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Automated Network Design with Optimal 
Tolerances 

J. w. BANDLER, MEMBER, IEEE, AND P. c. LIU 

Abstract-A new approach to network design to obtain optimal pa- 
rameter values simultaneously with an optimal set of component toler- 
ances is proposed. An automated scheme could start from an arbitrary 
initial acceptable or unacceptable design and under appropriate restric- 
tions stop at an acceptable design which is optimum in the worst case 
sense for the obtained tolerances. 

I. INTRODUCTION 

I T IS the purpose of this paper to present a new concept in 
the network design and tolerance selection problem. The 

concept of a “floating and expanding polytope” suggests that 
the two procedures of finding an acceptable nominal point and 
an optimal set of tolerances be replaced by one automated 
scheme. Using a suitable nonlinear programming technique, 
any arbitrary initial acceptable or unacceptable design may be 
used as a starting point. The scheme would stop at an accept- 
able design which is optimal in the worst case sense of obtained 
tolerances. The most suitable objective function to be mini- 
mized would seem to be one that best describes the cost of 
fabrication of the circuit, as suggested by some authors [l] - 
[6]. Several objective functions have been investigated and the 
results are discussed. 

II. THEORETICAL CONSIDERATIONS 

The Tolerance Region 

A point @ ii [#I G2 * - * &I ’ is a vector of k elements and 
corresponds to the component values of the network. A nomi- 
nalpoint@‘A [@~&**.&]T is a point associated with a set 
of nonnegative tolerances E !$ [el e2 * . * +] ’ > 0 such that 
the tolerance region R, is given by 

R, A -{$ I @F - ei <@i < @F + ei, i=1,2;**,k}. (1) 

Obviously, R, is a polytope of k dimensions with sides of 
length 2~i, i = 1,2, . . . , k, and centered at #‘. The polytope 
has 2k vertices. Each vertex will be indexed from an index set 
Hg {1,2,-**,2k)suchthat 

, 4A 

A possible outcome of a circuit with a nominal design q” and 
tolerance e falls somewhere in or on the polytope. Depending 
on the location of 4’ and the size of E, a circuit with param- 
eters @ inay or may not be acceptable. 

The Acceptable Region 
The following discussion refers to the frequency-domain de- 

sign of linear time-invariant circuits, but the results can be ap- 
plied to the time domain as well. Let the set of frequency 
points under consideration be a = {wl, ~2, * * * , w,, w,+~, 
. . . , W,+r}. Upper specifications S, (Oi), i = 1,2, * * * , i( are 
assigned to the first u frequency points and lower specifications 
Sl(WJ,i=U+ 1;” , u + 1 to the rest. Frequency points that 
have both upper and lower specifications may appear twice in 
the set. Let the response of the network at frequency Wi be 
F(& ai)- 

An acceptable region R, is given by 

& A {G I Su (Wi> - F(Q, ~i> > 0, i= 1,2;**,u 

WA q> - Sz (q> 2 0, j=u+ l;**,u+l}. 

(3) 

Obviously, a design {Go, e} is an acceptable design only if 
R, GR,. 

A Theorem 

It is impossible to test all the points in R, to see whether they 
are in the acceptable region R,. In order to make the 
problem tractable, a number of simplifying assumptions could 
be made to obtain a solution to the problem with reasonable 
computational effort. Obviously, if R, is convex and if all the 
vertices of R, are interior or boundary points of R,, then R, C_ 
R, .- It can be shown that the assumption of convexity is un- 
necessarily restrictive. 
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(11) 

implies that 

$J = $f + h(@b(f) - f) E R, 

and minimize B with respect to Go and E for appropriately de- 
creasingvalues of r. Another more recent and efficient method 
of handling constrained minimization is by the least pth opti- 
mization [8], [9] of 

(5) 

for all X satisfying 

O<<h<l. (6) 

Under such assumptions, only the vertices of the polytope 
need be tested to ensure that R, CR,. It is easy to verify that 
the theorem holds for k = 1 and 2. The proof of the theorem 
follows by mathematical induction. A complete proof is pre- 
sented by Bandler [ 1 ] . 

Other constraints such as parameter constraints can be con- 
sidered. These constraints define a feasible region Rf. Then it 
is required that R, C (.R, r-l Rf) = R,. 

The Nonlinear Pfogramming Problem 
A function Ci (Go, E) to be minimized may be 

where Ci is a weighting factor. See, for example, Pine1 and 
Roberts [4]. 

Other possibilities are [ 1 ] 

and 

k @F C3 = C Cj lo& -. 
i=l % 

(8) 

In (9) we would be minimizing the ratio of the volume of the 
polytope defined by the space diagonal 4’ and the volume of 
the polytope defined by E if the ci = 1. 

