive semidefinite.* Invoking these conditions in (6.11) but with H taken 
as positive definite, it may be shown that (6.8) is satisfied, implying that we 
have a proper minimum. U(<I>) is strictly convex in a region where H is 
positive definite as may be seen by relating (6.9) with (6.11). 

The problem formulated in (6.1) to (6.3) is called a mathematical program­
ming problem. If all the functions are linear, we have linear programming; if 
not, we have nonlinear programming. The term convex programming is often 
used to describe the problem defined by (6.1) and (6.2) when U(<I>) is convex 
and g(<I>) is concave. Under these conditions R is convex, and O is the global minimum. 

In practical situations, it is usually out of the question to determine 
whether a specific problem falls into the domain of convel\ programming. 
Nevertheless, it seems a fair generalization to make, that the most reliable 
and efficient methods of optimization for practical problems are invariably 
those which invoke some of the nice properties of convex programming in 
their proofs of convergence. The better methods usually have built-in safegu­
ards for dealing with the hazards of more general nonlinear programming 
problems while substantially retaining their desirable convergence features. 
Note that essentially unconstrained problems are regarded as special cases 
in the above discussion. 

6.2 SOME OBJECTIVES AND OBJECTIVE FUNCTIONS 

Optimization by Solving Nonlinear Equations 

Classically, to find O we must in general solve k nonlinear equations in k 
unknowns, namely 

VU=O. 

Denoting this set of equations f(<I>) = 0 where 

(6.15) 

we could define a new objective function 
(6.16) 

*It should be no�ed that H might not be positive definite, even in some cases when U($) is 
strictly convex. 
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to be minimized. A minimum of value zero would imply that the solution to 
f(<J,) = 0 had been found. Now, using a Taylor series expansion 

f(,j, + A<J,) = f(<J,) + J A<J, + .. · (6.17) 
where 

aJ, aJ, aJ, 
at{,, a¢2 at{,. 

J fe af2 af2 af2 
at{,, a¢2 at{,. 

(6.18) 
at,_ at,_ at,_ 
at{,, a¢2 atf,. 

is a k x k Jacobian matrix. The well-known Newton-Raphson method of 
solution is based on the hope that, if we evaluate f and J at <J,, then the 
incremental change 

A<J, = -r'f(<J,) (6.19) 
brings one closer to the solution. (In Section 6.8 these ideas are extended). 

Quadratic Objective Function 
Consider the quadratic objective function U(<f,) = ½<VA<J, + bT,j, + C 

where 
A is a k x k constant symmetric matrix, 
b is a constant vector with k components, 
c is a constant. 

In this case, it is readily shown that 
VU = A,j, + b 

H =A. 

(6.20) 

A stationary point of U(<f,) can be found by solving the linear equations 
A<f, +h= O. 

If A is nonsingular, the point is unique and can be found in a finite number 
of operations. The term quadratic convergence (Fletcher [1] prefers the term 
"property Q ") is used to describe the convergence properties of optimiza­
tion methods, which guarantee to find the minimum of a quadratic function 
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in a finite number of steps. Such methods can be expected to be very efficient 
in minimizing functions adequately representable by positive-definite qua­
dratic forms in the vicinity of a minimum. Some of them are discussed in 
later sections. 

Error Criteria 

Most electrical network design problems can be formulated as approxima­
tion problems. Let us, therefore, introduce a weighted error or deviation 
between a specified function and an approximating function as 

e(<!>, ,ft) lla w(,ft)[F(<j>, ,ft) - S(,ft)] 
where 

S(,ft) is the real or complex specified function, 
F(<!>, ,ft) is the real or complex approximating function, 
w(,ft) is a weighting function, 
,ft is an independent variable, 
<!> represents the adjustable parameters. 

(6.21) 

Thus F(<!>, ,ft) may be a network response, S(,ft) may be the desired response, 
and ,ft may be frequency or time. See Figure 6-5. 

F,S 

Specified function 

F(,p, if,) 

S(if,) 

--l- --'--- -------- ----1----,..if, "'' "'· 
· FIGURE 6-5 An approximation problem. 

We may define a norm 

I "" )''P 
llellP lla \J,,, I e(<!>, ,ft) IP d,ft , (6.22) 
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for the continuous case; and a norm 

I )''P ll•IIP "\�le,(<l>)IP , 

for the discrete case, where 

e(<I>) !,, [:�;:\], 
e,(<I>) 

iE[ 

l$p$00 

e;(<I>) !,, e(<I>, ,fl,)= w(i/1,)[F(<j,, ,fl;) - S(i/1,)] 
and I"' {l, 2, . . .  , n}. 

(6.23) 

(6.24) 

(6.25) 

(6.26) 
Thus, I is an index set relating to discrete values of ,fl on an interval [,fl,, ,fl.], 
which is closed and finite. 

Now for well-behaved functions 

( 1 "" 

l
l

/p 
max I e(<I>, ,fl) I = lim ,fl _ ,fl f I e(<I>, i/1) IP di/I 

[,J,1, 1/tu] p-+ CO U l l/11 

(6.27) 

when I e(<I>, ,fl) I is defined on [ i/11 , ,fl.]. If I e(<I>, ,fl) I is continuous on a finite 
interval [ i/11 , ,fl.], then (6.27) is certainly valid. Similarly, 

maxJe,(<l>)J = lim I Je,(<l>W , ( ll/p l p-+oo I 

Suppose we formulate an objective function as "" 
u = f I e(<t>, i/1) Ip di/I .,,, 

for the continuous case and 
U = L Je,(<l>)JP 

iel 

iEl. (6.28) 

{6.29) 

(6.30) 

for the discrete case. The minimization of the U of (6.29) or (6.30) is called 
least pth approximation. A minimum for the continuous case is called a best 
approximation with respect to lleJJp , defined in {6.22). A minimum for the 
discrete case is called a best approximation with respect to JJeJJP , defined in 
(6.23). Now llell ., and 11•11., are called Chebyshev or uniform norms. Because 
of the consequences of (6.27) and (6.28), minimization with respect to lie! I., 
or IJ•JJ., is widely referred to as minimax approximation. Least pth approxi­
mation tends to minimax approximation as p--> oo. 
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A word of caution concerning the weighting function w(i/1) and the index p 
is in order. Clearly their purpose is to emphasize or deemphasize the 
difference between F(<I>, ,fr) and S(,fr). Thus, an optimum with respect to one 
weighting function or value of p may not be an optimum with respect to 
another. Large errors will be emphasized by large values of p. If one knew in 
advance where these large errors would be, w(,fr) might also be used to 
emphasize them. The use of w(i/1) to do this is a poor approach, however, and 
should be discouraged. 

6.3 CONSIDERATION OF CONSTRAINTS 
It is rare to find any network design problem which is unconstrained. When 
physical considerations indicate that the optimum will lie in the interior of 
the feasible region, the designer is lucky and should take advantage of it. 
Often this will not be possible, and steps have to be taken to ensure that a 
realizable and practical design will be achieved. One of the great advantages 
of computer-aided circuit optimization is that, if the design problem has 
been properly formulated, a feasible design can always be achieved assuming 
the initial design is feasible. 

Constraints in network design can take a variety of forms. They can 
include upper and lower bounds on parameters; they can include nonnega­
tivity requirements on network elements. The topology, overall size, the 
suppression of unwanted modes of operation, considerations for parasitic 
effects whether reactive or lossy, and the stability of active devices can all 
result in constraints on parameters. Response constraints such as constraints 
on the phase while the amplitude is optimized can also occur. 

Most network designers seem to treat constraints as an afterthought, and 
then complain that the optimization process gave them negative resistors, 
etc. Their faith in automated optimization methods is shattered as a result. 
The author would like to stress that a thorough consideration should be 
given to the constraints before the selection of an optimization strategy. 

In this section we will look at some methods of converting constrained 
problems into essentially unconstrained ones. For other methods of nonlin­
ear programming, the reader should refer elsewhere [2, 3, 4]. 

Transformations ·for Parameter Constraints 
Various upper and lower bounds on the variable parameters are probably 
the most common kinds of constraints [5]. In Table 6-1 we show some 
simple parameter constraints falling into this class with appropriate trans­
formations. It is useful to distinguish between constraints defining open and 
closed feasible regions. If the optimum is expected to lie away from the 
boundary or if it is desired to discourage the solution from getting too close, 
the former type might be chosen. 
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TABLE 6-1 Simple parameter constraints and transformations 

Constraint Transformation 

</>, :e:: 0 
r/>, > O  
rj,, :e:: <j>,, 
r/>, > </>,, 
-1 :,; r/>, :,; 1 
0 :,; </>, :,; I 
0 < rf,1 < I 

</>u < </>; < </>ui 

<Pi = ,p;2 

r/>, = exp </>, 
</>, = </>,, + rf,;2 
rf,, = <j>,, + exp rf,; 
{jJ; = sin <M 
<f,; = sin2 </Ji 

exp ¢i 
rf,, = I + exp rf,; 

</>, = rj,,, + {rf,., - rj,,,)sin2 </>, 

</>, = ½(rf,,, + rf,.,) + ½(</>., - rf,")sin </>, 
exp <Pi 

r/>, = </>" + {rf,., - </>") I + rf,' exp 1 

</>, = </>" + ! {rf,., - </>")cot- 1 rf,; " 
for O < cot- 1 <M < n 

More General Considerations 
Parameter constraints of the form 

'Pu :,; cf,, :,; cf,., 
can if necessary be written as 

cf,, - cf,,, :e:: 0 
cf,., - cf,, :e:: 0 

(6.31) 

(6.32) 
in order to fit them into the scheme of (6.2). Frequency- or time-dependent 
constraints may be put into the form 

c;(<!>, ,fl) � 0 (6.33) 
where j denotes some jth function, or at discrete points on the ,fl-axis into the 
form 

(6.34) 
where i denotes an ith sample point. The form of (6.34) is preferrable to that 
of (6.33), since it allows us to consider a finite rather than an infinite number 
of constraints. 
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We might eliminate a number of constraints on physical or logical 
grounds if, for instance, 

1. U(<!>) -+ oo as g,(<1>) -+ 0. The attenuation of a filter becomes infinite, 
for example, if a zero valued element short circuits the structure; 

2. Some h,(<I>) = 0 can be explicitly written as </>i = f(</>1 , </>2 , . . .  , </>i- l , 
</>i+l , . . .  , </>,). In this case we can optimize with k - 1 parameters; 

3. g,(«f,) is known a priori to be positive. 

