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General programmes for least pth and 
near minimax approximation 

J. R. POPOVIC, J. W. BANDLER 
Department of Electrical Engineering, McMaster University, 
Hamilton, Ontario, Canada 

and C. CHARALAMBOUS 
Department of Combinatorics and optimization, 
University of Waterloo, Waterloo, Ontario, Canada 

[Rcccivcd 20 February 1973 ; revised 30 April 19731 

User-oriented computer programmes in FORTRAN I\' for discrete least p t h  approsi .  
mation with a single specified f~rnction,  and  more generalized discrete least p t h  
approximation with various specifications, which may also he used for non-linear 
programming, are presented. Values of p up t o  10"an he used successfully in 
conjunction with efficient gradient minimization algorithms such a s  t he  Fletcher- 
Powell method nnd a method due to Fletcher. I t  has been demonstrated how 
efficiently extremely near minimax results can be achieved on a discrete s e t  of 
sample points using this approach and  the programmes written verify this. The  
programmes may  be applied t o  a wide variety of design problems with a wide mnge 
of specifications. They are suitable for  electrical network and system design and 
such problems a s  filter design. 

I .  Introduction 
Two complete user-oriented computer programmes in FORTRAN I V  are 

presented which utilize some new ideas on discrete least p t h  approximation 
(Bandler and Charalambous 1972). Least p t h  approximation with p = 2 gives 
a discrete least squares approximation. With sufficiently large values of p 
an  optimal solution very close to  the optimal minimax solution can be 
obtained. Values of p up  to  lo6 have been successfully employed. Gradient 
minimization algorithms due t o  Fletcher and Powell (1963) and, more recently, 
to  Fletcher (1970) are used. The user has to  write all the required specifica- 
tions, the approximating functions and weighting functions in a. straight- 
forward way. 

The first programme is described in $ 4 and is applicable to  design problems 
with a single specification. Quadratic interpolation, if desired, is employed to  
bring the discrete approximation solution closer to  the solution of the con- 
tinuous minimax approximation problem. Numerical examples for which 
the minimax solutions are known were chosen t o  illustrate the work of thc 
programme. The solutions obtained are in excellent agreement with the 
known ones. 

The second programme is described in 8 6. The programme is directly 
applicable to  such problems as meeting or exceeding design specifications on 
several disjoint closed intervals as  in filter design and allows for situations 
more general than the oonventional problem of approximating a single con- 
tinuous function on a closed interval. There is no restriction on the number 
of va r i~~b lc  parameters, discrete point sets and numbcr of intervals. Thc 
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examples which demonstrate that the programme works were chosen in 
systcm modelling and multi-section loss-less transmission line network design. 
Although the programme is not written for non-linear programming it is also 
applicable for problems with parameter constraints. 

where the symbols are 

approximating function, 
upper specified function, 
art(ificia1 upper specified function, 
lower specified function, 
artificial lower specified function, 
upper positive weighting function, 
lower positive weighting function, 
vector containing the k independent parameters, 
independent variable, 
margin of errors with respect to the artificial and desired speci- 
fications. 

When upper and lower specified functions and weighting functions coincide, 
rcspcctively, let 

S ( x )  = S J x )  = S l ( r ) ,  (5) 

w ( 4  =w&) = w , ( x ) ,  
then from ( I  ) and (3) 

e(a,  x )  = e,(a, x )  = e , (a ,  x ) .  

In practice wc will evaluate all the functions a t  a finite discrete set of 
values of x  tnlccn from one or more closed intervals. Therefore, we will let 

where it is assumed that a sufficient number of sample points have been 
chosen so that the discrete approximation problem adequately approximates 
the continuous problem. ' I,,, I, and I, are appropriate index sets. 

