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TABLE I11 

Iteration K $1 KM JD 
A 

1 
2 

601.0  0.025003 2.0 0 

3 
200.4  0.015567 2.0 

66.8  0.007426 2.0 
1 
1 

4 
5 

133.6  0.012181  1.0 
89.0  0.009207  0.5 

-1 
1 

6  111.3  0.010786 0.25 -1 
7 98.9  0.009933 0.125 1 

Finally,*for Case 5, 6 was u>specified. The  initial 
estimate 6 1  was 0,002655  or K = 26.55. I t  required 
ten  iterations  for 6 2  to  be within 1 percent of h 2 .  The 
run  time  for  this case  was about 1.0 s. 

Summary 

An optimal  FIR low-pass filter can now be designed 
where any  four of the five parameters N ,  Fp  , F,, t i1,  

and t i 2  are  specified, and  the remaining  parameter is 
chosen so as to  meet or exceed  specifications on all 
gven parameters. A set of simple,  approximate  for- 
mulas  was  given for  obtaining initial  estimates of the 
unspecified parameter.  Finally, simple iterative rules 
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were  given for varying the unspecified parameter  from 
its  initial  estimate so as to meet input specifications 
to  within  a given tolerance. 
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I. Introduction 

Two main approaches have  been taken to approxi- 
mation  problems in digital filter design. The  first of 
these is an analytical  approach  through classical ap- 
proximation  theories [ 11 -[3]. The second is an 
iterative  approach that is particularly  appropriate for 
use on a digital computer [4] -[6] . Sablatash [ 71 dis- 
cussed many contributions  to  both approaches. 

Haykin [3] presented  a  unified treatment of re- 
cursive digital filtering  by using the  convolution 
integral to derive an  integro-difference  equation for 
defining the  input-output relation of a  linear  time 
invariant  filter.  Then he used that  equation  to  obtain 
various analog-to-digital  filter  transformations for  the 
digitization of a continuous transfer function, with 
each transformation  corresponding  to  a specific way 
of approximating  the  continuous  time  excitation. 

An iterative method  for designing recursive digital 
filters  with  arbitrary prescribed magnitude  character- 
istics .was described  by Steiglitz [4]. The  method 
uses the Fletcher-Powell algorithm [ 81 to minimize a 
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niques for determining the coefficients of digital filters 
that have equiripple or minimax errors. Deczky [6] 
outlined  a  method  for  the design of recursive digital 
filters using a weighted minimum p-error  criterion. 
The largest value of p tried was reported  to have been 
40, but  the largest p shown in the given examples 
seemed to be 10.’ 

A new and  practical  approach to computer-aided 
design optimization was presented by Bandler and 
Charalambous [9].  Central to  the process was the 
application of least pth approximation using ex- 
tremely large values of p, typically 1000 to 1 000~000. 
I t  was shown  how  suitable  and  reasonably well- 
conditioned objective functions  could be formulated, 
gving particular emphasis to  general approximation 
problems 3, for example, in filter design. I t  was 
demonstrated  how easily and  efficiently  extremely 
near minimax results  could be achieved on a discrete 
set of sample points. 

This  paper describes the application of the Bandler- 
Charalambous method  for choosing the coefficients 
of a recursive digital filter to meet  arbitrary specifica- 
tions of the magnitude characteristics. The local 
optimality of the least pth solution is checked by 
perturbation. ‘The order  complexity of the  filter can 
be increased through growing of filter  sections to meet 
the prescribed specifications. A pole inversion techr 
nique [4] to  meet  the stability  requirements is also 
implemented;  A  comparison is made  between the 
Fletcher-Powell method [8] and  the more  recent 
Fletcher  method [ lo ]  in, conjunction  with  the appli- 
cation of least pth optimization to a recursive digital 
filter design example. An example where effectively 
negative values of p were used is also presented. 

II. Description of the Problem 

Suppose that  upper  and/or lower bounds on  the 
magnitude  characteristics of a recursive digital filter 
are prescribed at  a  discrete set of frequencies f l  , 
f i  , . . . , f,,, . These correspond to a discrete  set of 
values of the variable z evaluated on the  unit circle 
in the z domain: 

Z .  = ejdJin , i = l , Z , . . . , r n  (1) 
where 

$. = 2f.  2 , i = l , Z , . . . , r n  ( 2 )  
f, 

and f, is the sampling frequency. 
The  transfer  function of a recursive digital filter is 

chosen usually to be either of the cascade form  or  the 
parallel form [ 51 , namely, 

All the poles of the transfer  function  should lie within 
the  unit circle in the z domain in order  that  the filter 
be stable. 

