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New Algorithms for Network Optimization

CHRISTAKIS CHARALAMBOUS, MEMBER, IEEE, AND JOHN W. BANDL13R, MEMBER, IEEE

Abstract-Two new alogrithrns suitable for computer-aided op-
timization of networks are presented. They &e both based on the
nonlinear least @th approximation approach, which has been success-
fully applied by the authors to microwave network design problems

requiriig miniiax or near-minimax solutions. A basic cliff ~rence here
is that, instead of requiring very large values of p, any fimte value of
p greater than 1 can be used to produce extremely accurdte miniiax

solutions. This paper discusses a six-vatiable transformer example

where values of p equal t~ 2, 4, 6, 10, 100, 1000, and 1() 000 have all

been used separately to obtain substantially the same solution. Both

the adjoint network method for gradient evaluation and the Fletcher

method are employed for greater efficiency. Comparisons with the

razor search and grazer search methods are made. Some far-reach-
ing observations concerning tilmax design are also made.

I. INTRODUCTION

T

HE authors have already presented a justification of

the use of least @th approximation techniques with

large values of P for computer-aided network design

[1]. They showed that the use of a fairly well-conditioned ob-

jective function with efficient gradient minimization methods

such as the method by Fletcher [2] and the adjoint network

method for gradient evaluation [3], yields very near minimax

designs with little computational effort.

The present paper exploits all the advantages of that ap-

proach in presenting two new algorithms for practical mini-

max approximation. A basic difference in these algorithms is

that, instead of requiring very large values of P, any finite

value of p greater than 1 can be used to produce minimax solu-

tions.

The paper discusses a six-variable example (namely, a

three-section transmission-line transformer) where values of

P equal to 2, 4, 6, 10, 100, 1000, and 10000 have all been used

separately to obtain substantially the same solution. -A com-

parison with other methods already known to microwave engi-

neers is made. The Fletcher minimization method is used

throughout. The advantage of the new algorithms is a combi-

nation of efficiency and flexibility which, it is believed, has

not been previously enjoyed by computer-aided circuit de-

signers.

1I. THE NEW ALGORITHMS

Most of the notation to be used here is the same as in a

previous publication by the authors [1].

We denote by F(O, ~) the approximating function or net-

work response, as indicated in Fig. 1. @ is a vector containing
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Fig. 1. An approximation problem where the response specifications
are violated and the weighting factors are unity.

the k independent variables, and ~ is an independent variable,

for example, frequency. .Su(~) and .S’1(~) are upper and lower

response specifications. ~, as indicated in Fig. 1, is an artificial

margin which plays an important role in the algorithms to be

described. It is used to shift the error functions eu(+, ~)

@u(~)(F(@, 4) –s,(*)) and ed~, 1) 4AZOZ(*)( F(+, 1)

–.SZ(~)) to obtain e~’(rj, ~, $) ae~($, ~) –g and et’(~, #, &)

Qed@, 4) +$, respectively, where w,,(4) and w~(#) are ap-
propriate weighting functions.

As usual, we will sample the various functions to obtain,

for example, eti,(~) ~e~(r$, ~J for i ●1,, and e~i(~) A:ez(+, i;)

for i = lz, where the sets 1,, and lZ correspond to appropriate

sample points. We also assume that these error functions are

differentiable and that an optimum exists.

Algordhm 1

Stefl 1: &min [0, 11,(+0) +c], where ~“ is the starting

point, e is a small positive number, and

Step 2: 7+-1.

Step 3: Minimize with respect to ~ the function



where

and

IEEE TRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1973

TABLE I

THE STARTING POINTS m THE OPTIMIZATION OF A THREE-SECTION

10:1 TRANSFORMER OVER 1OO-PERCENT RELATIVE BANDWIDTH

Parameters Problem 1 Problem 2

+;

(2)

(3)

(4)

Wq
1.0 0.8

% 1.0 1.s

1.0 1.2

22 3.16228 3.0

1 /l
) 3q 1.0 0.8

.-.
>0 then l< P<co, K.~{i\ eti;(o)>r,z~f~)

and K~e{i I –eZi(@)>i?, i=~tj (5)

<O then I<p< co, K.bI., Kz+Iz.