The artificial n;argin 5 allows for certain flexibility in formulating the 
optinlizi~t,ion l~roblcm,~ancl will be discussed a t  a later stage. 
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General programmes for least plh and near minimax upproximc~tion 90!1 

3. Background theory 
Consider a system of real non-linear functions, 

Bandler and Charalambous (1972) proposed the generalized least pth 
objective function which is valid for both negative and non-negative fi for 
i d A I , u I l  and which alleviates the ill-conditioning resulting from the 
numerical evaluation of [ k  fi(a, ( ) l i p  for very large values of p, namely, 

where 

and 

{ i  1 ( a ,  ) > 0, I }  if M(a, 1) > 0 
K A  

The gradients of the objective function (13) are 

where 

By minimizing the objective function defined by (13) with a large value 
of p we should obtain results very close to the minimax optimum (Bandler 
and Charalambous 1973). 

If f = 0 ,  f i>  0 indicates that a specification or a response constraint is 
violated, and f, < 0 that a specification is exceeded ; f i=  0 indicates that a 
specification is met exactly. It is quite possible that some of the fi are equal 
to - oo in which case they are simply ignored by (13). Also the generalized 
objective does not allow any of the fi to be + co. If the f,(a, 5) for i d  are 
continuous with continuous partial derivatives, the proposed objective func- 
tion is continuous with continuous partial derivatives. The objective function 
(13) and partial derivatives (17) still remain continuous even when, for some 
i's, the fi are discontinuous or continuous with discontinuous derivatives, 
simply because those points are ignored. 
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9 I0 J .  R. PopoviC, et al. 

'I'lie 5, which is constant during optitnization, does not affect the location 
of the minimax optimum (p+co). I t s  important role, however, is evident 
for a finite value of p. The value of the parameter 5 can be chosen so tha t  
thc d l (a ,  5) of (14) is always positive or negative during optimization. When 
M(a,  5) is positive, only sample points which belong to  index set J (16) are 
considc~~cd and ,  therefore, there is a saving in gradient computation. Bu t  in 
tltis case it niay happen tha t  M(a, 5) = 0, when the function (1 3) is continuous 
but tlic derivatives may be discontinuous. On the rare occasions when this 
situation causes a, failure of the gradient minimization algorithm, one can 
clinngc thc value of 5 and restart the optimization process. If the value of 
J l ( a ,  5) is choscti to  be negative this possible failure is avoided. 

4. The computer programme FMCLP 
Wc will consider first the programme written for minimizing the objective 

function corresponding t o  a single specified function. A function ii is choscn 
to  bc tho absolute valuc of a single specified weighted error function (10) for 
I I .  '1'0 alleviate the ill-condittoning for very large values of p,  a similar 
scaling ~ L R  in ( 14) was proposed (Bandler and Cliaralambous I97 1). 

whcrc 

N ( a )  A max le,(a) I .  
ieI.  

I l r  
HERR 

I I 

1 
U FUNCT . FMFPC 

i 1 
URlTLZ 

Figore. 1 The organization of FMCLP. 
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General programmes for least pth and near minimax approximation 91 1 

A list and a brief description of the 14 sub-programmes comprising FBlCLP 
is given below : 

FMCLP 

S 

FAPP 

W 
WERR 

NEWSET 

FUNCT 

GRDCHK 

Supplies data for the function minimization and coordinates 
the other sub-programmes (see figs. 1 and 2). 

Defines a specified function (5) over an interval. 

Defines an approximating function over an interval and the 
gradients with respect to variable parameters. 

Defines a weighting function (6) over an interval. 
The output of this sub-programme has a value of the weighted 
error (10) a t  a single point x for a particular vector a. 

Redefines a sample point set such as to include all the extreme 
points in the summation of the objective function (18). 
Quadratic interpolation is used to locate the extreme points 
more precisely (see $ 5 and fig. 3). 

Keeps the values of the weighted error of each sample point 
in an array, finds the maximum absolute value and con~putes 
the objective function (18) and its gradients. 

Checks the gradients with respect to all variable parameters 
before the optimization process starts by testing, 

FMFPC Minimizes a function using the Fletcher-Powell method. 

FMNFC Minimizes a function using the Fletcher method. 

INPUT Prints the input data for the optimization process. 

FINAL Prints the optimum solution. 

WRITE 1 
and 

WRITE 2 Print the intermediate results, if desired. 

S, W and WERR arc function sub-programmes and the others arc sub- 
routine sub-programmes. 