Our design problem may be so complicated that we cannot easily find an 
initial design to serve as a feasible starting point in the optimization process. 
We could try to find one by unconstrained optimization by minimizing 

m ' 

- I w,g,(<l>l + I hJ(<!>l 
i=

l 
j= 1 

/ = 0  g,(<!>) ::C: 0  
w,, > 0 g,(<1>) < 0. (6.35) 

If the minimum is zero we have a feasible point. Failure to converge to zero 
does not necessarily mean that a feasible point does not exist. 

Having obtained a feasible starting point we might decide to simply reject 
nonfeasible points if they are obtained during optimization. Equivalently we 
might set U(<!>) to a most unattractive value if any violation occurs. Alterna­
tively, we could add the term 

m ' 

I w,gf(<l>l + I hJ(<l>l 
i= l j= l 

l= O  g,(<!>) ::c: O  
W· 

' > 0 g,(<1>) < 0  (6.36) 
to the objective function. The objective function is not penalized as Jong as 
the constraints are satisfied. This procedure does not, unfortunately, always 
insure a strictly feasible solution. 

The simple approaches just described have other disadvantages also. 
Discontinuities in the new function or its derivatives may be introduced. 
Steep walls or valleys may be formed at the boundary of the feasible region 
which can drastically slow down the optimization process. A method which 
simply rejects nonfeasible points can easily terminate at a false minimum [6]. 

Sequential Unconstrained Minimization Techniques 

One of the best known and most highly developed of the sequential uncon­
strained minimization techniques (SUMT) will be briefly outlined here [7]. 
Consider first the problem of minimization subject to inequality constraints 
defined in (6.1) and (6.2). Let 

P(<j,, r) I,, U(<j,) + rG(g) (6.37) 
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where G(g) is continuous for g > 0 and G(g) -> co for any g,(<J,) -> 0, and 
where r > 0. Two possible candidates for G(g) immediately suggest them­
selves, namely 

and 

m 1 G(g) = .L ·("') ' 
1= 1 9, "I" 

G(g) = - L log g,(<J,). 
i=1 

(6.38) 

(6.39) 

Let us denote the interior of the region R of feasible points by R0
, where 

(6.40) 
and 

R c!e {<J, I g(<j,) :?: 0). (6.41) 

The procedure is to select a <j, and a value ofr, initially cp0 ER0 and r1 > 0, 
respectively, and minimize the function P of (6.37). The foim of this equation 
is such that one would expect the minimum, namely <j,(r1), to lie in R0

• 

Repeat the procedure for different values of r such that 

and lim r
i 

= 0, 
j-+co 

(6.42) 

each minimization being started at the previous minimum. The minimiza­
tion of P(<j,, r2) would be started at cf,(r1 ), and so on. 

The effect of the penalty is reduced every time the parameter r is reduced, 
so it is reasonable to expect that, under suitable conditions 

since by (6.42) 

so that 

Jim cji (r;) = cji 
j-+oo 

Jim ri = 0 
j- co 

Jim U[ cii(r ;)] = -0 
j-+m 
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the constrained minimum. A minimum of P should always be available in 
R', so any nonfeasible point that may be encountered can be rejected. This 
safeguard should not be overlooked, for obvious reasons. 

This procedure is termed an interior point unconstrained minimization 
technique, and it requires an initial <I>" ER'. If one is not available, the 
following approach may be adopted. Let 

Now define a 

S £ {s l g,(<I>) :s; 0, sE{l ,  2, . . .  , m}} 

T £ {t l g,(<p) > 0, IE{ l, 2, . . .  , m}). 

P(<I>, r) = - Iu,(<I>) + rIG,(g,(<I>)) 
SES teT 

(6.43) 

to be minimized for a sequence of r values satisfying (6.42). The implications 
of (6.43) are that any satisfied constraints are prevented from becoming 
violated while an attempt to satisfy the rest is being made. As soon as any 
constraint is satisfied the corresponding index is transferred from S to T, and 
the procedure repeated. When S becomes empty we have obtained a <!>" ER' 
and the solution process of the problem can commence. 

To prove convergence one must invoke the requirements for convex 
programming (See Section 6.1). In practice, however, the conditions may be 
difficult to verify even if they hold. Nevertheless, the method should work 
successfully on a wide variety of practical problems for which convergence is 
not readily proved. Bad initial choices of r and <I> will slow down conver­
gence. Too large a value of r1 may render the first few minima of P to be 
relatively independent of U, whereas too small a value may render the 
penalty ineffective except near the boundary where elongated valleys with 
steep sides are produced. Because of this and the fact that a sequence of 
unconstrained problems has to be solved, efficient gradient methods are 
generally required. 

A reduction factor of 10 for the values of r is probably as good as any once 
the process has started. The arbitrariness of this can be somewhat alleviated 
by using the SUMT method without the r parameters [7, 8]. 

To include equality constraints the term 

1 ' 
,,2 I hJ(<l>l 

r i=l  
(6.44) 
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can be added to the right hand side of (6.37). Clearly, as r -->  0, h(<J,) must 
approach O or a minimum will not be reached. 

The reader is referred to a number of selected references which discuss or 
extend SUMT [7, 8, 9, 10]. A lucid discussion is found in Chapter 5 of 
Kowalik and Osborne [8]. 

Conditions for a Constrained Minimum 
Necessary conditions which a stationary point <j,0 must satisfy in the prob­
lem of minimizing U(<J,) subject to g(<J,) � 0 can be formulated. Assume U(<J,) 
and g(<J,) to be differentiable in the neighborhood of a feasible stationary 
point <p0

, then 
m 

VU(<j,0) = L U; Vg;(<J,0) (6.45) 
j:: 1 

and 
(6.46) 

where 

These necessary conditions can be interpreted as follows: VU(<J,0
) is a 

nonnegative linear combination of the gradients V g;(<J,0
) of those constraints 

which are active* at <j,0
• 

Under the conditions of convex programming, i.e., if U(<J,) is convex, g(<J,) 
is concave, and R0 is nonempty, the conditions become sufficient for <J,0 to be 
cf,, the constrained minimum. The relations (6.45) and (6.46) are called the 
Kuhn-Tucker relations [11]. An interpretation is sketched in Figure 6-6. 
Note that if we have been using a reliable optimization method, and if the 
relations are satisfied, we can be reasonably sure that a local minimum has 
been attained even if the convexity requirements are not met. 

For a detailed treatment of the Kuhn-Tucker relations, including their 
derivation and a discussion of the constraint qualification which must also 
hold, the reader is referred to an appropriate book such as Zangwill [ 4]. 

* A constraint 9;($) � 0 is active at (p0 if 9;($0) = 0. 
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Feasible 
g(.,) 2'0 

Nonfeasib1e 

FIGURE 6-6 Sufficient conditions for a constrained minimum, u1 > 0, 
Uz > 0, U3 = 0. 

6.4 MINIMAX APPROXIMATION 

Classically, minimax approximation (See Section 6.2 for definitions) has 
implied the selection of the coefficients of a suitable polynomial or rational 
function so that it fits some desired specification (usually continuous on a 
closed interval) in an optimal equal-ripple manner. The Remez method and 
its generalizations are notable examples of iterative processes for obtaining 
best approximations using polynomials and rational functions. 

The number of practical problems in filter design which can be solved by 
the classical approach is certainly diminishing in comparison with those that 
need solving, notwithstanding progress in transformations in the frequency 
variable, Richard's transformation for transmission-line networks, and so 
on. This section will, therefore, emphasize less specialized methods applic­
able to a wider range of practical design problems. Recent references are 
available which discuss in detail methods well-suited to polynomials and 
rational functions in the context of filter design [12, 13, 14, 15]. 