I I I. Problem Formulation 

Find  the n-dimensional parameter  vector $ = 
[ a l b l c , d l a 2 b 2 c 2 d 2  - . . A I T ,  where n = 4 K +  1, to 
minimize an appropriately  chosen  objective  function 
comprising real error  functions  related to  the  upper 
and lower specified bounds, 

Definitions 191 
the  approximating  function ( F ( 9 ,  $ )  = 

an  upper specified function (desired re- 
sponse bound); 
an artificial  upper specified function; 
a lower specified function (desired re- 
sponse bound); 
an artificial  lower specified function; 
an  upper positive weighting function; 
a  lower positive weighting function; and 
margin of errors  with  respect to  the  arti- 
ficial and desired specifications. 

IW9, z )  I ); 

All the  functions will be evaluated at a  finite  discrete 
set of values of $ taken  from  one  or  more closed in- 
tervals. Therefore we define  the  functions 

A 
e;i($, 4 )  = e ; ( $ ,  $i, 4 ) ,  i E  JU (11) 

eIi($, t ; )  ’ e;($,  $i, 41, i E I L  (12) 

where I ,  and I ;  are  appropriate  index  sets  related to 
all the specified discrete frequencies. 

The following objective function proposed by 
Bandler and  Charalambous r91 will be  used: or 



462 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, OCTOBER 1973 

Differentiating the objective function we get i = l , 2 , . . . , m .  and k = l , . - . , K .  

.( iEK, 

r. 

If the transfer  function is chosen to be of the cascade Using either  one of the  two  forms of the transfer 
form we get function,  we-get 
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IV. Stability Constraints 

Suppose that H ( z )  has  a  pole at z = zp located  out- 
side the  unit circle in the z domain, such that 

Consider the  function 

(33) 

(34) 

where the asterisk denotes  the complex  conjugate, 
and  where I Q(z, ) I = I z, I when I z I = 1. Let 

H ' ( z )  = H ( z )  X Q(z, ) = -. N z )  
1 

2; 

(35) 
z -  - 

Hence, the inversion of real or complex  conjugate 
pairs of poles of the ,transfer  function  with  respect to 
the  unit circle in the x domain is equivalent to multi- 
plying the transfer function by a  particular all-pass 
function, implying that  the inversion of such poles of 
the transfer function with  respect to  the  unit circle 
does not  affect  the shape of the magnitude charac- 
teristics.  Thus, all such poles that  do  not lie within 
the  unit circle in the z domain can be  inverted  with 
respect to  the  unit circle to ensure the stability o'f the 
filter. I t  is to be noted  that  the magnitude  character- 
istics of the  stable  filter should  be divided by  the 
magnitude of each inverted  pole, that is, if there  are r 
poles zpI, * . . , zpr  that  do  not lie within the  unit 
circle in the z domain,  then,  after  their inversion, 
we get 

t 36) 

V. Description of the Program 

A general computer program package CADRDF 
was developed utilizing the  aforementioned ideas. 
The user should specify the desired form of the trans- 
fer  function,  the initial  number of second-order  filter 
sections, the maximum  acceptable  number of filter 
sections, the required precision, and  an  option  for 
local optimality  checking  either  by  perturbation of 
the parameters or  by increasing and  then restarting 
the  optimization process. The user should also specify 

sponse, the discrete  set of frequency  points,  and  the 
required  optimization  algorithm  (Fletcher  method 
[ 101 or Fletcher-Powell method [8] ). 

Starting  with  the initial  number of filter  sections, 
the coefficients of the digital filter  are evaluated by 
minimizing the objective function (13) using the 
chosen optimization  algorithm. It  is to  be noted  that 
the value of p is increased successively, and  the 
optimization is carried out  for each subsequent value 
of p ,  until  the  absolute value of the relative change in 
maximum  error 

becomes less than some small quantity  (taken  to be 
0.001). To ensure the stability of the  filter a  stability 
checking is provided whereby all the poles that  do 
not lie within the  unit circle in the z domain  are  in- 
verted  with  respect to  the  unit circle, as discussed in 
Section IV. 