A user of FBICLP writes S, FAPP and W. 
The programme terminates when stopping criteria for the Pletcher-Powell 

or Fletcher method are satisfied or when the relative change in the objective 
function in two successive iterations is less than a small prescribed quantity 

5. Quadratic interpolation 
If the requirement is a minimax approximation it is suitable to sample 

points in the neighbourhood of the maxima of the weighted error function. 
As one usually cannot know the positions of the maxima in advance, it is 
common to space the sample points uniformly. Retaining the maxima and 
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J .  11. PopoviC, et al. 

Fig. 2 

1 
Read 

k , n , n s , x a , % ,  

a i ,  1 - l , . . . , k  

i-1, .... 
e q u i d i s r m r l y  on the i n t e r v a l  

CALL NEWSET 
r o  be used? 

"0  

improved extreme p o i n t ?  

q u a d r a t i c  i n r e r p o l a r i a n s  

P r i n t  

CALL CRDCHK 

I 

G r a d i e n t s  correct? STOP 

r- . - 
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Ce~~eral  programmes for least pth and near minimax approximation 9 13 

First ainimlmtlon? 
t o  be used and the 

procedure t o  be printed out? 

"0  

print optimirarion mrthod, 
eropping crlrcrla and 
5tarting value of a 

t- 
I 

GO to the chosen optimization method I** 
Fletcher method is used Fletcher-Powell method la used 

t~ be printed our? 
CALL WRITE1 6 WRITE2 

h 
"0 

Print U. W, n 
rime elapsed anb n u h e r  of 

function eva1uarions 

I 

CALL FINAL 

+ 
Print the optimum solution 

U, n,  execution time, xi, el, i-1, .... n 
% 

i 

ro be used? 

Print number of 
quadratic interpolations 
applied and n new set 

Is relative change in Yes 
the function value C E ?  

Flowchart of subroutine FMCLP. 
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J .  R. PopouiC, el al. 

Fig. 3 
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General programmes for least plh and near ~ninimax up~voxinzation 

Flowchart of subroutine NEWSET (see Appendix for definitions of some parameters). 

I f  n . 4  , - " + 1 + 1  

h n g  4 succes s ive  in t erna l  po in t s .  
2 neighbouring ere omitted a t  which 
rhe absolute  valuec of the weighted 
error funct ion are the s m a l l e s t .  

I -  -k - 2 ,  j 
- 

X -1 E 

I i * j+2-k 1 . .  a 

"0  
I- - x i  * Xi.l X2-xl 

1 * l + l  
- k  n+l  
1 i * kC1 , ,e. ""+2-"bEE 

'-xi.l - xi  xn+1'xn+2 

yes 

7 --1-2, "+l 
C - X  -x 

1 i + l  
1 . e .  x,,+2-y,q 

X"+l'xn+2 

,- -k.-2, n+l 
I i*n+l+2-k 
I.. X *I i i - 1  

1 . c .  X1-Xe'F 
X2'X1 

- 

- 
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9LG J .  3. Popovii, et al. 
e 

removing from thc objective function those sample points which do not 
substi~ntially contribute to the summation may save computation time. Even 
more can be done if approximations to the actual maxima replace the sample 
points in thcir neighbourhood. 

It is assumed that, in the neighbourhood of an extremum, the function is 
adequately represented by a quadratic form. The function is evaluated a t  
threc points, a qnadratic interpolation polynomial is fitted to it, and the 
maximum of this interpolant is obtained. This point replaces one of the 
initial points. 

Assamc that the weighted error function is continuous on the closed 
interval [x,, x b ] .  Let 

be the set of n sample points a t  the beginning of the j th  iteration. Before 
the starching procedure for the extrenia of weighted error starts, the end 
points of the interval are added to the given set (21), if they are not already 
included. A set { x i ( j ) }  is used to construct n+l (or n+3, if x , # x ,  and 
x n # x b )  sub-intervals ovcr [x,, x b ] .  Each sub-interval is divided by a 
~wcclicted n, equidistant grid of points. Let 

be the set of equidistant grid of points on [z,(j), x,+,ti)]  interval. The extrema 
of the error function are found by the sequential examination of the values of 
the weighted error function and by comparison with the greatest on the sub- 
interval obtained up to that time. If both neighbouring points have absolute 
values of the weighted error less than the current one, then the extremum 
i k ( i s j )  is found by applying the quadratic interpolation. This point replaces 
xi('), the left cnd point of the current sub-interval. 

