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General programmes for least pth and
near minimax approximation
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Department of Electrical Engineering, McMaster University,
Hamilton, Ontario, Canada

and C. CHARALAMBOUS

Department of Combinatorics and Opﬁimization,
University of Waterloo, Waterloo, Ontario, Canada

[Received 20 February 1873 ; revised 30 April 1973]

User-oriented computer programmes in FORTRAN IV for discrete least pth approxi-
mation with a single specified function, and more generalized discrete least pth
approximation with various specifications, which may also be used for non-linear
programming, arc presented. Values of p up to 10° can be used successfully in
conjunction with efficient gradient minimization algorithms such as the Fletcher—
Powell method and a method due to Fletcher. It has been demonstrated how
officiently extremely near minimax results cen be achieved on a diserete sot of
sample points using this approach and the programmes written verify this. The
programmes may be applied to o wide varicty of design problems with a wide range
of specifications. They are suitable for electrical network and systemn design and
such problems as filter design.

1. Introduction

Two complete user-oriented computer programmes in FORTRAN IV are
presented which utilize some new ideas on discrete least pth approximation
(Bandler and Charalambous 1972). Least pth approximation with p=2 gives
a discrete least squares approximation. With sufficiently large values of p
an optimal solution very close to the optimal minimax solution can be
obtained. Values of p up to 10 have been successfully employed. Gradient
minimization algorithms due to Fletcher and Powell (1963) and, more recently,
to Fletcher (1970) are used. The user has to write all the required specifica-
tions, the approximating functions and weighting functions in a straight-
forward way.

The first programme is described in § 4 and is applicable to design problems
with a single specification. Quadratic interpolation, if desired, is employed to
bring the discrete approximation solution closer to the solution of the con-
tinuous minimax approximation problem. Numerical examples for which
the minimax solutions are known were chosen to illustrate the work of the
programme. The solutions obtained are in excellent agreement with the
known ones.

The second programme is described in § 6. The programme is directly
applicable to such problems as meeting or exceeding design specifications on
several disjoint closed intervals as in filter design and allows for situations
more general than the conventional problem of approximating a single con-
tinuous function on a closed interval. There is no restriction on the number
of variable parameters, discrete point sets and number of intervals. The

8.8, 3Q
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examples which demonstrate that the programme works were chosen in
system modelling and multi-section loss-less transmission line network design.
Although the programme is not written for non-linear programming it is also
applicable for problems with parameter constraints.

2. Definitions

Define real weighted error functions related to the upper and lower specifica-
tions, respectively, as (Bandler and Charalambous 1972) :

e,(a, x} 2w, (z)(F(a, 2) - S,(z)), (1}
e/ (@, 2, §) fw,(x)(F(a, 2) -8,/ (x, £))=e,(a, z} - £, (2)
efa, z) &w,(x)(F(a, x) - 8 (z)), (3)
e/'(a, z, §) 2w (z)(Fa, ©) - 8/(x, §)}=e,(a, x) +§, (4)

where the symbols are

F(a,

x} approximating function,
8,(x) upper specificd function,
8,/ (z, £) artificial upper specified function,
82} lower specified function,
8 (x, £) artificial lower specified funetion,
w,(x) upper positive weighting function,
w,(x} lower positive weighting function,
a vector containing the & independent parameters,
x independent variable,
¢ margin of errors with respeet to the artificial and desired speci-
fications.

When upper and lower specified functions and weighting functions coincide,
respectively, let

S(x) = S,(x) =8 (), (5)
w(x)=wu(x)=wi(x)» (6)

then from (1) and (3)
e(a, x)=e¢,(a, x)=¢\a, x). (7}

In practice we will evaluate all the functions at a finite discrete set of
values of z taken from one or more closed intervals. Therefore, we will let

e, (a, £)2e/(a, z, £), il (8)
e;'(a, £)2e/(a, x, &), i€l (9)
e(a)e(a, 1), el (10)

where it is assumed that a sufficient number of sample points have been
chosen so that the discrete approximation problem adequately approximates
the continuous problem. /,, I; and /, are appropriate index sets.