Local optimality of the  solution is checked by 
either  perturbing  or increasing .$, restarting the  opti- 
mization process using the highest attained value of 
p and comparing the solutions  before  and after 
perturbation. I t  is to  be noted  that a  minimax  opti- 
mum will not be  affected by increasing E [ 111 . 

If the specifications  are not satisfied and the maxi- 
mum specified number of second-order  filter  sections 
has not been exceeded,  a  second-order  filter  section 
is grown by increasing the  number of the  independent 
parameters n by 4, assigning a starting value of zero 
for each of the grown filter  coefficients a k ,  b, , c k  and 
dh , then repeating the whole design process. 

VI. Examples 

Example 1 

Consider the design of a low-pass digital filter of 
the cascade form whose ideal magnitude  response is 
specified by 

1 J / E W ,  

0 J / E W s  
ideal magnitude response = 

where W, = [O.O, 0.091 is the passband and W, = 
[0.11, 1.01 is the  stopband. 

Let 

Sut$ )  = f a $ )  = 1 $ E w p  

Sa($)= 0 $ E Ws 
wu($) =wz(+) = 1 $ E w, u w,. 

All the  functions of $ will be evaluated at a  finite 
discrete set of values of 9 taken  from  the closed in- 

the  upper  and lower  bounds  on  the magnitude re- tervals W, and Ws as follows: 
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TABLE I 
Results for Example 1 Using One  Section 

Number of Function 
Evaluations 

Fletcher  Fletcher-Powell 
9 = P  Maximum Error Objective  Function  Solution $ Method  Method 

-1.672551 
1 

2  0.446136 0.905656 -1.790717 
0.850218 
0.151727 

106 393 

-1.799881 

10 0.278126  0.308162  -1.831101 
1. 

33  
0.889290 
0.221937 

68 

-1.815636 

100 0.248415  0.251337  -1.836826 27 97 
1. 

0.895616 
0.240215 

- 1.816441 

1000 0.246809  0.247100  -1,837210  37  48 
1. 

0.896016 
0.241345 

-1.816464 
0,999999 

0.896054 
0.241338 

10000 0.246713  0.246741  -1.837254  29  38 

rl, = 0.0, 0.08 (0.01) SU(&)  = S,(Gi) = 1 i = 1,. . . , 9 

rl, = 0.0801, 0.09 (0.00045) SU($+) = Sl(rl,i) = 1 i = 10, . . . , 32 

9 = 0.11, 0.2 (0.01) S u ( $ i )  = 0 i =  33;. . 7 42 

rl, = 0.3, 1. (0.1) S U ( $ i )  = 0 i = 43, . . . , 50. 

Using a  second-order  filter  section of the cascade 
form $J = [ a ,  blc ld lA]* .  A  starting point $Jo = 
[0 0 0 - 0.25 0.1]* was taken.  Test  quantities  for  the 
Fletcher  and Fletcher-Powell methods were and 
,$ = 0. 

Optimization using both  the  Fletcher  method  and 
the Fletcher-Powell method in  accordance  with the 
aforementioned ideas has given the results  shown  in 
Table I. Growing another  filter section  and  restarting 
the  optimization process has given the results  shown 
in Table 11. The  magnitude response is depicted  in 
Figs. 1 and 2, where the passband response is shown 
in Fig. 1 and  the  stopband response is shown in Fig. 2. 
The pole-zero configuration is shown  in Fig. 3. 

It is to be noted  that 201 equidistant values of rl, 
were used for response  evaluation  and  plotting in 
each  frequency  band. Local optimality checking was 
provided through  perturbation of i, namely, replacing 
the  obtained  solution by l . O O O l $  and  restarting the 
optimization process. The  results  are shown in 
Table 111. 

Discussion 
The results of the low-pass filter  reported  by Steig- 

litz [ 41 were reproduced using the package CADRDF 

(taking  the transition region specification into ac- 
count). However, using the  set of sample points given 
by Steiglitz in the  optimization process and  then 
evaluating the magnitude response of the  obtained 
solution at  201 equidistant values of rl, in the pass- 
band  and, similarly, for the  stopband, an error peak was 
detected in the interval [0.08, 0.091 that was not 
taken into  account by the previous scheme of speci- 
fied sample points.  The passband response is de- 
picted in Fig. 4  and  the  stopband response is de- 
picted  in Fig. 5. 