Immediately after the extreme point is located on the grid, the point on 
the grid next to the cxtremum replaces the left end point of the next sub- 
interval. This is done in case there are more than one extremum on a single 
sub-interval. Thus the other possible extrema are ' removed ' to the next 
sub-interval by removing its left end point. However, if there are no extreme 
points on the next sub-interval, the end point is again set to its previous 
value. 

All the extrema are selected by applying this searching procedure on every 
snb-interval and these points replace the nearby left hand side point obtained 
up to that time, and the new set {x,ti+')}, i d ,  for the ( j  + 1)th iteration is thus 
obtained. This set does not necessarily contain the end points of the intervnl, 
but they are included in the searching technique a t  the next iteration to avoid 
shrinking the interval. 

In an effort to keep the number of the discrete points in the summation 
(18) constant we select n sample points from n+ 2 according to the absolute 
value of the corresponding weighted error function. If the error a t  one end 
11oint of the interval has a considerably largc value relative to the other, the 
other is omitted. But if both end points have large errors, two neighbouring 
points are omittcd from four successive internal points where the absolute 
values of the weighted error function are the smallest. 
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General programmes for least pth and near minimax approximation 917 

Selection of the extreme points is significant especially within the first 
iteration. Once they are found, they do not usually move too far away in 
the next iterations. 

A flowchart df this procedure is illustrated in fig. 3. 

6. The computer programme FMLPO 
Here, we will consider a programme written for generalized least pth 

approximation described in 8 3. A list and a brief description of the 15 sub- 
programmes comprising FMLPO is given below : 

FMLPO Supplies data for the optimization process and coordinates the 
other sub-programmes (see figs. 4 and 5). 

FUNCS Defines upper and lower specified functions. 
FCTAPP Defines an approximating function and its gradients with 

respect to variable parameters. 
W Defines upper and lower weighting functions. 

FCT Calculates artificial upper and lower specified functions. 

EPSNP Computes the upper or lower weighted error a t  a single point 
x in a particular interval and for a particular vector a. 

ERRO Selects weighted error functions according to (16) (see fig. 6). 

FUNGT Computes the generalized least pth objective function (13) and 
its gradients (17) (see fig. 7). 

EPSNP ERR0 GRDGHK 

I 
FCT FUNGT FHNFG 

INPUT 

WRITE1 

1 FUNCS I F -"" 
Figure. 4 The organization of FMLPO. 

GRDGHK, FhlFPG and FMNFG are subroutine sub-programmes which 
have the same role as the subroutines GRDCHK, FMFPC and FMNFC, 
respectively, in the FMCLP package. Different names are for convenience 
only. 

INPUT, FINAL, WRlTE 1 and WRITE 2 are subroutine sub-programmes 
which have already been introduced in 8 4. 
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enter 

kj , X i , j ,  i + 1 , 2 . 3  and j - I . .  . . ,n 

o l ,  1-1. ..., k 

P l l :  

, .'" 
Olscrere p a i n t s  w i l l  be arranged 

1 
e q u l d l a t a n r l y  i n  each i n t e r v a l  L - 0+1 

D l a c r c f e  p a i n t  yea 
set ra be rend? 

S e l e c t  the m p o i n t s  for the o b j e c t i v e  I function by aubrourinc  ERR0 

0 - 0  
1 - 1 

I CALL ERR0 I 

1 "- 

1 
P r i n t  the s c l e c r c d  p o i n t s  
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General programmes for leust pth and near naini7nus approxivmtion 91 0 

cad oprinizarion method 

t o  he vscd and the 

stopping criteria 

Print oprlmirarian method. \ riopping criteria and starting value  of  a 

I GO CD the chosen optimiratian method 

I 

Flercher method is used Fletcher-Powell merhdd is used 

t o  be printed o u t ?  
CALL !-'RITE1 6 !-'RITE2 

Print U, RI, a. 
rime elapsed sad "&her of 

function evaluerlons 

I 

CALL: FINAL 

1 
Print the  optimum solution 

.U, k, execution rime, xi, errori, !.I, ..., m 

I 

I 1. relative change in yes 
the funcfian value < r ?  +--1 

no 
no 

Larr iteration? 

yea 

return 

Flowchart of subroutine BRUPO. 
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J .  R. PopoviC, el al. 