The artificial margin £ ullows for certain flexibility in formulating the
optimization problem, and will be discussed at a later stage.
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3. Background theory
Consider a system of real non-linear functions,

/i(aa f) éem‘.,(ai 5)1 ielw . (ll)
fla, &) & —e/(a, §), 1el, (12)

Bandler and Charalambous (1972) proposed the generalized least pth
objective function which is valid for both negative and non-negative f; for
tel £, ulI, and which alleviates the ill-conditioning resulting from the
numerical evaluation of [+ /;(a, £)]*? for very large values of p, namely,

Ul(a, £)=M(a, E)( Yy [/"(a’ &) ]q)m for M(a, £)#0, (13)

ieK M(a: ‘f)
where
ﬂ{(a’ 6) é max fi(a, f), (14)
iel
M(a, &) p>1 if M(a, £)>0
* (3, &) "”{pal i Ma, §)<0} (19)
and
Jali|f(a, &20,il} if M(a, £)>0
Ka (16)
I if M(a, £)<0

The gradients of the objective function {13) are

~ fda, ) Jo\0m- fila, £ ]

where

va[ 22 2
| 0a, da,  Oay

By minimizing the objective function defined by (13) with a large value
of p we should obtain results very close to the minimax optimum (Bandler
and Charalambous 1973).

If £=0, f,>0 indicates that a specification or a response constraint is
violated, and f; <0 that a specification is cxceeded ; f;=0 indicates that a
specification is met exactly. It i3 quite possible that some of the f, are equal
to — oo in which case they are simply ignored by (13). Also the generalized
objective does not allow any of the f; to be +co. If the f(a, £) for i€l are
continuous with continuous partial derivatives, the proposed objective func-
tion is continuous with continuous partial derivatives. The objective function
(13) and partial derivatives {17) still remain continuous even when, for somne
i's, the f, are discontinuous or continuous with discontinuous derivatives,
simply because those points are ignored.



Downloaded by [University of Montana] at 14:53 03 April 2015

810 J. R. Popovié, el al.

The £, which is constant during optimization, does not affect the location
of the minimax optimum (p—o0). 1ts important role, however, is evident
for a finite value of p. The value of the parameter ¢ can be chosen so that
the M (a, §¢) of (14) is always positive or negative during optimization. When
M(a, §) is positive, only sample points which belong to index set J (16) are
considered and, therefore, there is a saving in gradient computation. But in
this case it may happen that M(a, £) =0, when the function (13) is continuous
but the derivatives may be discontinuous. On the rare occasions when this
situation causes a failure of the gradient minimization algorithm, one can
change the value of ¢ and restart the optimization process. If the value of
M(a, £) is choscn to be negative this possible failure is avoided.

4. The computer programme FMCLP

We will consider first the programme written for minimizing the objective
function corresponding to a single specified function. A function {; is chosen
to be the absolute value of a single specified weighted error function (10) for
all 4e/,. To alleviate the ill-conditioning for very large values of p, a similar
scaling as in {14) was proposed (Bandler and Charalambous 1971).

U 1 @ |PN e 18
(a)=7 (a)( ';‘ @) ) or l<p<oo, (18)
where
M(a)£& max |e(a)]. (19)
iel,
FMCLP
||
NEWSET INPUT
WERR [ GRDCHK ‘ | FMNFC J FIRAL
[ 1
s a I 1 )
1 ‘ FAPP W FUNCT, ) FMFPC WRITEY
| L 1 | L1

WRITE2

Figure. 1 The organization of FMCLP.
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A list and a brief description of the 14 sub-programmes comprising FMCLP
is given below :

FMCLP Supplies data for the function minimization and coordinates
the other sub-programmes (see figs. 1 and 2).
8 Defines a specified function (5) over an interval.
FAPP Defines an approximating function over an interval and the
gradients with respect to variable parameters.
W Defines a weighting function (6) over an interval.

WERR The output of this sub-programme has a value of the weighted
error (10) at a single point z for a particular vector a.

NEWSET Redefines a sample point set such as to include all the extreme
points in the summation of the objective function (18).
Quadratic interpolation is used to locate the extreme points
more precisely (see § 5 and fig. 3).

FUNCT Keeps the values of the weighted error of each sample point
in an array, finds the maximum absolute value and computes
the objective function (18) and its gradients.