From  the results of Table I, it can be seen that  for 
this  example, the  Fletcher  method was more  efficient 
than  the Fletcher-Powell method in the sense that  it 
required  a smaller number of function  evaluations to 
produce  the solution. When the  number of  inde- 
pendent variables was increased to 9 through growing 
the second-filter  section, the Fletcher-Powell method 
was remarkably slower than  the Fletcher  method, as 
it ran into  time  limit  without yielding even the least 
squares solution, while for  the same specified time, 
the  Fletcher  method gave the least 10 000th solution. 

As the magnitude  response was specified on  a 
closed continuous interval, it was plotted along the 
specified closed continuous interval in Figs. 1 and 2. 



BANDLER  AND  BARDAKJIAN: OPTIMIZATION OF RECURISVE  FILTERS 46 5 

TABLE I1 
Results for Example 1 Using Two Sections 

Number of Function 
Evaluations Using 

4 = P  Maximum Error Objective Function  Solution $ Fletcher Method 
-1.858902 

0.999999 
-1.864459 

0.945603 

0.999999 
-1.739599 

0.775075 
0.028496 

-1.870517 
0.999999 

-1.872787 

2  0.094612  0.183426  -1.304232  130 

10 

100 

1000 

10000 

0.046434 

0.043999 

0.043639 

0.043610 

0.055707 
0.952596 

-1.480946 
0.999999 

-1.750330 
0.785957 
0.040564 

1. 

0.953359 

1. 

0.787578 
0.043228 

-1.870747 

-1.874085 
1. 

0.953433 
-1.520148 

0,999999 
-1.752504 

0.787952 
0.043373 

-1.870741 
0.999999 

-1.874095 
0.953439 

-1.520276 

-1.870794 

-1.873968 

-1.517114 

-1.752070 

0.044486 

0.043688 

0.043614 

-1.752557 
1. 

0.787996 
0.043369 

80 

58 

49 

52 

normalized frequency 

Fig. 1. Magnitude characteristic of  the passband of  the low- 
pass filter of Example 1. 
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I 
normalized frequency 

Fig. 2. Magnitude characteristic of  the stopband of  the low-pass filter of Example 1. 

Fig. 3. Pole-zero configuration for the  low-pass filter of 
Example 1. 

TABLE I11 
Local Optimality Table for Example 1 

Absolute Differences 
Solution 3 Starting Point Solution b* in Ctmponents  of 

Before Perturbation After Perturbation After Perturbation @ and $* 

-1.870741 - 1.870928 -1.870741 
0.999999  1.000100 1. 10-6 

0.0 

0.0 
0.953439 0.0 

-1.874095 -1.874283 

-1.520276 -1.520428 -1.520280 4 x 10-6 

-1.752557  -1.752732  -1.752557 

0.953439 
-1.874095 

0.953534 

1. 1.000100  1.000004 4 x  10-6 

0.787996 0.788075 0.787996 
0.0 

0.043369  0.043373 0.043368 10-6 
0.0 

Maximum Error 0.043610  0.046658 0.043610 0.0 
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.95 I 
0 .09 

normalized frequency 

Fig. 4. Magnitude  characteristic of the more densely sampled 
passband of the low-pass filter given  by Steiglitz [ 41. 

Y 

01 I 
I 

norrnolized  frequency 

Fig. 5. Magnitude characteristic of the more densely sampled  stopband of 
the low-pass filter  given by Steiglitz [ 41. 

Example 2 
Consider the design of a low-pass  recursive digital 

filter of the cascade form,  for  a 10-kHz sampling rate, 
whose upper and lower magnitude response bounds 
are specified by 

f = 0, 900 (100) S,( f )  = 1.1 S , ( f )  = 0.9. 

f = 1200 S,( f )  = 0.1 

f = 1500, 5000 (500) S, ( f )  = 0.1 
The specifications can be prescribed in terms of $ 

as follows ($  = 2 f / f , ) :  

Using a second-order recursive digital filter section, 
the same starting point as that used  by Suk and 
Mitra [ 121, namely, 9' = [0 1 - 1 0.5 0.1IT was 
taken. Weighting factors, test  quantity  for  the Fletcher 
method and were as in Example 1. 

Optimization using the Fletcher method gave the 
results shown in Table IV. Growing another filter 
section from the one section locally optimum solu- 
tion and restarting the optimization process has given 
the results shown in Table V. 