Formulation in Terms of Inequality Constraints 
Figure 6-7 illustrates a typical filter design problem. We would like to find 
the (constrained) parameters of a suitable network so that certain passband 
and stopband specifications are met or exceeded. Assuming the approximat-
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FIGURE 6-7 Typical filter design problem (the specifications are 
violated). 

ing function and the specifications are real, let the error functions e. and e1 be 
given by 

so that 

e.(<!>, ,fl) t:,, w.(,{!)[F(<j,, ,{!) - s.(,fl)] 

e,(<I>, ,{!) t:,, w1(,{!)[F(<j,, ,fl) - s,(,fl)] 

e.,( <j,) /:,, e.( <j,, ,{I,), 

e,,(<J,) t:,, e1(<j,, ,{!,), 

(6.47) 

(6.48) 
This is simply a generalization of (6.21), (6.25), and (6.26), where the symbols 
have the same meaning. In the present case of (6.47) and (6.48), the subscript 
u refers to the upper or passband specification, the I to the lower or stopband 
specification. 
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Since approximation in the time and other domains can also be for­
mulated in these terms, 1/1 is used rather than frequency. Furthermore, the 
index sets I. and 11 are not necessarily disjoint. 

The optimization problem can now be specified as: minimize the quantity 
U subject to 

U 2' e.,(<I>), 
U 2' -e,,(cl>), (6.49) 

and also to all other constraints, such as on cl>. Observe that U is an 
additional independent variable. As shown in Figure 6-7 it may be visualized 
as a level or ceiling which is forced down on the deviations e. and -e1 • 

At a minimum at least one constraint in (6.49) must be an equality. 
Otherwise U can be lowered without violation. Further if 

1. iJ < 0, the minimum amount by which the network response exceeds 
the specifications is maximized; 

2. iJ > 0, the maximum amount by which the network response violates 
the specifications is minimized. 

For loss or phase equalization, or time-domain approximation, for exam­
ple, we might have only one specification, namely, S(i/1). To treat these 
special cases we simply drop the subscripts u and I in (6.47) to (6.49) and 
the objective is equivalent to minimizing 

U = max I e,(<1>) I .  (6.50) 
iEl 

The weighting functions in (6.47) serve the following purpose. If one is 
much larger than the other, it emphasizes the deviation associated with it at 
the expense of the rest of the response if the specifications are violated. When 
the specifications are satisfied (we can now set the weighting function 
effectively to infinity if required), effort is switched to the rest of the response. 

Methods for Minimax Approximation 
An approach successfully implemented in optimal filter design [16] and 
reviewed by Waren, Lasdon, and Suchman [17] is to use sequential uncon­
strained minimization. We could, for example, define 

P(cl>, U, r) = U + ,f _L, 
U _w"' ·(<I>) "E'l., em 

+ L, Wu 

,.,, U + eu(<I>) 

+ other terms l (6.51) 
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where the other terms might include parameter constraints. Note that in 
{6.51) the elements of g(<!>) include 

1 - [U - e.;(<I>)] � 0,  iel. 
Wui 

1 - [U + ea(<!>)] � 0, 
Wu 

ie/1 • {6.52) 

Further, it should be remembered that U is an independent variable. The 
appropriate formulations described in Section 6.3 are thus applicable to 
minimax approximation. 

Ishizaki and Watanabe [18] have described a method in many respects 
similar to the more recent one by Osborne and Watson [19], which applies 
linear programming iteratively to achieve a best approximation in the 
minimax sense. Let us concern ourselves with the objective suggested by 
{6.50). This should not, however, be taken to imply that the method is less 
general than the one already outlined. 

Linearizing e;(<!>), which is taken as real, at some point <j,i the problem 
becomes one of minimizing U subject to 

_l__ [U - e;(q,,i) - Vef(q,,i) A<!>'] � 0 
W· 

/ i = l,  2, . . .  , n > k (6.53) 
� [U + e;(q,,i) + VeT(q,,i) A<!>'] � 0 
W; 

and other {linearized) constraints. Noting that the variables for'linear pro­
gramming should all be nonnegative, and imposing a rather practical con­
straint that the elements of <I> should not change sign we have the linear 
program in x � [ x1 x2 · · · xk+ i]r such as to 

minimize U = xk+ 1 

subject to 

±{e;(q,,i) + Vef(<l>i) cp{x2: - c/>1 } :s; x>+I , i = 1, 2, . . .  , n > k [ct,{ x, - ct,{] 
c/>1,x• - cpl, 

x � O  
where 

i = 1, 2, . . . , k. 

(6.54) 
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The solution produces a direction given by !l,j,i. Next we find r,i such that 
max, I e,(<J>i + r,i ll<j,i) I is a minimum, set q,i+ 1 = <jl-i + r,i !l<jl-i and repeat the 
process. For conditions for convergence the reader is referred to the original 
papers (18, 19]. Other linearized constraints can also be considered (14, 15]. 
Clearly such an approach is directly applicable to linear functions such as 
polynomials, for which k + 1 equal extrema results at the optimum. 

Bandier, Srinivasan, and Charalambous (20] have described a descent 
type of algorithm for .minimax approximation which also employs linear 
programming. Basically, the algorithm attempts to find a locally optimal 
downhill direction for the problem of minimizing U, where 

U = maxf,(<j,), (6.55) 

where thef,(<j,) are real nonlinear differentiable functions generally. Lineariz­
ing!,($) and letting 

J ;. {i jf,(<j,) = maxf,(<j,), i El} (6.56) 

we can obtain, at some feasible point <J,i, the first-order changes 
llf,(<J>i) = Vf T(<J>i) ll<jl-i, i E J. (6.57) 

In order for ll<j,i to define a descent direction for max,.,f,(<J,) we must have 
V/T(<J>i) !l<jl-i < 0, i E J. 

Consider 
!l<jl-i = - 2.)/ Vf,(<J>i) 

ieJ 

a{ �  0, 
which suggests the linear program: 

iEJ, 

maximize a!+ 1 � 0 
subject to 

iEJ  

plus (6.59) and (6.60), where it is assumed that J has r elements. 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

Observe that J should be nonempty, and that if J has only one element, 
we obtain the steepest descent direction for the corresponding maximum of 
thef,(<j,). The solution to the linear program provides ll<jl-i. We then find yi 
corresponding to the minimum value of max,., f,(<jl-i + yi !l<jl-i). <ji-i+ 1 is set to 
<jl-i + yi !l<jl-i and the procedure is repeated. 
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In practice, we will not have a set off,(<!>) identically equal to the maxi­
mum value. An appropriate tolerance must, therefore, be introduced into 
(6.56) and a more suitable selection procedure for the elements of J for­
mulated. For further details the original paper should be consulted [20]. It 
can be proved that the algorithm will, if correctly implemented, converge to 
the minimax solution. 

Example 6-1. Figure 6-8 shows an example of minimax approximation 
[21]. The objective was to find 

er 
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U = min / max I p(<j,J) 1 )  
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FIGURE 6-8 Example of constrained minimax approximation. 
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for the 3-section inhomogeneous rectangular waveguide impedance transfor­
mer, where p is the reflection coefficient, and f is frequency in GHz. The 
parameters <I> to be varied were the actual geometrical dimensions of the 
sections. The lower and upper band edges were f, = 5.4 GHz and 
f" = 6.95 GHz. It should be noted that (1) both input and output waveguides 
had different cut-off frequencies so that an exact synthesis was not possible, 
(2) severe constraints were placed on the parameters for a variety of physical 
reasons, (3) discontinuity susceptances could be taken directly into account, 
and (4) the razor search method [22] (See Section 6.6) was employed. The 
reader is referred to Bandier [21] for further details of this type of problem 
and for some other numerical results. 

Example 6-2. Let us consider in a little more detaii the optimization of a 
seven-section cascaded transmission-line filter of the type shown in Figure 
6-9. It is terminated at each end by 

R (ro) - R (ro) - �-3-77== 
g - L - Jl - (J;/f)2 

wheref is frequency in GHz andJ; = 2.077 GHz. The frequency variation of 
the terminations is thus like that of rectangular waveguides operating in the 
H 10 mode with cut-off frequency 2.077 GHz. This interesting problem was 

lg Ii 1, 1i + l  lm+ l  
--- --+- _,.. - -

Rg(W) 
+ + + + 

RL (w) 
Ii 1, lm 

V1 Zo1 v, Zo, 1'i+ 1 
Zom 

Vm+ l  

FIGURE 6-9 Cascaded transmission-line filter between frequency-variable 
resistors. 

1 

previously considered by Carlin and Gupta [23]. All section lengths were 
kept fixed at 1.5 cm so that the maximum stopband insertion loss would 
occur at about 5 GHz. The passband 2.16 to 3 GHz was selected, for which a 
maximum of 0.4 dB loss was specified. The solution obtained by the method 
of Carlin and Gupta was used as the initial design as shown by Figure 6-10. 
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FIGURE 6-10 Comparison between the initial and optimized responses 
of the filter of Figure 6-9. 

As optimized by Bandier and Lee-Chan [24], the problem was to minimize 
max,J,(<I>) where 

f,(<I>) = /½[ J p,(<l>) J2 
- r2

] in the passband 
' \½[1 - J p,(<l>) J2] in the stopband 

[Zo,l <I> = Z:2 

Zo1 

r is the reflection coefficient magnitude corresponding to an insertion loss of 
0.4 dB, and p,(<1>) is the reflection coefficient of the filter at the ith frequency 
point. In particular, 22 uniformly spaced frequencies were selected from the 
passband and a single frequency, namely, 5 GHz for the stopband. The 
appropriately optimized response is shown in Figure 6-10. These results 
have also been reproduced by the method of Bandier, Srinivasan, and 
Charalambous [20], using 

[Zo,l <I> = Zo2 Zo3 
Zo• 

and letting Z05 = Z03 , Z06 = Z02 , Zo1 = Zo, . 
The method used to analyze the filter at each frequency is suggested in 

Figure 6-9. A load current of 1 amp was assumed and a simple ABCD matrix 
analysis was carried out to find all the other voltage and current variables 
shown (V, will, of course, be generally complex and frequency dependent in 
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this case). The appropriate partial derivatives were obtained from one such 
analysis per frequency point, using the adjoint network method (Section 
6.9). 