GRDCHK Checks the gradients with respect to all variable parameters
before the optimization process starts by testing,
Ula,+ Aa)—Ula,) U
Aa, " Pa,
Ufa; + Aa,) — Ula,)
Aa,

FMFPC Minimizes a function using the Fletcher—Powell method.
FMNFC Minimizes a function using the Fletcher method.
INPUT Prints the input data for the optimization process.
FINAL Prints the optimum solution.

WRITE 1
and
WRITE 2 Print the intermediate results, if desired.

8, W and WERR are function sub-programmes and the others are sub-
routine sub-programmes.

A user of FMCLP writes S, FAPP and W.

The programme terminates when stopping criteria for the Kletcher—Powell
or Fletcher method are satisfied or when the relative change in the objective
function in two successive iterations is less than a small prescribed quantity
€.

5. Quadratic interpolation

If the requirement is a minimax approximation it is suitable to sample
points in the neighbourhood of the maxima of the weighted error function.
As one usually cannot know the positions of the maxima in advance, it is
common to space the sample points uniformly. Retaining the maxima and
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Fig. 2

"IIHHHHII"

Read
LTS PR P S

i+1,..0,k

.

Ei,

€

<Discre:e point set to be read?> yes

lnu

Discrete points are set
equidistantly on the interval

xi*xa+(xb-xa)(1-l)fn-l, i1¢l,...,2

[
f

Calculate
e v x ) (FG,x )-5(x 1), 141,00

i

Print the starting value

x i+1,...,n

1 %5

to be used?
no

<Qundra:ic 1n:erpnla:1an> yes CALL NEWSET

Is there an
Print that the B Y

number of improved extreme point?

quadratic
interpolatiomny

7=

is zero

Print number of applied
quadratic interpelations

and a new sec [ITRLAN i+1,...,n
CALL GRDCHK
no
< Gradients correct? STOP

lyes
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1
ves
< First minimization? >

‘ na

Rend optimization method

to be used and the

stopping criteria
Want to change the starting potnts Ye8 Read
and the optimization mechod? ay. A TN
nol

The fnpur data for the optimization CALL INPUT
procedure to be printed out?

no

Print optimization method,
sropping criteria and
starting value of a

s

I

Go to the chosen optimization method|

! ;

CALL FMNFC CALL FMFPC
Fletcher method is used Fletcher-Powell method i8 used
The intermediate results \\YEE M| CALL WRITEL & WRITE2
to be printed out? 1 I

na
Print U, VU, a

time elapsed and nuiber of
function evaluations

CALL FINAL

Print the optimum solution
u, :, execution time, LI i«l,...4n

)

Quadratic Lnterpolation \ yes CALL NEWSET
to be used? j/

no

Print that the number
of quadratic
nterpolations is

Is there any improved extrcmum&

&yes

913

zero Print number of

quadratic interpolations
applied and a new set

Xgr @4, i+1,...,n

Print
M{a)
A
1s relative change in yes
the function value <c£?

no

Last iterarion?

yes

Flowchart of subroutine FMCLP.
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Fig. 3
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x_ <z
a — test

m<n
-8
Indic(1) =2 /

ne

b

Guadratic interpolation

e —e
+ zmaxtiz zmax-Az 4z

z *z
x 2. -e -8
na pax ezlmn: zmaxthz  zmax-4z

z , +z
min “test
g-1.q.0 A

indic(2) =2

<z
mux< Zmin -
1“‘“5(1)4-2/ * i‘-zmx
ne *kp ¥i4+1
*1+1"%pin

]
| indic(3)+indic(3)-1 |
]

[]
| indie(N+indic(3}-3 |

If n> 4
ntl
3=t 1
Among 4 successive internal points,
2 neighbouring are omitted at which
the absolute values of the weighted
error function are the smallest.
-k« 2,1 xi-xa:{
| 1« J+2-k i.e.
'
TR ¥ 2
1+
==k« 3, ntl X L ,=X €
+
Coten 1.0, W275E
T Fa+1 ne2
indic(3)=1
=~icZ, o+l
Rl
indic(3)=-1 1. X .=Xex i
41" n+2
no
= =ke2, ntl
' 1entl+2-k
L
KRy g o]
: : i.e. T17FST
return x2~-x]

Flowchart of subroutine NEWSET (see Appendix for definitions of some parameters).
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* removing from the objective function those sample points which do not

substantially contribute to the summation may save computation time. Kven
more can be done if approximations to the actual maxima replace the sample
points in their neighbourhood.