Fig. 6 

Define e Btstemenr function as a function sub-program EPSNP 
c ( x i ) % r s t ~ ~ & ( r . j I ) .  (F(B,~~)-FCT(~~,FUNCS.W,~,.F,~ ." %*I,. . . ," J*l,. . . ,nl , A ) )  

Should e computation of the crrar 
function at each point be done? 

( vcs 
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Generul programmes for leusf pth nl~d wur minimax approximation 921 

Flowchart of subroutine ERRO. 
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Pig. 7 

Supply the point* of interest ( 1 6 )  

I Determinate the interval j1 where 

the selected Error bclonro 

FCq.';' ' F, 
Supply the gradients of t h e  approximating flmction 

aradi, +I,. ... k by the sub-routine FCTAPP 

CALL FCTAPP 
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General programmes for least plh and near minimax approximation 023 

STlowchart of subroutine FUNGT. 

FUNCS, W, FCT and EPSNP are function sub-programnles, m ~ d  tlic 
others are subroutine sub-programmes. 

A user of FMLPO writes FUNCS, FCTAPP and W. The intervals, not 
necessarily disjoint, are arranged such that  each of them has only one speci- 
fication. For example, if the original design problem has upper and lo\vcr 
specifications for the same values of x, two intervals with a single specification 
have to  be formed, one with the upper and the other with the lower specifica- 
tion. A two-dimensional array is constructed of the input data, which relates 
the type of the specification to  the appropriate intervals. 

This programme terminates under the same conditions as the previous 
one. 

7. Examples 
Example 1 

FMCLP is used to  approximate 

with w(x)= 1 on [ -  1, 11 by a rational function 

This example is remarkable because i t  works near degeneracy defined in 
the Chebyshev theorem (Achieser 1956), and meets the artificial poles for 
almost every combination of polynoniials in the nuruerator and denominator 
of the rational function. 

The initial approximation and the starting point set in the example wcre 
chosen to  be the  same as in the minimax approximation problem (\Verner, 
Stoer and Bomtnas 1967). The initial approximation was obtained by 

S.S. 3 R 
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924 J. R. PopoviC, et al. 

rational interpolation where the zeros of the (k+  1)th order Chebyshev poly- 
nomial l',,, transformed on [x,, x,] are used as supporting points. As a 
first trial for the working set the extrcma of the (n+ 1)th order Chebyshev 
polynomial were taken. There is no special reason for choosing these initial 
points with the lcast p t h  objective, but  it is shown tha t  they provide a good 
jnitial gucss for the minimax a,lgorithm. 

Tllc comparison between the minimsx and Icast p t h  approximation 
obtaincd by the :Fletcher and Fletcher-Powell optimization techniques for 
p = lo4 are presented in tables I and 2. 

We conclude tha t  good results were obtained with both methods. The 
Wlctcher   net hod was more efficient than the Fletcher-Powcll method. 

Example 2 
The second example is another that  might be expected t o  give trouble. 

I h c  to  Curtis and Powell (1965), it  is the approximation of x2 by  a,x+a2ez 
over 0 < x < 2. It tniLy bc verified that  the error function of the approxima- 
tion 

x2 NN 8.4652 - 2.0230eZ (25) 

takes its tnt~simum absolute value a t  x = 0, x =  1.1 227 and x = 2, the error a t  
these points being + 2.0239, - 2.0239 and + 2.0239, respectively. I n  fact, 
the best approximation is 

the  maximum absolute error is 0.6382 and this error occurs at just the two 
points : 2=0.4064 and x=2 .  Not only do the  approximating functions fail 
t o  form a Chebyshev set (Ralston ISG5), but also the error curve has only two 
estrenia instead of the three that  would normally be anticipated according 
t o  thc Iticc's theorcm (Rice I SGO). Thc least p t h  results for this problem are 
givcn in t ;~blc  3 : ~ n d  again show the  success of FMCLP. The estimates of the 
best approxin~i~tion agree to  four figures with those given by  Curtis and 
Powcll. 