Conditions for a Minimax Optimum 

To derive some insight into the necessary conditions which a stationary 
point <j,0 must satisfy in a minimax approximation problem [25], let us 
reduce it to the form 

minimize U = <PH, 

subject to constraints of the form 

i = 1, 2, . . .  , m. 

Rewriting the constraints as 

i =  1, 2, . . .  , m, 

(6.63) 

(6.64) 

(6.65) 

allows us to apply the Kuhn-Tucker relations (Section 6.3). Assuming U and 
the!,(<!>) to be differentiable in the neighborhood of <j,0

, we have at <I> =  <j,0 

VU l [ V l 
au m a 

�a,/,, = I u, �a,/,, (</>k+ , -J.(<I>)) 
'f'k+ l  i == l  'f'k+l 

where u is defined by (6.46). But 

VU = V</>k+t  = 0 

au � - = 1 
a<J,k+ , 
a.r.(<I>) = 0 
a<J,k+ , 

(6.66) 

(6.67) 

everywhere. Furthermore, at least· one constraint must be an equality. For 
convenience, assume the first m0 constraints are equalities. Then 

since 
[
O
J = I U

; 
[
-VJ,(<j,0)] 

1 ,-1 1 

i = m0 + 1, m0 + 2, . . .  , m. 

Alternatively, the necessary conditions may be written as 

(6.68) 
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mo 
L U; VJ,(<!>0) = 0 

j::=: 1 

mo 
L:U, = 1 

i=1 

ui � O, i = 1, 2, . . .  , m0 . (6.69) 
An interpretation of these relations is sketched in Figure 6-11. Under the 

conditions of convex programming, the!,(<!>) would have to be convex, and 
the conditions become sufficient for <1>0 to be cf>, the minimax optimum. Often 
m0 will be equal to k + 1, but this is not a general requirement. The reader 
should observe the correspondence between (6.58) to (6.60) for t,.<j,-i = O with 
(6.69). More insight into these relations, in particular as they relate to filter 
problems, should be gained by referring to Bandier (25]. 

"" 

L 
fa(<p) 

'Pl 

t,(,p) / 

/ 
/ 

/ 
{i(,p) 

FIGURE 6-11 Sufficient conditions for a minimax optimum, u1 > 0, 
U2 > 0, U3 > 0. 

6.5 ONE-DIMENSIONAL SEARCH METHODS 
OF MINIMIZATION 

Three main possible reasons spring to mind for investigating the optima of 
functions of one variable. The obvious one is that this might be the problem 
we are given. The second is that the multidimensional method we are using 
may call for a · one-dimensional search for a minimum in some feasible 
downhill direction.* The third is that we may be dealing with an approxima­
tion problem for which the extrema of the error function are required during 
an optimization process. 

* That is, in a feasible direction for which U is decreasing. 



238 Computer-Aided Circuit Optimization 

Powerful methods are available for functions known to be unimodal on 
an interval. We can broadly distinguish two classes, first the elimination 
methods which chop away subintervals not containing the optimum in an 
efficient manner with no assumptions except unimodality; second the 
approximation or interpolation methods which assume the function is 
smooth and well-represented by a low-order polynomial near the optimum. 

Without loss of generality and to simplify discussions we will assume we 
have a function U of a single variable q,. 

Elimination Methods 
At the start of the jth iteration of a search for a minimum of a unimodal 
function suppose we have an interval of uncertainty Ji where, referring to 
Figure 6-12, 

Ji "' u - l (6.70) 
with </>l = u, </>{ = l. Further, we have two interior points </>l = a and </>I = b 
at which we have evaluated the objective function. Let U(a) and U(b) be 
denoted U0 and u, ,  respectively. Note that we take 

u 

u 

-E-[j _ _  -

� I j+ I� 
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1i+I---:;.-

l<a <b <u. 
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-E-
11 � 
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--�-�---"' a b u 

a b u "' 
FIGURE 6-12 Reduction of interval of uncertainty. 

' 
!; , .. 

(6.71) 
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Two conclusions can be drawn: 

1. If u. > u., the minimum lies in [a, u] and Ji+ 1 = u - a. 
2. If u. < u., the minimum lies in [/, b] and Ji+ 1 = b - I. 
The difference between two well-known and efficient methods, the Fibon­

acci search and the Golden Section search, is in how these interior points are 
located. Let us discuss the slightly less efficient but simpler Golden Section 
search method. The reader is referred elsewhere for more detailed accounts 
of the various methods (6, 8, 26). 

Whatever the outcome of comparing u. and u. , we want 
Ji+ l = u - a= b - I, (6.72) 

which is achieved by symmetrical placement of a and b on (/, u]. We want to 
minimize Ji+ l and nse one of the points in our new interval again which 
leads to 

Combining (6.70) to (6.73) 

Ji+2 = u - b = a - I. 

Ji =  Ji+l + Ji+2. 

(6.73) 

(6.74) 
To reduce the interval of uncertainty by a constant factor r at each iteration: 

Ji Ji+ !  

Ji+ l  = Ji+2 = -r. 

Equations (6.74) and (6.75) lead to 
'!"2 = 't" + 1, 

(6.75) 

(6.76) 
the solution of relevance being r = 1/2(1 + js) � 1.618034. The division of 
a line according to (6.74) and (6.75) is called the Golden Section of a line. 

At the jth iteration of this scheme 
. 1 . . 

q,' - - l' + "'' a -
't'

2 'f'l 

. 1 . . 
</>i = - l' + q,/ r 

j = 1, 2, 3, . . . .  (6.77) 

Note that each iteration except the first involves only one function evalua­
tion due to symmetry. Depending on the outcome of the jth iteration, the 
appropriate quantities are set for the (j + 1 )th iteration and the procedure 
repeated. After n function evaluations 

I' - = r"-1  I" (6.78) 
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For a desired accuracy of u, n should be chosen such that 

,-2 < </Jt - rj,f < n- 1 r - -- _ r . 
<J 

(6.79) 

It is readily shown that Golden Section provides an interval of uncertainty 
only about 17% greater than Fibonacci search for large n. The latter method 
also has the disadvantage that the number of function evaluations needs to 
be fixed in advance. 

It is also possible to construct a scheme described by Ternes [15] whereby 
the initial interval of uncertainty does not have to be fixed in advance. This 
scheme has been used with the method of Bandier, Srinivasan and 
Charalambous [20] (Section 6.4). 

Interpolation Methods 
There are several interpolation methods, including quadratic and cubic, 
which are available [8, 26, 27, 28]. A rather straightforward method sug­
gested by Davies, Swann, and Campey [8, 26] will be described here. The 
method does not require a unimodal interval containing the minimum to be 
known in advance, but the unimodality restriction should hold. 

Evaluate U' £ U(q,0 + ,x's) for 
(1.0 = 0  

i 
a'= I 2;- , "· 

j=l 
i = 1, 2, . . .  

where s determines the negative gradient direction, i.e., 
au 
a4> 

s £ -\au\ aq, ,f,=q,O 

(6.80) 

(6.81) 

and 8 > 0, e.g., 1 % of q,0, is a convenient increment. Thus a' is a positive step 
in the direction of decreasing U. When, for some i, 

(6.82) 
evaluate ui+ 1 at 

(6.83) 
It should be clear that we now have four uniformly spaced points on the r,. 
axis, namely, rxi- 2, ai- 1, ci +  1, and ri in order of increasing a. Note that i � 2. 

If 
If 

U((/+ 1) <U(,_xi- 1 ), let a= ai- 1 , b= ai + l , c= ri. 
U(ai+ l) > U(cti- 1), let a= a.i- 2, b = ai- 1, c = ai+ 1. (6.84) 
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It is easily shown that the minimum of a quadratic fitted at a, b, and c is at 

_ b (b - a)(U. - U,) 
C<min - + 2(U - 2U + U )  · a b , 

{6.85) 

Evaluation of U at C<m;n gives the estimate of the minimum and completes 
one stage of the method. A new stage with reduced /j can be started at b or 
1Xmin , whichever corresponds to a smaller U. 

6.6 DIRECT SEARCH METHODS OF MINIMIZATION 
Direct search methods as interpreted by this author are methods which do 
not depend explicitly on evaluation or estimation of the gradient vector of 
the objective function. Such methods have enjoyed fairly wide use in 
network optimization (6, 21, 22, 29]. To what extent they will remain 
competitive, however, in the light of currently available methods of evaluat­
ing derivatives (See Section 6.9), remains to .be seen. 

One of the simplest methods is the one-at-a-time method. As Figure 6-13 
shows, this process basically consists of letting one parameter vary until no 
improvement is obtained, and then another one, and so on. Progress is fairly 
slow on valleys not oriented in the direction of any coordinate axis. 

Minimum 

FIGURE 6-13 One-at-a-time search. 

Obviously we need to consider more efficient methods. Two widely used 
methods will be reviewed, namely the pattern search method of Hooke and 
Jeeves (30] and the simplex method of Nelder and Mead (31]. Other well­
known methods are Rosenbrock's method (32], the Powell-Zangwill method 
[28, 33], and the method of Davies, Swann, and Campey [26]. These methods 
are discussed in some of the general references (1, 6, 8, 26, 34]. 