It is assumed that, in the neighbourhood of an extremum, the function is

adequately represented by a quadratic form. The function is evaluated at

three points, a quadratic interpolation polynomial is fitted to it, and the
maximum of this interpolant is obtained. This point replaces one of the
initial points.

Assume that the weighted error function is continuous on the closed
interval [z,, z,]. Let

(w97, iel, (21)

be the set of » sample points at the beginning of the jth iteration. Before
the scarching procedure for the extrema of weighted error starts, the end
points of the interval are added to the given set (21), if they are not already
included. A set {x;%'} is used to construct n+1 {or »+3, if x,#z, and
x,#m,) sub-intervals over [z, x,]. KEach sub-interval is divided by a
predicted n, equidistant grid of points. Let

(2,59, k=1,2, .., n+1 (22)

be the set of cquidistant grid of points on {z;), x;,, 9] interval. The extrema
of the error function are found by the sequential examination of the values of
the weighted error function and by comparison with the greatest on the sub-
interval obtained up to that time. If both neighbouring points have absolute
values of the weighted error less than the current one, then the extremum
3,4.9) is found by applying the quadratic interpolation. This point replaces
x,D, the left end point of the current sub-interval,

Immediately after the extreme point is located on the grid, the point on
the grid next to the extremum replaces the left end point of the next sub-
interval. This is done in case there are more than one extremum on a single
sub-interval. Thus the other possible extrema are ‘removed’ to the next
sub-interval by removing its left end point. However, if there are no extreme
points on the next sub-interval, the end point is again set to its previous
value.

All the extrema are selected by applying this searching procedure on every
sub-interval and these points replace the nearby left hand side point obtained
up to that time, and the new set {z;9+1}, 1l for the (j + 1)th iteration is thus
obtained. This set does not necessarily contain the end points of the interval,
but they are included in the searching technique at the next iteration to avoid
shrinking the interval.

In an effort to keep the number of the discrete points in the summation
(18) constant we select n sample points from n+ 2 according to the absolute
value of the corresponding weighted error function. If the error at one end
point of the interval has a considerably large value relative to the other, the
other is omitted. But if both end points have large errors, two neighbouring
points are omitted from four successive internal points where the absolute
values of the weighted error function are the smallest.
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Selection of the extreme points is significant especially within the first
iteration. Once they are found, they do not usually move too far away in
the next iterations.

A flowchart of this procedure is illustrated in fig. 3.

6. The computer programme FMLPO

Here, we will consider a programme written for generalized least pth
approximation described in § 3. A list and a brief description of the 15 sub-
programmes comprising FMLPO is given below :

FMLPO

FUNCS
FCTAPP

w
FCT
EPSNP

ERRO
FUNGT

Supplies data for the optimization process and coordinates the
other sub-programmes (see figs. 4 and 5).

Defines upper and lower specified functions.

Defines an approximating function and its gradients with
respect to variable parameters.

Defines upper and lower weighting functions.
Calculates artificial upper and lower specified functions.

Computes the upper or lower weighted error at a single point
z in a particular interval and for a particular vector a.

Selects weighted error functions according to (16) (see fig. 6).

Computes the generalized least pth objective function (13) and
its gradients (17) (see fig. 7).

FMLPO

INPUT

EPSHP ERRO ‘ | GRDGHK | FINAL

230,

| o |

| FCTAPP | | W | ‘ FUNGT —| ‘ FHNFG | ‘ WRITEY

7 [ IR ] ‘

Figure. 4 The organization of FMLPO.

GRDGHK, FMFPG and FMNFG are subroutine sub-programmes which
have the same role as the subroutines GRDCHK, FMFPC and FMNFC,
respectively, in the FMCLP package. Different names are for convenience

only.

INPUT, FINAL, WRITE 1 and WRITE 2 are subroutine sub-programmes
which have already been introduced in § 4.
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Fig. 5

enter
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{ no
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Calculate

A
error =EPSNP, 141,...,n |

!