Example 3 
FILCJJ' is used to  find a second-order model of a fourth-order system with 

a givcn transfer function 

The transfer fnnction of the  sccond-order model considered is 

I !  (s) = a3 

(s + aJ2 + aZ2' 

Using the  inverse Laplnce transfornl the responses for (27) and  (28) are 

S(t) = he-1 + &e-51- &e-21 (3  sin 21 + 11 COS 21) (29) 
and 

a3 - F(a, 1 )  = - e "1' sin a,t, 
a2 
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Table 3. Results for example 2 

Initial approximation [l 1IT 
Fletcher method 

Stopping criteria 

rcspcctively, where 

U(a) 
:Lh~lction evaluations 
Execution time in seconds 

.= [a]. 

0.5382 
67 

1.3 

Thc results for different values of p and different numbers of sampling 
points n, but  the same product n x n,, over the range 0 4 t 4 10 are given in 
table 4, agreeing with those given by Bandler and Charalambous (1973). 

Using quadratic interpolation the locations of the extreme points were 
found precisely, and the solutions are closer to  the minimax solution. Both 
solutions, for n= 10 and n = 25, are better than for n = 50 where the quadratic 
interpolation was not employed. Moreover, the case n, = 10 is less time 
consuming, because this sampling takes the least number of points for the 
objective function (18) in comparison with the other two cases under con- 
sideration. 

The optimum result for a, is true for both positive and neg,ztive values 
from table 4 because this does not affect the approximating function (30) 
since 

sin a,t sin ( - a & )  -- - 
a2 - a2 

FMLPO was used t o  solve this problem for different vitlues of [, and the 
results agree with those given in table 4 when no quadratic interpolation was 
used. 

Example 4 

:FhtLPO was used in the optimization of a five-section cascaded trans- 
mission-line low pass filter which has been considered by Carlin (1971). The 
terminations of the filter arc unity, the length of the i th  section l i  and the 
normalized characteristic impedance of the i th  section ZOi, such tha t  a 
maximum insertion loss in the passband, from 0 to  1 GHz, is not more than 
0.4 dB, while maximizing i t  a t  a point in the stopband. All section lengths 
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p=103 

Total 

a, = 1.27339 
a,=6.54190 x lo-' 
a,=2.17787 x 10-' 

dl(a) = 2.0586 x lo-, 
1,11=2.51460 x lo-' 

U(a) =4.7153 x lo-, 
f.e. =41 
q.i.=2 

1.6 scc 

a, = 7.37873 x 10-I 
a,=9.26224 x lo-' 
a,= I .28626 x 10-I 

M(a) = 8.9565 x 
t,,= 1.67727 x lo-' 

U(a) = 8.4364 x lo-, 
f.e.=38 
q.i.=3 

1.5 sec 

a, = 6.79369 x 10-1 
a,=9.55429 x 10-I 
a,= 1.21997 x 10-I 

nr(a)=s.9563 x lo-, 
t,,= 1.67727 x 10-I 

U(a) = 8,2055 x lo-, 
f.e. = 35 
q.i. = 1 

1.3 sec 
- 

a, =6.73700 x 10-I 
a, = 9.55909 x 10-I 
a,= 1.21680 x lo-' 

M(a)=8.1125 x lo-, 
f,,= 1.67727 x lo-' 

U(a) = 8.1 182 x lo-, 
f .e. = 28 
q.i. = O  

1 scc 

f .c. = 142 
for 5.4 sec 

Results for cxa~nple 3 

n=25, n,=2 

a, = 1.05489 
a,= -7437814 x 10- 
a3= 1.61819 x 10-I 

M(a)= 1.3271 x lo-, 
ti>,= 246234 x lo-' 

