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Abstract

A very important practical problem in microwave circuit design is the problem of optimal design subject to

component tolerances. An approach which treats the comuonent tolerance assignment as an intezral Dart of com-
puter-aided design is,

.
to the authors’ knowledge, new to microwave engineers Y Using recent n&lin;ar program-

ming techniques and Dakin!s branch and bound technique in conjunction with Fletcher’s unconstrained minimization

program, a variety of continuous and discrete tolerance problems may be solved. It

program available.

Introduction

Previous design work has been concentrated on ob-
taining a best nominal design, disregarding themanu-

facturing tolerances and material uncertainties. Basi-
cally, the tolerance assignment problem is to ensure
that a design when f~bricated will meet Performance ‘r

other specifications .

It is the purpose of this paper to draw the atten-

tion of microwave engineers to a design concept where-

by the optimal nominal parameter values and tolerances
would be determined simultaneously. A general purpose

computer program for continuous and discret~ nonlinear

programming problems called DISOPT is used . The
user need only supply simple subroutines to set up

the appropriate objective function and the constraint
functions. With any arbitrary initial acceptable or

unacceptable design as a starting point, the program
would output the set of nominal component parameters
together with a set of optimal tolerances satisfying

all the specifications in the worst-case sense. The
user may optionally choose a combination of many recent

techniques and algorithms3-5 and decide en a contin-

uous solution and/or discrete solutions.

Another practical problem which is analogous to

the tolerance assignment problem is to determine the

optimum component values to a certain number of signi-
ficant figures, which can also be done with DISOPT.

The optimization of a noncommensurate 5-section

low-pass transmission-line filter6 and a 2-section
transformer 7

presented.

A design

design point

serve as illustrations of the ideas

The Tolerance Problem

consists of design data of the nominal

,$,0 ~ [$0 $0 ~~~T and a set of associ -
1 2 ““”

ated tolerances ~ ~ [El E2...Ek,’, where k is the

number of independent design parameters. AnToutcome

of the circuit is any point $ ; [01 $2...$kl in the

tolerance region Rt, where Rt = {$,IO; - Ci s @i Y $; +

E. i=l,2, . . ..k}. The constraint region Rc is the
1’

region of points ,$ such that all performance specifi-

cations and constraints are satisfied. The worst-case

design requires that Rt ~ Rc. The optimal worst-case

— .——

design can, therefore, be

is planned to make the ful~-

stated as follows:

minimize some objective function C($”, ~)

subject to Rt~ Rc

This would, in general, mean that there need to be

an infinite number of constraint functions which has

led to different assumptions and different approaches

to make the formulation manageable.

A theorem
8

was proved that if R is one dimen-
sionally convex for each variable $i,ci = 1,2, . . ..k.

are in R ,and if the vertices of Rt ~ then RtG Rc.

Thus , a finite number (2’) of po;nts need be constrai-

ned. In many situations, the constraint functions are

monotonic with respect to some of the variables in the

interval of interest. A subroutine called VERTST will

select the most critical vertices of the tolerance

region, based on information obtained from the partial

derivatives and magnitudes evaluated at the vertices.
If these few critical vertices are in Rc, then RtG,Rc.

Depending on the situation, the objective function
c.

may be, for example, cl.~ci _where ti = ~ x 100%

k i.~ ~ @i

or Cz = ~ ~ or a mixture of the terms, where the ci

1i=l

are some suitable weighting factors. Minimizing Cl will

tend to maximize the relative tolerances and minimi:t-

ing C will tend to maximize the absolute tolerances.

The l??tter one is applicable, for example, to machining

components..

The program DISOPT may be use~ to minimize the

constrained objective function C($, , ,@ efficiently.

Design Examples

Consider a 5-section cascaded transmission line

network with characteristic impedances fixed at

‘1
=Z3=Z5=,2

Z2=Z4=5
— ——
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and terminated in unity resistances, Suppose the

specifications are a maximum of .02 dB insertion loss
in the passband O-1 GHz and a minimum of 25 dB ovei-

the range 2.5 to 10 GHz, Let us consider two cases.

1. A uniform 1% relative tolerance is allowed for

each characteristic impedance. Maximize the absolute

tolerances on the section lengths Qi, i = 1, . ...5.

2. A uniform absolute tolerance on the section lengths

is given. Maximize the relative tolerances on the

impedances,

It was decided that frequency points at ,35, .4,
,45, ,75, .8, .85, 1,0, 2,5 and 10 GHz be taken. It

was assumed that the nominal values and tolerances of
components 1 and 2 are equal to the corresponding

values of components 5 and 4, respectively. A total

of 15 constraint functions were used throughout the

optimization. The set of discrete impedance tolerances
is {,s, I, 1,5, 2, 3, s}% and the discrete set of

length tolerances is from .0005 to .005 with .0005
step-size. All the length u~its presented are norm-

alized with respect to L = ~ and f. = 1 GHz. See
q.

Conclusions

An approach to computer-aided tolerance optimi-

zation of microwave circuits has been presented. A

very efficient and general program for continuous

and discrete nonlinear programming called DISOPT is

used for the purpose. The program, written in FORTRAN

IV for the CDC 6400 computer, is to be made available

to the microwave community,
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Continuous Discrete

Parameters Solution Solution

— .

‘q = ‘k5 .00326 .00300 =t
*Z1 Z5

3.5617 3.0000

=C‘L2 L4
.00279 .00300

tz2 = tz4
2,2698 2,0000

’13 .00267 .00250
tz3

1,9833 2,0000

9,; .17383 .17364

——. — ————— —————

TABLE la.
‘rOblem 1: tzi

= 1%, c= ; $-
i=l

1

TABLE lb. Problem 2: EL =.ool, c=~~

i i~~ ‘i
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— —————. — — —.
Continuous Discrete Continuous Discrete

Parameters Solution Solution Parameters Solution Solution

— — —— ——— —

=t
tzl Z5

2.4659

=t
tz2 Z4

1,5746

tz3
1,3703

$ = Q: ,07866

$
= .$ ,14147

0
‘3

.17375

—

2,0000 =t
tzl z

1,3708 1.0000

5

1.5000 =t
tz2 Z4

0,8774 1,0000

1,5000
tz3

0,7602 0.5000

0

‘1
= $’ ,07876

,14143

~: .17385

——

TABLE lc. Problem 2:
‘Ii

..oo2, c=j+
i=l i

TABLE ld. Problem 2:
‘ii

= .003; c = ; ~-
i=l tzi

Continuous Discrete Discrete
Parameters Solution Solution Solution

— —

tzl
12,746 10.000 15.000

tz2
12.746 15.000 10.000

0

‘1 2,1487 2,0851 2.2130

0

‘2
4,7308 4,6110 4,8334

———. ——

TABLE 2. 2-section transformer example; c=f~
i=l ‘z.

1
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