Print the starting value
xy, error,, i€,...,n
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function by aubroutine ERRO

CALL ERRO

Print the aclected points

xl, errnri, i+l,...,m

and e
m;

axX

CALL GRDGHK

ves
< Gradients are correct?)

& 5
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cod optinization method
x to be used and the
stopping eriteria
Want to ¢hange the :
starting points and che e Read
optimization method? a‘.itl,...‘

First minimization?

no L—
~
The input data for the op:imizaLionAj\ yes CALL INPUT
procedure to be printed out? /
no

Print optimization method,
etopping criteria and
starting value of i

1
‘ Go to the chosen optimization method ‘

i l

CALL PMNFG CALL FMFPG
Fletcher merhod is used Fletcher-Powell method is used
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The Intermediate results \yes CALL WRITEl & WRITE2
to be princed out?

no
Princ U, EU, 2
time elapsed and number of
funceion evaluations
I
CALL FINAL

Print the optimum solution
U, a execution time, Xy, error, , i«l,...,m

Is relative change In \ yes
che function value <e?

Last iceration?

Flowchart of subroutine FMLTPO.
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Fig. 6

Define a statement function as a function sub-program EPSNP
e (x ) SEPSUPRu (2,3 ) + (Fla, x,)-FCT(x , FUNCS,w, 31,8, )
i*l, i yn J«l,...,ng
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1]

error, « e(xl)

El + errorl-xa'j
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U

nr
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J o~ i+l
1«1

error_ - error
n

no

-
3 I
yes

Flowchart of subroutine ERRO.
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Fig. 7

eater

Supply the points of interest (16)

and e ax Y5in the sub-routine ERRO

CALL ERRQ

8 « 0, 1¢l,..0,k

1+1
j+1
r+1

]

t
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1141
1«1

]

Ll

]
F(e,xi) - Fl.
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1
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Y

(13) #& computed in U:
n 1

U+ emx(tél(crmrihmak)q)ﬁ
(17) 1s computed in F.E.l*'l,...,k

‘ 1ol

]
'

. oLl
By ¢ (151(errur1!emn) ya ‘B,

yes

Flowchart of subroutine FUNGT.

FUNCS, W, FCT and EPSNP are function sub-programmes, and the
others are subroutine sub-programmes.

A user of FMLPO writes FUNCS, FCTAPP and W. The intervals, not
necessarily disjoint, are arranged such that each of them has only one speci-
fication. For example, if the original design problem has upper and lower
specifications for the same values of z, two intervals with a single specification
have to be formed, one with the upper and the other with the lower specifica-
tion. A two-dimensional array is constructed of the input data, which relates
the type of the specification to the appropriate intervals.

This programme terminates under the same conditions as the previous
one.

7. Examples
Example 1
FMCLP is used to approximate

v/ [(8z—1)2+1] tan—! (8z)

N 23
fiz) = : (23)
with w(x)=1 on [—1, 1] by a rational function
@y + A + ax?
Flr)=0T0" T2 24
) = ozt ba (24)

This example is remarkable because it works near degeneracy defined in
the Chebyshev theorem (Achieser 1956), and meets the artificial poles for
almost every combination of polynomials in the nwmnerator and denominator
of the rational function.

The initial approximation and the starting point set in the example were
chosen to be the same as in the minimax approximation problem (Werner,
Stoer and Bommas 1867). The initial approximation was obtained by

8.8. 3R
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rational interpolation where the zeros of the (k+ 1)th order Chebyshev poly-
nomial T',.,, transformed on [z,, %,] are used as supporting points. As a
first trial for the working set the extrema of the {n+ 1)th order Chebyshev
polynomial were taken. There i3 no special reason for choosing these initial
puints with the least pth objective, but it is shown that they provide a good
jnitial guess for the minimax algouthm

The comparison between the minimax and least pth approximation
obtained by the Fletcher and Fletcher—Powell optimization techniques for
p=10% are presented in tables 1 and 2.

We conclude that good results were obtained with both methods. The
Tletcher method was more efficient than the Fletcher—Powell method.