Let 

gij (67 wj> b 
I 

Su(Wj)- F(&,Uj), for 1 <j<u 

F(dp aj) - Si (aj>, forui 1 <j<utl 

(10) 
for i E H. That is, at each vertex Qi, there are I+ u frequency 
constraints. There are 2k vertices for a polytope of k dimen- 
sions. A total of 2k(l + u) constraints have to be considered. 
Other constraints can be added.’ 

A suitable method for solving the nonlinear programming 
problem is to define [7] 

Cwij > 0. (I 2) 

For sufficiently large constant values Cyij, the unconstrained 
minimization of V with respect to 4’ and e yields exactly the 
constrained minimum of C. This nonlinear programming tech- 
nique makes it possible to have any initial starting point, ac- 
ceptable or otherwise, as shown by Bandler and Charalambous 
PI, [91. 

III. EXAMPLES 

A Low-Pass Filter 
A normalized 3-component LC low-pass ladder network, 

terminated with equal load and source resistances of 1 R, is 
considered. An insertion loss of 0.53 dB in the passband O- 
1 rad/s and 26.0 dB in the stopband (band edge is 2.5 rad/s is 
realized by a minimax design without taking tolerances into 
account. The parameter values are & = L1 = 1.6280, & = C = 
1.0897, and & = L2 = 1.6280. The chosen set of frequency 
points is 52 = (0.45, 0.50,0.55, 1.0, 2.5). S, = 1.5 dB for the 
passband and S, = 25 dB for the stopband are assigned. Two 
starting values & ~2, 4: = 1, @i =2, and @T = & =& = 1.5 
with 1 -percent tolerances, have been studied. The first starting 
point is inside the acceptable region. 

The sequential unconstrained minimization techniques 
(SUMT) method using Cr of (7) and Ci = 1, i = 1,2,3, yields 
a solution of & = 1.9990, @,” = 0.9058, $2 = 1.9990, and the 
corresponding tolerances are 9.89, 7.60, and 9.89 percent. 
Initially, r = 1. It is reduced by a factor of ten after each cycle 
of optimization. The adjoint network technique [lo] and the 
Fletcher method [l l] are used in the optimization process. A 
total of 185 function evaluations were performed to reduce Cr 
from 300 to 33.38 for 6 complete cycles. One-hundred thirty- 
six function evaluations are needed to get the same results by 
the new nonlinear programming technique. The constants “ii, 
i= 1, .-,8, j=l;.., 5, are set uniformly to 100. p is in- 
creased from a starting value of 10-1000 for 2 cycles of 
optimization. 

The SUMT method is not directly applicable with the second 
starting point which is outside the acceptable region. The same 
optimal point as before is reached with 105 function evalua- 
tions for 1 optimization by the new method. p is 1000 and oij 
is 100 for all i and j. 

In contrast, if the nominal point is fixed, tolerances of 3.45, 
3.18, and 3.45 percent are obtained for the three components. 

A Bandpass Filter 

1 Selecting, on physical or other grounds, constraints which are likely The bandpass filter shown in Fig. 1 was studied by Butler 
to be active at the solution to a nonlinear programming problem and 
discarding the rest can result in faster solution times, as is well known. [2], Karafin [3], and Pine1 and Roberts [4]. An upper speci- 
Ultimately, all the constraints have to be satisfied. fication of 3 dB for the passband and a lower specification of 
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Fig. 1. Bandpass-filter example. 

/ 
/ ,/ --- Karofids rerponls 

Fig. 2. Bandpass-filter response. 

35 dB for the stopband relative to 0 dB at a central frequency 
at 420 Hz are assigned. See Fig. 2. L! = (360,490, 170,240, 
700, 1000) in which the first 2 frequencies are assigned to the 
upper specification and the last 4 to the lower specification. 
The frequency point of 420 Hz is not included as it is kept at 
zero. A constant Q is assumed for the four inductors and, 
therefore, the four corresponding resistances are dependent 
variables. 

Monte Carlo and the worst case analyses at the specified test 
frequencies assuming 28 vertices. The relative insertion loss, 
however, becomes negative in some instances in the passband. 
The same assumptions were made as Pine1 and Roberts [4] 
that the component distribution is uniformly concentrated 
within 5 percent of the extremes of the relative tolerances and 
1000 simulations were made for the Monte Carlo analysis. 

IV. CONCLUSIONS 

Nominal values used by Pine1 and Roberts and a $-percent It has been shown that, by moving the nominal point, a set 
tolerance for each component are used as a starting point. Pa- of larger tolerances can usually be obtained, and that an arbi- 
rameter values are scaled by normalizing with respect to the trary initial design may be used to start the automated scheme. 
central frequency and the load resistance such that the induc- A drawback of this basic scheme is, of course, that a large 
tors and capacitors will have the same order of magnitude to number of constraints are used. Future work should, it is felt, 
avoid ill-conditioning. Components r#~s and $L, are assumed be concentrated on methods of reducing them. Some prelimi- 
equal to $r and &, respectively, for the objective function C, nary ideas of reducing the number of constraints are currently 
and Cs. Only 26 vertices are taken. Initially, the same as- being tested.2 A complete solution to the problem is not 
sumptions are made for the objective function Cr , but because claimed; however, it may be concluded that our approach is a 
of some violations a selection of the 2’ vertices are subse- promising one in network design subject to tolerance 
quently taken.2 considerations. 