Step 4: &+l+MJ@) +e, where @is the solution vector for

Step 3.

Step 5: If I ~+1 –PI <q, stop. Otherwise r-r+ 1. The

quantity q is a suitable small positive number.

Step 6: Go to Step 3.

Comments on Algorithm 1

If M,(@”) is positive, ~1=0 and q=p, which is positive.

If flf.(~o) is negative and for subsequent optimizations with

7=2, 3,..., we have q = —p. We note that the reason for

inclusion of c in Steps 1 and 4 is to avoid having M= O. In this

case, when two or more maxima in the error functions are

equal, the objective function’s first derivatives are discon-

tinuous.

It can be shown [4] that the objective function decreases

as ~ increases, keeping the parameter vector C$ constant. As

the sequence of optimizations proceeds for r >2, the modulus

of the objective function at each optimum in the sequence,
.

namely I U(W, ~) / , decreases as r increases, Furthermore, as

r-.+ m, I u(@, ~)] +0 and Me(&)~lf,(&), where $ is the

minimax solution vector desired [4].

Algorithm 2

Steps 1-.?: As in Algorithm 1.

Step 4: If M(&, ~) <O, remain with Algorithm 1. Other-

wise

~+’ ~ P + NM(@, F) = (1 – A’)r + NiIZ.(@) (6)

where

O<h’ <1. (7)

Steps 5 and 6: As in Algorithm 1,

Comments on Algorithm 2

Algorithm 2 differs from Algorithm 1 only when M,($) is

positive. Under this condition g = P, which is positive. Further-

more, assuming we remain with Algorithm 2, the objective

function at each optimum, namely, U(@, ~), decreases as r

increases. As ~-+ co, U(&, ~)-+0 and lfg(@-+M.(J).

Algorithm 2 differs from Algorithm 1 in that Algorithm 2
.

attempts to predict }~~(~) by increasing the level ~, whereas

Algorithm 1 attempts to push the maximum away from the

Z3
10.0 6.0

Maximum
reflect ion 0.70930 0.38813
coefficient

level ~. To use Algorithm 2 when Me(+) is negative, we sim-

ply add a suitably large positive constant value to all the error

functions.

III. EXAMPLES ,,

The algorithms have been applied to a wide range of design

problems. Here, we will compare their performance for se-

lected values of P using the Fletcher method [2] on a three-

section 100-percent relative bandwidth 10:1 transmission-line

transformer problem, which has already received attention in

the literature [5], [6]. See Table I for a statement of the prob-

lem and the starting points used in the optimization. Specifi-

cally, we let eu, be the modulus of the reflection coefficient

sampled at the 11 normalized frequencies

{0.5, 0.6,0.7,0.77,0.9, 1.0, 1.1,1.23,1.3, 1.4, 1.5}.

Grad@t vectors with respect to section lengths and charac-

teristic impedances are obtained using the adjoint network

method [3]. The number of function evaluations (one function

evaluation comprising an evaluation of the objective function

(2) and its derivatives) needed by Algorithms 1 and 2 to reach

a reflection coefficient magnitude of 0.19729, which is optimal

to five figures, is shown in Tables II–IV. All six parameters

were varied. Seven values of p were tried ranging from 2 to

10000. It is important to remember that the value of @is fixed

throughout each optimization so that the tables represent the

effort required to reach substantially the same minimax solu-

tion for the particular value indicated.

Table II compares the present approach with previous re-

sults on the same problem. The paper by Bandler et al. [5]

briefly discusses the method by Osborne and Watson [7]. The

value of e was 10–8.

Figs. 2 and 3 show how the maximum error AK. defined in

(1) is reduced at the end of each step in the sequence of

optimizations.