Ezample 2

The second example is another that might be expected to give trouble.
Due to Curtis and Powell (1965), it is the approximation of x? by a2+ a.e®
over 0<z <2 It may be verified that the error function of the approxima-
tion

2?2 84652 — 2-0239¢% (25)

takes its maximum absolute value at £=0, x=1-1227 and z =2, the error at
these points being +2-0239, —2-0239 and + 2-0239, respectively. In fact,
the best approximation is

2% 018422 + 0-4186¢2, (26)

the maximum absolute error is 0-5382 and this error occurs at just the two
points : x=0-4064 and x=2. Not only do the approximating functions fail
to form a Chebyshev set (Ralston 1965}, but also the error curve has only two
cextrema instead of the three that would normally be anticipated according
to the Rice’s theorem (Riee 1960). The least pth results for this problem are
given in table 3 and again show the success of FMCLP. The estimates of the
best approximation agree to four figures with those given by Curtis and
Powell.

Ezample 3

FMCLP is used to find a second-order model of a fourth-order system with
a given transfer function

s+4
Q(s) = . 27
)~ T D s 451 8)515) (27)
The transfer function of the second-order model considered is
) a
Hig)=— 3 28
O =frayra (28)

Using the inverse Laplace transform the responses for (27) and (28) are

8(t) =75e~" + dre~% —gge~2! (3 sin 2+ 11 cos 2¢) (29)
and

Fla, 1) =Z—“ 1! sin ayf, (30)
2
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Table 3. Results for example 2

Initial approximation {1 17T
Fletcher method
Stopping eriteria 10-¢
n 10
P 108
a, 0-1848
a, 0-4184
M(a) 0-5382
xz where M(a) occur (-4066
2
U(a) 0-5382
Function evaluations 67
Execution time in seconds 1-3
[
respectively, where
@
a=|a,l. (31
Ay

The results for different values of p and different numbers of sampling
points n, but the same product n xn, over the range 0<t<10 are given in
table 4, agreeing with those given by Bandler and Charalambous (1973).

Using quadratic interpolation the locations of the extreme points were
found precisely, and the solutions are closer to the minimax solution. Both
solutions, for n=10 and n =25, are better than for n =50 where the quadratic
interpolation was not employed. Moreover, the case n=10 is less time
consuming, because this sampling takes the least number of points for the
objective function (18) in comparison with the other two cases under con-
sideration.

The optimum result for a, is true for both positive and negative values
from table 4 because this does not affect the approximating function (30)
since

Sin @l sin (—ayt)

(32)
@y —dy
FMLPO was used to solve this problein for different values of £, and the
results agree with those given in table 4 when no quadratic interpolation was
used.