The magnitude response is depicted in Figs. 6 and 
7, where the passband response is shown in  Fig. 6, 

J ,  = 0.0, 0.18 (0.02) S,( i i )  = 1.1 Sl(\Li) = 0.9 i = 1 , .  * . , 10 

9 = 0.24 s, (&) = 0.1 i =  11 

$ = 0.3, 1  (0.1) S, ($J~)  = 0.1 i = 12. . * . , 19. 
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TABLE IV 
Results for Example 2 Using One Section 

Number of Function 
Evaluations Using 

4 = P  Maximum Error Objective Function  Solution 4 Fletcher  Method 

-0.858152 

2  0.192456 0.244387 -1.500265 
1. 

0.709050 
0.157547 

10 0.109918 

-1.147287 

0.121980 
0.999999 

-1.540582 
0.759644 
0.206694 

44 

60 

-1.165964 

100 0.101718  0.102881  -1.544701 
1. 

0.764404 
0.210503 

27 

1000 0.101302 

10000 0.101273 

-1.166416 
0.999999 

0.101417  -1.545169 
0.764763 
0.210425 

-1.166418 
1.000001 

0.101282 -1.545223 
0.764801 
0.210399 

43 

24 

and  the  stopband response is shown in Fig. 7. The 
pole-zero configuration is shown in  Fig. 8. 

Discussion 

The sign  of q was positive so long as the magnitude 
response did not lie within the specified bounds, but 
a change of  sign  of q to negative, occurred, when the 
specifications were met,  but  that  did  not  stop  the 
optimization process as it went  on to produce  a locally 
optimum  solution for  the case when the specifications 
were met. As the magnitude response was initially 
specified at a  discrete  set of frequency  points, the 
magnitude response of the final  solution was con- 
sidered only at  that discrete  set of frequency  points 
as shown in Figs. 6 and 7. Increasing the value of E 
did not  affect  the least 10 000th solution. 

The  results  shown  in Tables I-V are  computed  on 
the basis that  the least  squares  solution is used as a 
starting  point to obtain  the least 10th solution,  then 
the least 10th solution is used as a  starting point  to 
obtain  the least 100th  solution,  and so on. 

Vll. Conclusions 

The application of the Bandler-Charalambous 
method using extremely large values of p ,  typically 
10 000, to recursive digital-filter design problems 
yields reasonably  well-conditioned objective func- 
tions. Effectively negative values of p can be used to 
obtain  the coefficients of a recursive digital filter  that 
meets or exceeds the prescribed specifications. The 
use of the  Fletcher  method in conjunction  with  least 
pth optimization seems to be more  efficient  than that 
of the Fletcher-Powell method. 

Local optimality of the least pth solution may be 
checked by perturbing the  obtained  solution  or  in- 
creasing ( and  then  restarting the optimization  pro- 
cess. Stability  requirements of the  filter  transfer 
function  can be met by using a pole inversion tech- 
nique. The  order  complexity of the  filter can be in- 
creased by growing of filter sections. 

The  results of Examples 1 and 2 indicate that  the 
zeros of the transfer  function  tend to lie on the  unit 
circle in the x domain.  Thus, it seems that  the effi- 
ciency of the  computation may be improved by  using 
a  starting  or  fixed value of 1 for each of the filter co- 
efficients b,, where k = 1, . . . , K .  
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TABLE V 
Results for Example 2 Using Two Sections 

~ 

Number of Function 
v Evaluations Using 

a = -v Maximum Error Objective Function  Solution 4 Fletcher Method 

-2  

-10 

-100 

- 1000 

-0.062826 

-0.068650 

-0.073797 

-0.074321 

-10000 

-0.016925 

-0.059397 

-0.072980 

-0.074369 - 

-0.074240 

-1.412375 

-1.575303 
1. 

0.882915 

0.999999 
0.618033 

-1.430463 
0.562704 
0.026034 

1. 

0.885035 
0.082835 
0.999999 

- 1.438495 
0.570015 
0.032027 

-1.404770 
0.999999 

-1.584958 
0.888081 

-0.207829 
0.999999 

-1.453960 
0.582477 
0.035615 

1. 

-1.407856 

-1.578990 

-1.404186 

-1:585726 
0.888448 

-0.226099 
0.999999 

-1.456176 
0.584152 
0.035719 

-1.404118 

0.999999 
-11456438 

0.584344 
0.035707 

182 
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Fig. 6. Magnitude characteristic of the passband of the low-pass filter of 
Example 2. 
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Fig. 7. Magnitude characteristic of the  stopband of the  low- 
pass filter of Example 2. Fig. 8. Pole-zero configuration  for  the low-pass  filter of 

Example 2. 