242 Computer-Aided Circuit Optimization 

Pattern Search 

An advantage the pattern search method has over the one-at-a-time method 
is that it attempts to detect the presence of a valley and align a direction of 
search along it. The tactics employed by pattern search will be explained by 
means of the example shown in Figure 6-14. 

I 
I 

I 

I 

I 
I 

I 

Path of 
discontinuous 

derivatives 

Razor 
search / 

Pattern 
search 

FIGURE 6-14 Following valleys by pattern search and razor search. 

The first base point b1 is taken as the starting point <1>1• A series of 
exploratory moves from <1>1 is initiated to find the second base point. In the 
example, </>1 is incremented leading us to <J>2. Now U2 > U1 so <1>2 is rejected, 
and </>1 is incremented in the opposite direction to <J>3• Exploration with </>1 is 
over. U3 < U1 so <1>3 is retained and exploration with </>2 begins. u• < U3 so 
<1>4 is retained in place of <1>3. The first set of exploratory moves is complete, 
and so <1>4 becomes the second base point b2• In the expectation that our 
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success would be repeated we make a pattern move to <f,5 = 2b2 - b1, which 
is in the direction b2 - b1 . By another set of exploratory moves we try to find 
the most promising point in the vicinity of <f,5. Here, this point is <f,6 which 
becomes the third base point b', since U6 < U4• The search continues with a 
pattern move in the direction b3 

- b2 to <f,9
• 

The pattern direction is destroyed when a pattern move followed by 
exploration fails, as around <f,14• The strategy is to return to the previous 
base point. If the exploratory moves around the base point fail, as around 
<f,9, the parameter increments are reduced and the procedure is restarted at 
that point. The search may be terminated either when the parameter incre­
ments fall below prescribed levels or the number of function evaluations or 
running time have reached upper limits. 

The razor search method ofBandler and Macdonald [22] is a development 
of pattern search suited to direct optimization in the minimax sense without 
using derivatives. The name was suggested by the fact that "razor sharp" 
valleys are, in general, generated by an attempt to minimize functions of the 
form of (6.50). Paths of discontinuous derivatives are found along the 
bottom of such valleys, as indicated in Figures 6-11 and 6-14. 

An investigation of the behavior of pattern search in the optimization of 
cascaded noncommensurate transmission lines acting as impedance trans­
formers between resistive terminations was carried out [29]. It was observed 
that pattern search failed only when a sharp valley whose contours lay 
entirely within a quadrant of the coordinate axes was encountered. In that 
case no improvement was possible by searching parallel to these axes. 

The razor search method makes a random move from a point where 
pattern search fails (assuming a false minimum) and uses pattern search to 
return to the path of discontinuous derivatives. (See Figure 6-14.) When 
pattern search fails again, an attempt is made to establish a pattern in the 
apparent downhill direction and resume with pattern search. The results 
shown in Figure 6-8 were produced by the razor search method [21]. 

An observation worth making here is that manual network optimization 
in the minimax sense, using an interactive system and employing, say, the 
one-at-a-time method, can easily terminate at a false minimum. A false 
minimum in the present context is a point representing a possibly equal­
ripple response but which is not a local optimum in the minimax sense. 

The Simplex Method 
In simplex methods of nonlinear optimization, the objective function is 
evaluated at the k + 1 vertices of a simplex in k-dimensional space. In two 
dimensions, for example, we would have a triangle, for three dimensions a 
tetrahedron. An attempt is then made to replace the point with the greatest 
objective function value by another point. 
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A method having very desirable valley-following properties is the one due 
to Nelder and Mead [31]. The basic move is to reflect the point having the 
greatest function value in the centroid of the simplex formed by the remain­
ing points. If the reflected point results in a function value lower than the · 
current lowest, an expansion is attempted. Otherwise the point is retained if 
it results in a function value lower than the second highest. Contraction is 
attempted if reflection fails. Finally, shrinking of the simplex about the vertex 
corresponding to the lowest function value occurs following an unsuccessful 
attempt at contraction. Some of these moves are illustrated in Figure 6-15. 

An example of the simplex strategy is shown in Figure 6-16. Observe that 
<j,4, <j,6, <j,8, <j,9, and <j,10 have resulted from reflection; <j,5 from expansion; 
and <I> 7 and <j,1 1  from contraction. The reader should follow the strategy 
through carefully to ensure his understanding of it. Its desirable valley­
following properties result from its ability to align elongated simplexes in the 
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FIGURE 6-15 Examples of moves made by the simplex method. 



6.7 Gradient Methods of Minimization 245 

• 

�
�1

......_1 
___ 

2 __ 

FIGURE 6-16 Optimization by the simplex method. 

direction of the valleys. In particular, repeated success, for example, if a long 
straight valley is being followed, tends to increase the size of the moves, 
whereas repeated failure, for example, if a bend in the valley is encountered, 
tends to cause a decrease in the size of the moves. 

It has been claimed to the author on a number of occasions that, unlike 
some other direct search methods, the simplex method can be successfully 
employed for minimax approximation. In the author's experience the sim­
plex method is no less infallible than pattern search, for example. The 
principal fallacy in the argument is the assumption that, if the method 
requires no derivative information, it can necessarily handle problems with 
discontinuous derivatives. 

6.7 GRADIENT METHODS OF MINIMIZATION 
We turn our attention now to a class of minimization methods which require 
derivatives. By and large the most efficient algorithms currently available 
rely on evaluation of the gradient vector [1, 5, 6, 8, 14, 15, 26, 27, 35]. 

Steepest Descent 

At the jth iteration of most gradient methods, we proceed to 
<j,i+ 1 = <j,i + rJ/si (6.86) 

where si is (hopefully) a downhill direction of search and r:t/ > 0 is a scale 
factor chosen to minimize U(<j,i + cxisi). One-dimensional minimization 
methods suitable for this purpose were discussed in Section 6.5. 
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The most obvious choice for si is the steepest descent direction at <J,i, 
defined as follows. Referring back to (6.11), we note that a first-ord.!r change 
in the objective function is given by 

AU = vur A<j,. (6.87) 
If A<j, = as, where a >  0 is fixed and [[sll = l*, then it is easy to show that the 
s minimizing AU is 

vu 
S

= -
IIVU[[ (6.88) 

The s in (6.88) is the negative of the normalized gradient vector. Although 
-VU/IIVU[[ provides the greatest local change, success of the steepest 
descent method is highly dependent on scaling. As Figure 6-17 shows, the 

FIGURE 6-17 A steepest-descent strategy. 

first few iterations may give good reduction in U, but subsequently the 
method usually deteriorates rapidly into oscillations, and progress becomes 
very slow. 

The Newton Method 
This method was already mentioned in Section 6.2 in the context of solution 
of nonlinear equations. Differentiating the Taylor series (6.11) 

VU(<j, + A<j,) = VU(<!>) + H A<j, + · · · . (6.89) 
For <!> +  A<j, to be the minimizing point cf,, VU(<!> + A<!>) should be O so that, 
neglecting higher-order terms, 

A<j, = -u- 1 VU. 

* The expression I I ·  II is the Euclidean norm. It has the form of (6.23) with p = 2. 

(6.90) 
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This incremental change takes us to the minimum in only one iteration if we 
are dealing with a quadratic function (Section 6.2). It is instructive to 
compare (6.90) with (6.19). 

When U is not quadratic, we could try the iterative scheme 

<j,i+ 1 = <j,i - H- 1 VUi (6.91) 
where H- 1 is the inverse of the Hessian matrix at the jth iteration. This 
scheme has, however, several disadvantages. H must be positive definite 
otherwise divergence could occur. In particular, -H- 1 VUi might not point 
downhill. To counteract these possibilities, the modification 

(6.92) 
can be employed where c,i is chosen to minimize ui+ 1• This might also be 
ineffective: c,i may have to be negative; H may be locally singular. Finally, 
the computation of H and its inverse are time consuming. 

Conjugate Directions 

Certain gradient methods which exploit the properties of conjugate direc­
tions associated with quadratic functions and do not explicitly evaluate H or 
its inverse are highly effective. Before discussing them let us define conjugate 
directions. 

The directions u; and U; are said to be conjugate with respect to a positive 
definite matrix A if 

(6.93) 
In Figure 6-18, a two-dimensional interpretation of conjugate directions is 
given. Methods which generate such directions will minimize a quadratic 

<P2 

L�, 
FIGURE 6H18 An illustration of two conjugate directions. 
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function in a finite number of iterations. It is evident that one linear minimi­
zation along each direction in turn locates the minimum. 

Three well-known methods which use conjugate directions are the conju­
gate gradient method described by Fletcher and Reeves [35], the Fletcher­
Powell-Davidon method [27], and the Powell-Zangwill method [28, 33] 
which does not require derivatives (See also references [!, 8]). 

The Conjugate Gradient Method 
The direction of search si is given by [35] 

si = -VUi + [Jisi- 1 

where 
(6.94) 

(6.95) 

and, initially, p0 = 0. Thus the first iteration is in the direction of steepest 
descent. Apart from round-off errors, the procedure will terminate at the 
minimum of a quadratic in at most k iterations. In general, however, it is 
recommended that k + I iterations be completed before restarting the 
procedure. 