Ezxample 4

FMLPO was used in the optimization of a five-section cascaded trans-
mission-line low pass filter which has been considered by Carlin (1971). The
terminations of the filter are unity, the length of the ith section {; and the
normalized characteristic impedance of the 4th seetion Z,, such that a
maximum insertion loss in the passband, from ¢ to 1 GHz, is not more than
0-4 dB, while maximizing it at a point in the stopband. All section lengths
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Table 4. Results for example 3
n=10, n,=5 n=25, n,=2 n=>50, n,=1
p=2 a,=1-27339 a,=1-05489 a,=1-01687
a,=6-54190 x 10-! a,= —7-67814 x 10~} a,="7-89151 x 101
a,=2-17787 x 101 t;=1-61819 x 10-1 a,=1-61435 x 10-!
M({a}y=2-0586 x10-2 | M(a)=1-3271 x 102 M(a)=1-2870 x 102
1,,=2-51460 x 10-! £y =2-46234 x 1071 £, =2-04081 % 10-1
U(a)=4-7T153 x10-3 | U(a)=1-2166 x 10-2 U{a)=2-0668 x 10-2
f.e.=41 f.e.=30 fe.=36
q.i.=2 q.i.=3 q.i.=0
1-6 sec 2-3 sec 51 sec
p=10 a,=7-37873 x 10! a,="7-46289 x 10-! a,=7-43325 x 101
a,=9-26224 x 101 a,= —9-23825x 10! a,=9-29377 x 10~1
a,=1-28626 x 10-! 2,=1-27596 x 101 a,=1-28119 x 10!
M{a)=8-9565x10-% |M(a)=8-T615x 103 M(a)=8-5446 x 103
Ly, =1-67727 x 10! t,=1-73062 x 10— £, =2-04081 x 10*
U(a)=8-4364x 10-3 | U(a)=8-2421 x 103 U(a)=9-1834 x 103
fe.=38 fe.=32 fe.=31
q.i.=3 qi.=3 qi.=90
1-5 sec 2-5 sec 4-5 sec
p=10?% a,=6-79369 x 10-1 a, =6-80476 x 10! a,=6-88905 x 10!
2,=9-55429 x 10-1 ay= —9-54715 % 10! a,=9-52106 x 10!
a,=1-21997 x 10! a;=1-22068 x 101 a,=123339 x 10!
M(a)=8-9563 x 10~ | M{(a)=8-7300 x 103 M(a)=7-9450 x 10-3
Ly, =1-67727 x 101 t,r=1-73062 % 101 £ =2-04081 x 101
U(a)=8-2055x10-3 | U{a)=8-1866 % 10-3 U(a)=8-0045 x 10-3
fe.=35 f.e.=35 fe.=35
qi.=1 gi=1 q.i.=0
1-3 sec 2-5 sec H sec
p=103 a,=6-73700 x 10-* @, =6-77142 x 10! a,=6-85101 x 10-?
a,=9-55909 x 10-1 a,= —9-55568 x 10-1 2, =9-52890 x 10-!
@q=1-21680 x 10! a,=1-21735 x 10! y=1-22946 x 101
M(a)=8-1125x 10-% | M(a)=8-0905x 103 M{a)="17-9009 x 10-3
thy=167727x 10! Ly=1-73062 x 10! L, =2-04082 x 101
Ula)=8-1182x 103 | U(a)=8-0957 x 10-3 Uta)="7-9068 x 10-3
fe.=28 fe. =29 fe.=26
q.i.=0 q.i.=0 q.i.=0
1 sec 2-3 sec 4 sec
Total fe.=142 fe. =126 f.e.=128
for 54 sec for 9-6 sec for 186 sec

f.e. denotes the number of function evaluations.
q.i. denotes the number of quadratic interpolations.

were kept fixed at 2-5 cm so that the maximum stopband insertion loss would
occur at 3 GHz and the normalized characteristic impedances are used as
variables. Twenty-one uniformly spaced sample points were used in the
passband and a single point at 3 GHz. The artificial margin £ for one case
is set to be zero and for the other 0:02337. The weighting function is set to
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be 1 everywhere. The starting value of the variable vector a was as given
by Carlin (1971) :
[3-180 0-443 4.38 0-443 3-180]T, (33)
Results obtained using the Fletcher method for p=10% are presented in
table 5 and the response is shown in fig. 8.

Table 5. Results for example 4—Fletcher method

‘ 1
p=102 £=0 £=2-337x10-2
a, 3:1525 3-1508
ay 44203 x 101 44165 x 101
a 44212 44194
a 44159 x 10-1 4-4169 x 10!
ay 3-1526 3-1508
g 3:9466 x 10-3 —2-3330 x 10-2
Zyr 3-:0700 x 101 30
U 3-9466 x 10-5 —2:3330x 102
Function evaluations 177 79
Execution time in seconds 17 13
{40
l30
e
- 20 L;
@ 0.5 5
2 0.4 =
=03 110
502
=01
1 |- ] J 1 1 1 (8]
) 02 04 06 08 1 I 2 3 4 5
frequency GHz Frequency GHz

Figure 8. Response of the fivesection transmission-lime filter for the unconstrained
design problem,

Although, for physical reasons the symmetrical results for the variables
are expected, symmetry was not assumed. ¢ does not affect the optimal
solution. The reason that it was considered was to bring the objective func-
tion into the case when the artificial specification is satisfied.

Example 5

Constraints are put on the parameter vector a such that they are not
satisfied at the optimal solution of the unconstrained problem given in
Example 4.
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Although FMLPO is not written for non-linear programming, the con-
strained problem may also be considered. The constraints on a parameter
may be considered as upper and lower specifications on an approximating
function defined as a single variable parameter over the dummy point outside
of the working set of points. This dummy point has to be defined as a new
interval for cach specification. The constraints are

02<a, <40, i=1,2 ..., 5. (34)
For the problem given in Iixample 4 and considering (34), results are presented

in table 6. The response is shown in fig. 9.