U(a)= 1.2166 x 10-2 
f.e.=30 
q.i.=3 

2.3 sec 

a, = 7.46289 x lo-' 
a,= -9.23825 x 10- 
a,= 1.27596 x 10-I 

M(a) = 8.761 5 x 10-3 
t,,,= 1.73062 x lo-' 

U(a) = 8,2421 x 
f.e. =32 
q.i.=3 

2.5 sec 

a, = 640476 x lo-' 
a,= -9.54715 x 10- 
a, = 1.22068 x lo-' 

M(a) = 8.7300 x lo-, 
t,l,= 1.73062 x lo-' 

U(a)=8.1866 x lo-, 
f .c. = 35 
q . i .= l  

2.5 sec 

a, =6.77142 x 
a, = - 9.55568 x 10- 
a,= 121735 x 10-I 

M(a) = 8.0905 x 1 O-, 
t,,,= 1.73062 x 10-I 

U(a) =8.0957 x 
f.e. = 29 
q.i.=O 

2.3 scc 

f.e.= 126 
for 9.6 sec 

a, = 1.01687 
a2=749151 x lo-' 
a,= 1.61435 x 10-' 

M(a) = 1.2870 x 
t,,=2.04081 x lo-' 

U(a) = 2,0668 x lo-, 
f .c. = 36 
q.i. = O  

5.1 sec 

a, = 7.43325 x lo-' 
a, = 9.29377 x 10-' 
a,= 1.28119 x 10-I 

N(a) = 8.5446 x 1 O-, 
t,,,=2.04081 x 10-' 

U(a) = 9.1834 x lo-, 
f.c.=31 
q.i. = O  

4.5 sec 

a,= 6,88905 x lo-' 
a,= 9.32106 x lo-' 
a,= 123339 x lo-' 

W(a) = 7.9450 x lo-, 
t,,,=2.04081 x lo-' 

U(a) = 8.0045 x 
f.c. =35 
q.i.=O 

5 sec 

a, =6,85lOl x 10" 
a, = 9.52890 x lo-' 
a,= 1.22946 x 10-' 

M(a) = 7.9009 x 1 O-, 
t,1,=2.04082 x lo-' 

U(a) = 7.9068 x 
f .c. = 26 
q.i.=O 

4 sec 

f.e.=128 
for 184  sec 

f.c. dcnotcs the number of function evaluations. 
q.i. denotes tlw number of quadratic interpolations. 

were kept fixed a t  2.5 cm so tha t  the maximum stopband insertion loss would 
occur a t  3 GHz and the normalized characteristic impedances are used as 
variables. Twenty-one uniformly spaced sample points wcrc used in the 
passbancl and a single point a t  3 GHz. The artificial margin 8 for one case 
is set t o  be zero and for the other 0.02337. The weighting function is set t o  
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Ge~zerul programmes for lcasl pth and near minimux upp-ozimalion 020 

be 1 everywhere. The starting value of the variable vector a was as given 
by  Csrlin (1071) : 

[3.180 0.143 4.38 0.443 3.18OIT. (33) 

Results obti~incd using the Fletcher method for p =  lo3 are presented in 
table 5 and the response is shown in fig. 8. 

Ylahle 5. Results for example GFlctcher  mcthod 

Function evaluations 
Execution time in seconds 

Frequency GHz Frequency G H r  

Figure 8. Response of thc fivesection transn~ission-lime filter for the unconstreincd 
design problem. 

Although, for physical reasons thc  symmetrical results for the variables 
arc cxpectecl, symmetry was not assunled. does not affect the optimal 
solution. Thc reason that  it was considered was to  bring the objective func- 
tion into the case when the artificial specification is satisfied. 

Example 5 
Constraints are pot on the parameter vector a such tha t  they are not 

satisficd at the optinlal solution of the unconstrained problem given in 
Example 4. 
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!):$u J .  R. PopoviC, el al. 