Using the SUMT method, initially, r = 1. r was reduced suc- 
cessively by a factor of ten. The adjoint network technique 
and the Fletcher method are again used in the optimization 
process. See Table I and Fig. 2 for some results. No more than 
10 min on a CDC 6400 are needed to obtain the results for 26 
vertices. Note that ci = 1, ti A lOOei/@, and the cost is 
Zf=r I/ti. There are no violations observed for both the 
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2The algorithm currently being used, selects, for each vertex @j at a 
particular frequency, another vertex ~8 such that the signs of the com- 
ponents of @i - 6’ are all opposite to the corresponding signs of the 
components of the gradient vector of the constraint evaluated at &and 
that frequency. This usually leads to a substantially smaller number of 
constraints to be considered at each frequency during optimization. 
Periodic updating of the selected vertices and restarting of the optimi- 
ration process is generally required. 

TABLE I 
RESULTS FOR THE BANDPASS FILTER 

karafin [3] 
Pine1 and 
Roberts 141 Cl 5 C3 

1.824X100 3.0142x100 2.3206~10~ 2.7692~10~ 

7.870x10-8 4.9750x10-* 6.3694x1O-8 5,2611x10-* 

1.824~10~ 2.9020x100 2.3206~10~ 2.7682~10~ 

7.870x10-8 5.0729x10-* 6.3694x10“ 5.2611x10-* 

4.272~10 -1 8.2836~10 -1 6.0517~10-~ 7.7895x10-l 

9.88Ox1O-7 5.5531x10 -7 7.7708~10-~ 5.8726~10 -7 

1.437x10 -1 3.0319x10-1 2.1677~10-~ 2.5438~10-~ 
0 

"8 3.400x10 -7 

t1 3 , 3.32 
r2 5 , 2.41 
t3 5 * 3.30 
t4 3 , 2.41 
t5 2 , 1.14 
t6 Z , 1.89 
t7 3 , 7.80 
t8 5 , 2.07 

Cost 2.60 3.45 

1.6377x10 -7 2.2630x10 -7 

6.99 2.29 

6.52 11.26 
6.97 2.29 

6.55 11.26 
4.36 3.30 
5.69 3.02 
6.80 6.61 
5.25 4.40 
1.34 2.06 

1.8981x1O-7 
7.67 

6.53 
7.67 
6.53 

4.33 
8.10 
5.85 
z.71 
1.46 
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An Optimal Pivoting Order for the Solution 
of Sparse Systems of Equations 

M. NAKHLA, STUDENT MEMBER, IEEE, K. SINGHAL, MEMBER, IEEE, AND J. VLACH, SENIOR MEMBER, IEEE 

Abstract-Analytic expressions for finding fill-in, the number of non- 
zero elements that change in value, and the number of “long opera- 
tions” during each step of the L CJ decomposition are given. 

A new optimal pivot ordering algorithm is proposed which leads to 
a reduction of the overall fill-in and long operation count. Compari- 
son is made with two other known algorithms. 

I. INTRODUCTION 

S EVERAL PAPERS have been published on the solution 
of sparse systems of equations [ 1 ] . Results have indicated 

that considerable computational and storage savings as well as 
reduction of roundoff errors can be achieved in solving large 
sparse systems. It has also been shown that the order in which 
the variables are eliminated strongly affects the fill-in and the 
number of long operations (multiplications or divisions) re- 
quired. Several algorithms [l] - [7] have been proposed for 
determining near optimal ordering. 

In this paper, an alternative algorithm is proposed and com- 
pared with the algorithms published by Berry [2] and Hsieh- 
Ghausi [3]. It results in fewer operations and smaller till-in. 
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II. THEOREMS 

Two similar LU decompositions are used for an n X n matrix 
A, the first one being 

iii = a!!-1) 
11 ’ i=j;-*,n 

Uii = a&!-‘)llii, j=i+ l;.* ,n 

q = a$- - 1, uri, i,j=r+l **‘,n > 

a!?) =a. 
V ti 

with the result that all the diagonal elements of U have the 
value one. The second algorithm is described by 

u.. z&-l) 
V V ’ 

j=i;ma,n 

iii = q-quii, i=j+ l;**,n 

($’ = ($1) - 1, uri, i,j=r+ l;**,n 

a!?) =a.. 
11 V (2) 

with the result that all the diagonal elements of L have the 
value 1. 

Theorem I: Assume that the n X n matrix A has completed 
the rth step of the LU decomposition described either by (1) 
or by (2). Let A(‘) be the updated matrix. 