As shown in Tables III and IV, different values of A, the

parameter given in (7), were used in testing Algorithm 2. In

Table IV the quantity J/f,’ is the maximum error at the end of

the first optimization for the particular value of p indicated,

and WZ,l is the corresponding value of the smallest ripple. On
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TABLE II

OPTIMIZATION OF A THREE-SECTION 10:1 TRANSFORMER OVER IOO-
PERCENT RELATIVE BANDWIDTH USING ALGORITHM 1

Number of function evaluations to reach a
Value reflection coefficient of 0.19729

of

P Problem 1 Problem 2

2 178 16o

4 143 128

6 142 116

10 112 89

100 136 69

1000 193 66

10000 249 104

Average number
of function 16S 105

evaluations

Grazer

search [5]
696 498

a
Osborne

& Watscn[5]
860(0.20831) 237(0.19788)

a
Razor
searcb[6] 1300(0.19733) 1250 (O. 19731)

a Number of function evaluations to reach the value shown in
parentheses.

TABLE III

OPTIMIZATIONOF A THREE-SECTION 10:1 TRANSFORMEROVER 100-
PERCENTRELATIVE BANDWIDTH USING ALGORITHM2

Value

of

Number of function evaluations to reach a
reflection coefficient of 0.19729

Problem 1 Problem 2
P

l.=o.5 1=0.6 i-o. ? A=O.5 1=0.6 1=0.7

2 183 146 151 165 128 133

4 193 162 122 151 149 109

6 199 182 138 1s0 135 112

10 191 1s9 146 168 136 114

100 18S 171 16S 126 104 99

1000 211 211 202 83 91 83

10000 248 248 248 103 103 103

Average

number of
function 202 182 16S 135 121 108
evaluations

the average, the choice of h shown in Table IV produced the

best results. Note that JIf.’ decreases as P increases, as would

be expected.

Figs. 4 and 5 illustrate ideas similar to those in Figs. 2 and

3. In addition, the rise of ~ (relevant only in Algorithm 2) is

also depicted.

IV. DISCUSSION

An important result of the investigation is that if the

maximum error corresponding to the solution of the first op-

timization with any value of @ greater than 1 is positive

(specification violated), then it remains positive for all per-

TABLE IV

OPTIMIZATION OF A THREWSECTION 10:1 TRANSFORMER OVER 100-

PERCENT RELATIVE BANDWIDTH USING ALGORITHM 2 wrrH

x= (Mel +f-%.9/2Me1

.—

value Ml m: Number of function evaluations to
of reach a re:lecc;;n coefficient of

P .—
Problem 1 Problem 2

.—

2 0.30819 0.11626 161 141

4 0.23680 0.16278 13s 123

6 0.21759 0.17612 115 89

10 0.20636 0.18280 95 72

100 0.19781 0.19562 131 6S

1000 0.19734 0.19712 193 66

10000 0.19730 0.19727 249 104

Average number of function
155 95

evaluations

1 , , 1 ,
0 50 100 150 200 -750

N

Fig. 2. Maximum error against number of function
evaluations using Algorithm 1 on Problem 1.
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Fig. 3. Maximum error against number of function
evaluations using Algorithm 1 on Problem 2.
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Fig. 4. Maximum error and$ against number of function
evaluations using Algorithm 2 on Problem 1 with X= O.5.

missible values of j. Similarly, if it is negative (specification

satisfied), it remains negative for all permissible values of ~.

The same is true of the objective function in (2). Thus if we

are investigating whether a particular structure will satisfy

design specifications in the minimax sense, any single suitable

least @th optimization will reveal this! We do not need to

carry out the full sequence of optimization to obtain this in-

formation.

In practice, as the results indicate, only two or three op-

timization with low values of @will result in a good minimax

design. For P = 10, two optimization usually suffice for practi-

cal purposes.

V. CONCLUSIONS

Two new algorithms for computer-aided minimax optimiz-

ation have been presented and discussed. Unlike previous

work by the authors [1], where a single optimization is carried

out with large @ in an effort to reach near minimax results,

these algorithms can be described as true minimax algorithms.

We believe that by adopting them, the designer will have an

extremely flexible and efficient way of achieving minimax de-

4
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Fig. 5. Maximum error and ~ against number of function
evaluations using Algorithm 2 on Problem 2 with X =0.5.

signs. The mathematical background with proofs of con-

vergence, and so on, is rather involved and lengthy. It is

available elsewhere [4].
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