Although FMLPO is not written for non-linear programming, the con- 
slrt~ined problcrn may also be considered. The constraints on a parameter 
III:LY be considered as upper and lower specifications on an approximating 
function clefincd as a single variable parameter over the dummy point outside 
of the worlting set of points. This dnmmy point has to  be defined as a new 
intcrvd for cach specification. The constraints are 

I7or thc problcm given in Example 4 and considering (34), results are presented 
in t t~blc (i. The response is shown in fig. 9. 

Table 6. Results for example 5-:pletcher method 

:Function evaluations 
Execution time in seconds 

Frequency GHz Frequency GHz 

I?igurc 9. Response of the five section transmission-line filter for thc constrained 
design problem. 

8. Conclusions 
The methods presented abandon the linear programming sub-problem 

which many of the minimax methods use. The advantage over the direct 
minimax mcthods is tha t  they use very efficient gradient methods such as  
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General programmes for least plh and near minimax approximatiow 031 

Fletcher-Powell and Fletcher. From the experimental results, the Fletcher- 
Powell algorithm was found to be reliable. The method, however, was found 
to be slow in comparison with the method proposed by Fletcher. The latter 
method requires fewer function evaluations to reach the optimum and is less 
time consuming. 

The larger the value of p that is used, the more nearly the minimax 
solution is obtained, but more function evaluations are required to bring the 
objective function close to the optimum. For practical purposes smaller 
values of p may be used to attain a satisfactory solution, hence the objective 
function will be minimized faster. We call start with a smaller value of p, 
increase it after each complete optimization and terminate when the relative 
change in the objective function in the successive iterations is less than a 
prescribed small quantity. This can be a disadvantage if the starting point 
is close to the minimax optimum, which rarely happens in practice. 

Typica.lly less than a minute of CDC 6400 computer time is sufficient to 
optimize the type of examples given in this paper to a high degree of accuracy. 

The compnter programme can be rearranged such that a single specified 
function and the approximating function are both complex (Bandler and 
Charalambous 1971) which is useful in electrical engineering design problems. 

Information concerning the availability of the programmes can be obtained 
from the second author. 
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Appendix 

The following is a list of some arguments used for the quadratic inter- 
polation technique in the subroutine NEWSET : 

indic(1) may have values 1 or 2 : 

indic(l)= 1 indicates that quadratic interpolation is not applicd on n 
sub-interval ; 

indic(l)=2 indicates that a quadratic interpolation is done, and the 
left end point of the ncxt sub-interval is temporarily removed. 

indic(2) may have values 1 or 2 : 

indic(2) = l indicates that quadratic interpolation was not applied on a 
previous sub-interval ; 

indic(2) = 2 indicates that a left end point of the sub-interval was 
temporarily removed and if indic(1) = 2, the left end point will be set 
to the new extreme point on the sub-interval, otherwise i t  will be fixed 
to the value i t  has before the searching technique was applied. 
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932 General progmmmes for least ptk and near ~n in imax  approximution 

indic(3) may have values 2, 1, - 1 and - 2 : 

indic(3) = 2 indicates tha t  a new set of points does not include the left 
and the right end points of the interval [x,, x , ]  ; 

indic(3) = 1 indicates tha t  x ,  is included in the new set of points ; 

indic(8)= - 1 indicates that  x, is included in the new set of points ; 

indic(3) = - 2 indicatcs tha t  both x, and x, are included in the new set 
of points. 

q.i. inclic~tes the number of quadratic interpolations done on the interval 
[x,, %,I. 

The list of thc symbols used in the flowcharts corresponcling t o  the pro- 
gramme FBlLPO : 

corresponds to ~ , , ~ ' ( a ,  5) or ~ , ~ ' ( a ,  I ) ,  
corresponds to M(a, 5), 
is a total number of intervals, 
is a current intervnl, 
is a number of subintervals of ( j l ) th interval, 
is a left end point of ( j , ) th interval, 
is a right end point of (j,)th interval, 
is a characteristic number of (j ,)th interval with the information 
about upper or lower specification, 
is a value of the approximating function F (a ,  x,), 
is an independent variable belonging to index set IC (16) 
is an intcger which determines the interval where the selected 
point belongs, 
is the gradient of the approximating function VF(a, x i ) .  
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