The Fletcher-Powell-Davidon Method 
Redefining H as any positive definite matrix, we have [27] 

si = -Hi VUi. (6.96) 
Note that Hi is the jth approximation to the inverse of the Hessian matrix. 
Initially, H0 is the unit matrix, and again we have the steepest descent 
direction. 

H is continually updated using first derivative information such that 
<!ii+ 1 - <!ii = Hi+ 1

gi (6.97) 
where 

gi = vui+ 1 - vui. 
The following updating procedure is used: 

where 
t.<!ii = rt/si, 

HigigiTHi 

gi'Higi 

and r,/ is found by a one-dimensional search (Section 6.5). 

(6.98) 
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Fletcher and Powell prove by induction that if Hi is positive definite then 
Hi+ 1 is also positive definite. H0

, being the unit matrix, is clearly positive 
definite. On a quadratic function it is further proved that Hk is the inverse of 
the Hessian matrix and VUk = 0, apart from round-off errors. Both the 
proof of convergence and success in practice depend on accurate location of 
the minimum in the linear searches. If necessary, H may be reset to the unit 
matrix. 

This method is still generally acknowledged to be the best general purpose 
gradient optimization method. 

6.8 LEAST pth APPROXIMATION 
The material in this section could equally well have been treated under 
gradient methods. It is useful, however, to distinguish between these prob­
lems since special techniques are available for least pth approximation. 

For objective functions in the form of (6.29) and {6.30) we can write 
,;. 

VU = f Re{p I e{cl>, ,t,) i'-2e*{cl>, ,t,) Ve{cl>, ,t,)} d,f, (6.99) 
,;, 

for the continuous case and 

vu = L Re{p l e,{cl>) i'- 2ef(cl>) Ve;{cl>)} {6.100) 
iEJ 

for the discrete case. If the appropriate derivatives, namely Ve, are available, 
we could proceed to optimize with a suitable gradient method {Section 6.7). 

In more complicated situations we can envisage a linear combination of 
functions in the form {6.29) and {6.30), for example, 

U = "'1 U1 + "'2 U2 + · · · . {6.101) 
Simultaneous approximation of more than one response specification might 
be posed in this way (See Section 6.9). The factors "'• , "'2 , etc. would be given 
values commensurate with the importance of U 1 , U 2 , etc. 

Ternes and Zai [15, 36] have extended the well-known least squares 
method of Gauss [6, 8, 14] to a least pth method. Since the former method 
falls out as a special ·case, the latter method will be briefly described. For 
definiteness, assume the objective function is of the form (with real e,(cl>)) 

" 
u = I [e,{ci>W {6.102) 

j:=:: 1 

where n > k and p is any positive even integer. Then 
" 

VU = L Pef- 1 Ve, (6.103) 
je: 1 
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and 

H = V(VUf = I [pef- 1 V(Ve,f + p(p - l)ef- 2 Ve,(Ve;)']. (6.104) 
i=l  

Now assume that the first term may be neglected in comparison with the 
second. This really corresponds to a linearization of e,(<J>). Then 

H "" LP(p - l)ef- 2 Ve,(Ve,f. 
i=l  

This can be rewritten as 

where 
A g  

and 

B g 

Letting 
E �  

(6.103) becomes 

[Ve1 Ve2 

[ ,, 

0 e1 
0 p-2  e2 

0 0 

[ p- 1 e1 p- 1 e2 

vu = pAT€. 

Ve,f 

? l 
p-2 

J 
e, 

ep- 1y " ' 

Using the step given by the Newton method (6.90), 

A<I> = - (p - 1t 1(ATBAJ- 1AT€. 

(6.105) 

(6.106) 

(6.107) 

Under suitable conditions, it can be shown that A<I> points in the downhill 
direction. The modified Newton procedure 

(6.108) 

is recommended where r,/ is chosen to minimize u;+ i. 
Damping techniques similar to those used in the Gauss method are 

applicable [8, 14]. Define, for example, 
" 

U = I [e,(<l>)JP + ). A<j,T A<I>. (6.109) 
i= 1 

Then 
H "" p(p - l)ATsA + UI• (6.110) 
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and 

(6.111) 
It may be shown that the convergence and downhill properties are preserved 
and that for J > 0 the step is no larger than the undamped step. As .< -+ 0 the 
process is undamped, while for J -+ oo the step is in the steepest descent 
direction. The introduction of ai to permit a linear search as in (6.108) is also 
possible. 
Example 6-3. An example of least pth approximation (37] compared with 
minimax approximation is depicted in Figure 6-19. The structure is the 

0.5 
0.4 1--- Passband _ _,_.., 
o.3 Initial 

m 0.2 
'O 
� 0.1 
£ 0 LL...LILL _ _L _ _L=_j_ _ _i C 
j �:� [ lls:h

0aL 
0.2 t 
0.1 

0 I \.,;;;:_"&J L....JL _ _j_ _ _  _L_ _ __[ _ __J 
2 3 

Frequency GHz 
3 4 

Frequency GHz 

30 

FIGURE 6-19 Example of least 10th approximation compared with . 
minimax approximation in optimizing the passband of the filter of Figure 
6-9. 

seven-section cascade of transmission lines acting as a filter discussed in 
Section 6.4. The problem here was to see how small the passband insertion 
loss could be made under the constraints of the problem (if R, and RL were 
frequency independent, or the lengths were allowed to vary, the answer 
would be trivial). 

A least pth objective function was set up with p = 10, using 51 uniformly 
spaced points in the passband. The objective function was of the form 

" 1 
U =  I - l p,(<j,) i". 

i=l p 
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The Fletcher-Powell-Davidon method (Section 6.7) was used, the required 
first derivatives being obtained from one network analysis using the adjoint 
network method (Section 6.9). 

Compare the almost equal-ripple passband response obtained with a 
maximum insertion loss of about 0.1 dB with the equal-ripple response 
(maximum insertion loss 0.086 dB) produced by minimax approximation. 
The latter solution was obtained by Bandier and Lee-Chan (24] using a 
gradient algorithm with quadratic interpolation used to locate the ripple 
extrema. 

The main conclusion to be reached from this example is that acceptable 
results can be achieved with relatively moderate values of p. Unless special 
precautions are taken to avoid ill-conditioning, the use of values of p much 
greater than 10 is discouraged. 

6.9 IBE ADJOINT NETWORK METHOD OF 
GRADIENT EVALUATION 

The adjoint network method can be used to great advantage in evaluating the 
gradient vector of objective functions related to gain, insertion loss, 
reflection coefficient, or any other desired response. A very broad class of 
networks can be treated by this method. As will be seen, no more than two 
complete network analyses are required to evaluate the gradient vector 
regardless of the number of variable parameters. 

Director and Rohrer have discussed the concept of the adjoint network 
and indicated its relevance to automated design of networks in the frequency 
and time domains (38, 39]. In the frequency domain [39], they considered 
reciprocal and nonreciprocal, lumped, linear, and time-invariant elements. 
We will restrict ourselves here to the frequency domain, review Director and 
Rohrer's results, and extend them to least pth and minimax approximation. 
Some uniformly distributed elements will also be included (37, 40]. 

Adjoint Networks And Network Sensitivities 

Let 

. . [:] (6.112) 



6.9 The Adjoint Network Method of Gradient Evaluation 253 

contain all the branch voltages in a network and 

. {; [::] I = : 

i, 
(6.113) 

contain all the corresponding branch currents (using associated reference 
directions*). v and i must satisfy Kirchhoffs voltage and current laws, 
respectively. Then Tellegen's theorem states [ 41] 

(6,114) 

As long as the topologies are the same, v can refer to one network and i to 
another (See the example in Figure 6-20). Let us, therefore, imagine we have 

(j) 

-7 

@,---=-7 -

+ 
® 
+ 

® 

FIGURE 6-20 Illustration of Tellegen's theorem 
applied to two networks of the same topology. Observe 
that 

v7i - 24 +  32 - 70 + 14 - 0. 

Since the nature of the elements is immaterial, they 
are replaced by branches. 

two networks, the original one which is to be optimized and a topologically 
equivalent adjoint network. As mentioned earlier we will confine ourselves 
to a consideration of linear, time-invariant networks in the frequency domain. 
Variables V and I wiHJhus denote phasors associated with the original 

* With associated reference directions, the current always enters a branch at the plus sign and 
leaves at the minus sign. 

j, 
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network, and Vand l the corresponding phasors associated with the adjoint 
network. By Tellegen's theorem 

(6.115) 

where the subscript B implies that the associated vectors contain all corre­
sponding complex branch voltages and currents. Perturbing elements in the 
original network we have 

t,V1Ja = 0 
AIIV. = O 

(6.116a) 
(6.116b) 

since Kirchhoffs voltage and current laws must also be applicable to L', V • 
and Af • .  Subtracting (6.116b) from (6.116a) 

(6.117) 

Figure 6-21 shows N-port original and adjoint elements characterized in 
terms of open-circuit impedance matrices Z and Z, respectively. Letting V, I, 

• • • 
12 

• • 
+ 

V2 
Original VN z 

IN 

+ 

+ v, - • • • 
12 • • 

+ 

v2 Adjoint VN z 

IN 
+ 

J, 
+ v, 

FIGURE 6-21 Original and adjoint elements represented by impedance 
matrices. In general, many such elements suitably connected form the 
original and adjoint networks. 
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V, and I denote N-element vectors containing the relevant port variables 
V =  ZI 
v = zi. 