] A. G. Deczky, “Synthesis of recursive di ita1 filters 
using the  minimum  p-error  criterion,” I 8 E E  Trans. 
Audio  Electroacoust, ,  vol. AU-20,  pp.  257-263,  Oct. 
1 nvo 

rithms,”  Comput. J . ,  vol. 13,  pp.  317-322, Aug. 1970. 
J. W. Bandler and C. Charalambous,  “On  conditions,For 
optimality in  least pth  approximation  with p + 00, J.  

M. Suk  and S. K. Mitra, “Computer-aided design of 
Optimiz. Theory  and Appl., to be  published. 

digital filters  with  finite word length,” IEEE  Trans. 
Audio  Electroacoust.,  vol. AU-20,  pp.  356-363, Dec. 
1972. 
J. R. Popovid and J. W. Bandler, “A general program for 
discrete  least pth  approximation,” IEEE  Trans.  Micro- 
wave  Theory  Tech., to be published. 
J. R. Popovid, J. W. Bandler, and C. Charalambous, 
“General prqgrams for least p th  and near minimax  ap- 
proximation, Int .  J.  Syst.  Sci.,  to be published. 

13 14. 

] M. Sablatash,  “The  state of the  art in approximation 
techniques  for digital filter design,”  presented at  the 
1971  Symp. Digital Filtering, Imperial College of Science 

[8  J R. Fletcher  and M. J. D. Powell, A rapidly  convergent 
and  Technology,  London, Aug. 31‘;Sept. 2,  1971. 

descent method  for  minimization,”  Comput. J. ,  vol. 6, 
pp.  163-168,  June  1963. 

[9]  J .  W. Bandler and C. Charalambous,  “Practical  least p th  
optimization of networks,” IEEE  Trans.  Microwave 
Theory  Tech. ,  vol. MTT-20,  pp.  834-840, Dec. 1972. 

[ l o ]  R. Fletcher.  “A new approach to variable metric algo- 

Correspondence 

On the Stability of Two-Dimensional Digital Filters I 21 I = 1. Using a  theorem  due  to Ansell [ 31, Huang suggested 
a  procedure  that  reduces  the  amount of computation needed 
to check the  stability of two-dimensional filters. 

In this correspondence  a new method is proposed to check 
the  stability of two-dimensional  filters. In  this  method  the 
Jury  table is modified to examine  the  roots of polynomials 
with  complex coefficients, and  then is used to check the first 
condition of Huang’s theorem.  The  amount of computation 
needed for this  method is comparable  to  that needed when 
using the  procedure suggested by Huang. However, the  pro- 
posed method has the advantage that all determinants used in 
computation  are of the dimension two, while Huang’s method 
uses determinants of an  order up to  the  order of the  filter.  For 
the  sake of comparison,  the same  examples solved by Huang 
are solved here by the  proposed  method. 

G. A. MARIA and M. M. FAHMY 

Abstract-This correspondence  proposes  a  method to check 
the  stability of two-dimensional recursive filters. In  this 
method  the  Jury  table  is modified and used to  check  the  first 
condition of Huang’s theorem.  Some  examples  are solved to 
illustrate  the  method. 

I. Introduction 

The  stability of two-dimensional recursive filters was first 
studied by Shanks [ 11. He introduced  a  theorem which calls 
for mapping all the  points 1 2 1  1 < 1 into  the  Z2-plane  under 
the  function B ( Z 1 , Z z )  = 0, where B(21, 2 2 )  is the  denominator 
of the  transfer  function of the recursive filter. Huang 121 
simplified the above theorem by  showing that  it is sufficient 
to examine the  mapping  on  the  boundary of the  unit circle 

II. The Main  Result 

Huang’s criterion  for  studying  the  stability of two- 
dimensional  digital filters can be stated as follows. 

Huang’s  Theorem: A causal filter with  a  2-transform H ( Z l ,  
2 2 )  = A(Z1, Zz)/B(21,  2,) where A ,  B are polynomials, is 
stable if and  only if: 1) the  map of ad1 & (21; 121 1 = 1) in the 
2 2  plane,  according to B(21, 2 2 ) ,  lies inside d z  = A (Z2; 
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