Table 6. Results for example 5—Fletcher method

p=103 £=0 £=2-337 x 102
a, 2-0429 2-9422
T, 4-1069 x 101 4-1070 % 10!
a, 4.0 3-0008
@ 4-1069 x 101 4-1070 x 10-1
g 2-9429 : 2-9422
M 4-7403 x 10-5 —2:3322 x 102
% 8:02 x 10-1 3:0
U 4-7403 x 105 - 2:3322 x 10-2
Function evaluations 55 157
Execution time in seconds 31 55

m
el
-
»
8
5

® 05 2

.04 2

"

203

5

£ 02

L)

2ol

A ) Al 1 1 o
) 02 04 06 08 i I z 3 3 5

Frequency GHz Frequency GHz

Figurc 9. Response of the five section transmission-line filter for the constrained
design problem.

8. Conclusions

The methods presented ‘abandon the lincar programming sub-problem
which many of the minimax methods use. The advantage over the direct
minimax mecthods is that they use very efficient gradient methods such as
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Fletcher—Powell and Fletcher. From the experimental results, the Fletcher—
Powell algorithm was found to be reliable. The method, however, was found
to be slow in comparison with the method proposed by Fletcher. The latter
method requires fewer function evaluations to reach the optimum and is less
time consuming.

The larger the value of p that is used, the more nearly the minimax
solution is obtained, but more function evaluations are required to bring the
objective function close to the optimum. For practical purposes smaller
values of p may be used to attain a satisfactory solution, hence the objective
function will be minimized faster. We can start with a smaller value of p,
increase it after each complete optimization and terminate when the relative
change in the objective function in the successive iterations is less than a
prescribed small quantity. This can be a disadvantage if the starting point
is close to the minimax optimum, which rarely happens in practice.

Typically less than a minute of CDC 6400 computer time is sufficient to
optimize the type of examples given in this paper to a high degree of accuracy.

The computer programme can be rearranged such that a single specified
function and the approximating function are both complex (Bandler and
Charalambous 1971) which is useful in electrical engineering design problems.

Information concerning the availability of the programmes can be obtained
from the second author.
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Appendix

The following is a list of some arguments used for the quadratic inter-
polation technique in the subroutine NEWSET : '

indie(1) may have values 1 or 2.

indie(1)=1 indicates that quadratic interpolation is not applicd on a
sub-interval ;

indic(1)=2 indicates that a quadratic interpolation is done, and the
left end point of the next sub-interval is temporarily removed.

indic(2) may have values 1 or 2 ;

indic(2) =1 indicates that quadratic interpolation was not applied on a
previpous sub-interval ;

indic(2)=2 indicates that a left end point of the sub-interval was
temporarily removed and if indic(1) =2, the left end point will be set
to the new extreme point on the sub-interval, otherwise it will be fixed
to the value it has before the searching technique was applied.
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indic(3) may have values 2,1, —1 and —2:
indic(3) =2 indicates that a new set of points does not include the left
and the right end points of the interval [z, z,] ;
indie(3) =1 indicates that x, is included in the new set of points ;
indic(3) = — 1 indicates that z, is included in the new set of points ;

indic(3) = — 2 indicates that both 2, and z, are included in the new set
of points.

q.i. indicates the number of quadratic interpolations done on the interval
[%q, 4]

The list of the symbols used in the flowcharts corresponding to the pro-
gramme FMLPO :

error; corresponds to ¢,;'(a, £) or e;'(a, £),
Cnax  cOrresponds to M(a, £),
n; is & total number of intervals,
jp 18 a current interval,

k; is a number of subintervals of (j;)th interval,

z),; 18 a left end point of (j;)th interval,
T

,j is aright end point of (j;)th interval,
Ty is a characteristic number of (j,)th interval with the information

about upper or lower specification,

3

ap; is a value of the approximating function F(a, z;),

x; is an independent variable belonging to index set K (16)
m; is an integer which determines the interval where the selected
point belongs,
grad; is the gradient of the approximating function V.F(a, x;).
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