(6.118) 
(6.119) 

Perturbing the parameters in the original element and neglecting higher­
order terms 

(6.120) 
As indicated by Figure 6-22, the port variables can be thought of as equiva­
lent branch variables, so that, substituting (6.120) into (6.117) we see that 

(IT /J.ZT + !J.ITZT)I - /J.ITV 
reduces to 

if 

• 

/:] I -,_ 

• • • 
• 

Original 

C1 "graph" 

q 
I I , __ ,...,/ • 

(/-:3 \ -
, __ 

• • 

Adjoint 
"graph" 

n_ 
/ ) ' _,, -----

• 
• 

C-) 
/ 

(6.121) 

(6.122) 

FIGURE 6-22 Representation of the elements of Figure 6-21 for 
application of Tellegen's theorem. Some ith equivalent branch might 
consist of an impedance zii in series with voltage generators of value zu Ii , 
j = 1, 2, . . . .  See, for example, Figure 6-25. 
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This defines the adjoint element. Observe that expression (6.121), the only 
term in (6.117) relating to the N-port element, does not contain AI or .1.V. 
Further, note· that the adjoint of a reciprocal element is identical to the 
original, since zr = Z. 

Next define voltage and current excitation vectors and response vectors as 
in Figure 6-23. In keeping with the present notation, the hat " /\ " will 
distinguish the corresponding quantities for the adjoint network. Terms in 
(6.117) associated with the excitations and responses are 

.1.vnv - Aiivv + .1.Vfi, - AI;V, 
which reduces to 

(6.123) 
since .1. V v and .1.11 become zero when the excitations are held fixed. 

Clearly, any network may be thought of as consisting of the interconnec­
tion of a number of multiport elements. Thus, several terms of the form of 
expression (6.121) can appear in (6.117). 

Excitation vector Vv 

Response vector Iv 

Excitation vector 11 

Response vector V1 

FIGURE 6-23 ·· Port excitation and response vectors. 
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For an admittance matrix representation we can show that 
_ yT ,iyTy (6.124) 

corresponds to expression (6.121). yT is the admittance matrix of the 
adjoint. Things are slightly more complicated for the hybrid matrix. If we 
take 

[;J = [! �] [�:], (6.125) 

then the corresponding relation for the adjoint is 

[}J = [ - �: -�;Hr:J - (6.126) 

The expression corresponding to (6.121) can be shown to be 

[VT 1n [
-,1yT 

,iM
T
] [!•] . a bJ  -LlAT LlZT Jb 

(6.127) 

To summarize the results of the above discussion, we note that (6.117) can 
be written in the form 

(6.128) 
where G is a vector of sensitivity components related to the adjustable 
parameters of the network, namely <j,. Equation (6.128) basically relates 
changes in port responses due to changes in element values. 

Figure 6-24 shows the results of a direct application of the formulas 
(6.121) and (6.124) to three commonly used elements. Table 6-2 summarizes 
sensitivity expressions for some commonly used lumped and distributed 
elements. An element consisting of a single branch is simply viewed as a 
one-port element. 

Consider, for example, a uniformly distributed line (Figure 6-25) having 
characteristic impedance Z0 and electrical length 0. Since the element is 
reciprocal: 

- T [
coth 0 

Z = Z  = Z = Zo csch 0 

Invoking expression (6.121) we obtain 

csch 0]· 
coth 0 

JT LiZ'I = JT(Liz [
coth 0 csch 0

] - Z0 Li0 
[
csch 0 coth 0

J )
T

i 0 csch 0 coth 0 sinh 0 coth 0 csch 0 

(6.129) 

= (
LlZo ZI - � [

0 l]zr)\ = LlZ0 V'I
- � yT ro l]I. Z0 smh 0 1 0 Z0 smh 0 L 1 0 

(6.130) 
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FIGURE 6-24 Sensitivities for three common elements: a resistor of 
conductance G, an inductor of inductance L and a voltage-controlled 
current source with transfer conductance llm . 
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FIGURE 6-25 Uniform line and convenient representation. 
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Observe that the sensitivities shown in Table 6-2 depend on currents and 
voltages present in the unperturbed original and adjoint networks. At most, 
two network analyses (using any suitable method) will, therefore, yield the 
information required to evaluate them. Note that if there is no excitation at a 
port, the appropriate source is set to zero. If the response at a port is of no 
interest, the appropriate adjoint excitation should be zero. Elements or 
parameters not to be varied are simply not represented in G or <j,. 

An Application to Minimax Approximation 
Consider the situation depicted in Figure 6-26. Suppose we are given the 
problem: minimize a positive independent variable U subject to 

(6.131) 

where p is the input reflection coefficient, and Qd is a discrete set of frequen­
cies in the band of interest. This problem then is effectively to minimize the 
maximum magnitude of the reflection coefficient over a band [37, 42]. Now 

so that 

V, 

p 
z,, - R

9 = l _ 2R, = l + 
2R,J, 

(6,132) 
Zin + Rg . Zin + Rg Yg 

V/(<I>, w,) = Re{2p*(<j,,jw,) Vp(<j,,jw,)) 

lg 

i, 

= Re(4:,• p*(<j,,jw,) VI.(<j,,jw,)). 

! 

Original 
network 

Adjoint 
network 

(6.133) 

FIGURE 6-26 Possible original and adjoint networks for design on the 
reflection coefficient basis. 



TABLE 6-2 Sensitivity Expressions for Some Lumped and Distributed Elements 

Equation Sensitivity 
Increment 

Element (component 
Original Adjoint (component of G) of <lcj,) 

Resistor V= Rl V= Rl Il 6.R 
l = GV 1 = GV - VV 6.G 

V=jwLl V= jwLl jwll 6.L 
Inductor I I l = - I'V 1 = :-rv - :- VV 6.I' 

jw JW JW 

I I I 
Capacitor V= :-SI V= :-Sl :-Il 6.S 

}W JW JW 

l=jwCV l=jwCV -jwVV 6.C 

Transformer [2] = [_� �] [�,] [2] = [-� �] [�,] v, t + Ii v, iln 

Gyrator V = [ 0 �]1 . [o -�Jr Ii 1, - I, 1, 6.rx V =  
- (X  (X 

Voltage controlled [�,] = [: �] [�'] [�,] = [� -�J [2] V, 1, <lµ, 
voltage source 

Voltage controlled I =  [O �Jv 1 =  [� �·Jv - V, V, Ilg. 
current source Um 
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Current controlled V =  [
O 

�] 1 . [o 
'�] I voltage source V =  

Ym 0 

Current controlled 
[;,·] = � �] [�,] [f'] = [� -�] [�,] current source 

Short circuited uni- V=Zo tanh 81 V=Zo tanh 81 
formly distributed 
line I =  Yo coth 8V l = Yo coth 8V 

Open circuited uni- V=Zo coth 81 V = Zo coth 81 
formly distributed 
line l =  Y0 tanh 8V l= Yo tanh 8V 

same as original 
V

-
[
coth 8 csch 8

] 1 - Zo csch 8 coth 8 network equation but with 

Uniformly � and I 
distributed 
line replacing 

1
_ 

[ 
coth 8 -csch 8

] v V and l - Yo -csch 8 coth 8 
N respectively "' � 

1, l, 

-Ii V2 

tanh 811 
Zo sech' 811 

-coth 8VV 
Yo csch' 8VV 

- -
coth 811 

-Zo csch' 811 

-tanh 8VV 
- Yo sech' 8VV 

-
I 

-V' l Zo 

- -- VT 
· I 

[
O 

sinh 8 I 

I - -1� Yo 

�]t 

- - - F  V 
I 

[
O I

] 
• 

sinh 8 I O  

!,rm 

!,{3 

t,zo 

t,8 

/,Yo 
t,8 

t,zo 

t,8 

/, Yo 
M 

t,zo 

t,8 

/,Yo 

M 
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Lossless 
transmission 
line 

Uniform 
RC 
line 

. 
[
cot ,Bl V = -JZ, csc ,Bl 

. 
[ 

cot ,Bl 
I = -1Y, ,Bl -csc 

as for uniformly 
distributed line 
with 

csc ,Bl
] I cot ,Bl 

-csc ,Bl
] V cot ,Bl 

J R -
Z, = - and 8 = VsRC sC 

same as 
original 
network 
equation 

but 

with 

V and l 

replacing 
V and I 

respectively 

I 
- VT1 
z, 

- _,B_vT[o 
sin ,Bl 1 �] 1 

I 
- -FV Y, 
_ _ ,B_F [O 

sin ,81 I �Jv 

[ . l I - - -
_.!._ T 

sinh 8
1 

ZR V 8 - - - I sinh 8 

- -' f ,;.} 2C V 8 - - I sinh 8 

l!.Z, 

l!.l 

l!. Y, 

!!.[ 

l!.R 

l!.C 
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From (6.128) 

Hence 

so that 

and, finally, 

' T M, v.= G Acl>. 

1 VI, = � G, v, 

V/(cl>, w,) = Re( 4R! p*(cl>, jw,)G(cl>, jw,)). V. v. 

{6.134) 

{6,135) 

{6.136) 

Observe that we are at liberty to set V9 = V. .  If the original network is 
reciprocal so that the adjoint network is identical to the original, we need 
perform only one network analysis to obtain V/(cl>, w,). 

An Application to Least pth Approximation 

It can be shown that if there are nv independent voltage sources and n, 
independent current sources 

G= f v, v1 ,-
nv+nr 
I: 1 , vv,. {6.137) 

i = 1  i=nv+l 

Suppose we are given the objective function [37, 39, 42], 
nv+nr . 

U= J, J
., 

l e,(cl>, jw)IP da,, {6,138) 

where Q defines a frequency range of interest and where e,(cl>, jw) is an ith 
function of the form of {6.21) such that 

F,(cl>, jw) £ (I
,(cl>, j:°), 

V,{ cl>, ]W ), 
i = 1, 2, . . .  , nv 
i = nv + 1, . . .  , nv + n1. 

{6,139) 

Equation {6.138) thus represents a summation of functions of the form of 
{6.101). The specified functions s,( jw) correspond to desired response cur­
rents and voltages. In general, F,(cl>, jw), S,( jw), and hence e,(cl>, jw) may be 
complex. Now, from (6.99) 

nv+nr 

VU = J, J,, Re{p I e,(cl>, jw) 1v- 2w,(w)e7(cl>, jw) VF,{cl>, jw)} dw. 

(6,140) 
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Comparing (6.137), (6.139), and (6.140), we see that if the adjoint network 
excitations are taken as 

i = 1, 2, . . .  , n v  I ("' . ) lp- 2 ( ) *("' . ) /V. (jw) p e1 'Y,JW wi w e1 '¥,Jw = )  -Ii(jw) i = nv + 1, . . .  , nv + n1, 
(6.141) 

then 
VU = f Re{G} dw. 

n 
(6.142) 

The corresponding expression for the discrete case is 

VU = L Re{G} (6.143) 

where n, is the discrete set of frequencies. 

An Application to Group Delay Computation 

In group delay computations we are essentially interested in sensitivities 
with respect to frequency w [ 43]. This parameter is different from others that 
we have considered in that it is common throughout the network. 
Specifically, let us distinguish variables associated with some jth element of 
an n-element network by the subscript j. Then, assuming only w is varied, 
(6.128) can be written as 

(6.144) 

if each element, for complete generality, is characterized by an appropriate 
hybrid matrix. Using the rule that !!.x = (8x/8w) !!.w, where x is any quantity 
depending on w, (6.144) can be more appropriately written 

where 

lly ,.._ OJ. nv+111 ,.._ av, II 

I Vi -a ' - L 1,-' = I Gwj 
i=l (J) i=nv+l aw j=l 

(6.145) 

(6.146) 
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If, in particular, the kth port is to be investigated, and this happens to be a 
current-excited port,* then (6.145) reduces to 

- av, -1,- = ow (6.147) 

if all adjoint excitations except I, are set to zero. Evaluation of the sensitivity 
expression Gru; is accomplished by the results of two network analyses. The 
sensitivity formulas from Table 6-2 may be used if appropriate, since [- oYJ 

ow 
BAT _ _ _  ) ow 

8Mrl [ oY< _ _  ) _ _ _  ) ow oq,, 
azJ = L _ oAJ 
ow , oq,, (6.148) 

where the subscript r denotes some rth parameter in the jth element with 
respect to which a sensitivity expression is already available. 

Consider, for example, 0 = jrol/c = jp[ where c is the velocity of propaga­
tion. Then the ro-sensitivity of a lossless transmission line is jl/c times the 
0-sensitivity shown in Table 6-2. Consider an inductor as a second example. 
The lefthand side of (6.148) reduces immediately to jL using Z = jroL. 

Finally, to compute the group delay TG(ro) we note that 

( / 1 av.\ TG ro) = -Im\ v, aro/' (6.149) 
where it is assumed that all sources have constant, frequency-independent 
phase angles. For convenience, letting the excitation I, = 1/V,, 

TG(ro) = Im(J, 
Gru;l · (6.150) 

Equation (6.150) is also valid for calculations of group delay if the kth port is 
a voltage-excited port.* All one has to remember is to set all adjoint 
excitations to zero except ii", which is set to - 1/J, .  

Extensions and Other Applications 
An important point to remember about the adjoint network method is that 
the analysis of the adjoint, in general, can take considerably less effort than 
the analysis of the original network. If Y, is, for example, the nodal admit­
tance matrix of the original network, and its inverse Y; 1 has been computed, 
then we can use the result (YJt 1 = (Y; 1 f. For a further discussion of 
possible computational efficiency, the reader is referred to Director [ 44]. 

* The value of the excitation could, of course, be zero. 
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Extensions to second-order sensitivities have been formulated [ 45], includ­
ing group-delay sensitivities [ 43]. Of particular interest to filter designers are 
the recent applications of the adjoint network concept to the computation of 
dissipation-induced loss distortion in both lumped and distributed networks 
[46, 47]. Further extensions include the exploitation of the adjoint network 
concept in first- and second-order sensitivity computation using wave vari­
ables rather than voltages and currents [ 48, 49, 50]. These results should 
also be of interest to filter designers. 

6.10 SUMMARY 
A wide range of topics in the field of computer-aided circuit optimization 
has been discussed. Formulations and methods suitable for automated 
design, when the classical approach is inappropriate, have been stressed. The 
formulation of objective functions from design objectives has been discussed, 
including least pth and minimax. Methods of dealing with parameter and 
response constraints by means of transformations or penalties have been 
considered in some detail. Minimax approximation through linear program­
ming and nonlinear programming has been discussed. Efficient one­
dimensional methods and multidimensional gradient and direct search 
methods have been reviewed. Least pth approximation has been considered, 
with emphasis on gradient methods of solution. Finally, the adjoint network 
method elf evaluating derivatives for design in the frequency domain was 
reviewed. 

Most computer centers should have linear programming routines, and at 
least one efficient gradient algorithm, available as library programs, and 
possibly other methods also. It is hoped that this chapter has gone a 
reasonable way towards helping the network designer formulate his prob­
lems effectively so that he can take full advantage of the available computer 
programs. 
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PROBLEMS 
6.1 (a) Prove that !lU is maximized in the direction of VU for a given step size. 

(b) Use the multidimensional Taylor series expansion to show that a turning 
point of a convex differentiable function is a global minimum. 
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6.2 (a) If g(<J,) is concave, verify that g(<J,) ;e O describes a convex feasible region. 
(b) Under what conditions could equality constraints be included in convex 

programming? 
6.3 Find suitable transformations for the following constraints so that we can use 

unconstrained optimization. 
{a) 0 ;;,  ef,1 ;;, ef,2 ;;, · · · ;;, ef,; ;;, · · · ;;, ef,, . 
{b) 0 < / ;;, ef,2/ef,1 ;;, u  

<f,. > 0 

<j,, > 0. 

6.4 Derive {6.99) and (6.100): 
6.5 Derive the sensitivity expression (6.124) from first principles. 
6.6 Derive the entries of Table 6-2 relating to: 

{a) A voltage controlled voltage source. 
(b) An open-circuited uniformly distributed line. 
{c) A uniform RC line. 

6.7 Verify that the adjoint network may be characterized by the hybrid matrix 
description in {6.126). 

• 

6.8 Obtain the adjoint network in terms of an ABCD or chain matrix characteriza­
tion of a two-port. Find sensitivity expressions in these terms for some of the 
entries of Table 6-2. 

6.9 Consider the problem of minimizing 

subject to 
91 = ef,, - ef,l ;e 0 
g, = <f,, ;e 0 
h = (<f,. + <f,,)<f,, - 1 = 0. 

Is this a convex programming problem? Formulate it for solution by the 
sequential unconstrained minimization method. Starting with a feasible point, 
show how the constrained minimum is approached as the parameter r - 0. 
Draw a contour sketch to illustrate the process. Are the conditions for a 
constrained minimum satisfied? 

6.10 For the linear function 
k 

F{<J,, ,ft) =  '[, <f,J;{,ft), 
i=l 

(a) Formulate the discrete minimax approximation of S{,f,) by F{<J,, ,ft) as a 
linear programming problem, assuming (j) to be unconstrained. 

{b) Assuming an objective function of the form of {6.102), derive VU and H 
{Note that a polynomial is a special case). 
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6.11 Verify (6.137). 

6.12 Formulate the design of a notch filter in terms of inequality constraints, given 
the following requirements. The attenuation should not exceed A1 dB over the 
frequency range O to w1 , and A2 dB over the range w2 to w3 , with O < w1 < 
w2 < w3 • At w0 , where w1 < w0 < w2 , the attenuation must exceed A0 dB. 

6.13 Devise an algorithm for finding the extrema of a well-behaved multimodal 
function of one variable (Figure 6-2), such as the passband response of a filter. 

6.14 Discuss the scaling effects of the transformation <f,, = exp <f,, (Table 6-1). 

6.15 (a) Are the necessary conditions for a constrained minimum satisfied anywhere 
along the boundary of the feasible region in Figure 6-1? 

(b) What about the conditions for a constrained maximum? 

6.16 Suppose we have to minimize 

U = L [L(w,) - S(w,)]' 
w,-en.s 

where L(wi) is the insertion loss in dB of a filter between Rg and RL , S(wd is the 
desired insertion loss between Rg and RL , Q.d is a set of discrete frequencies w,, 
and p is an even positive integer. Obtain an expression relating VU to G(jw,) 
where the elements of G might be as in Table 6-2. Assume convenient values for 
the excitations of the original and adjoint networks. 
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