N

Reprinted from JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS Vol. 14, No. 1, July 1974
Printed in Belgium

Optimization of Design Tolerances Using
Nonlinear Programming!

J. W. BanDLER? .

Communicated by C. T. Leondes

Abstract. A possible mathematical formulation of the practical
problem of computer-aided design of electrical circuits (for example)
and systems and engineering designs in general, subject to tolerances
on k independent parameters, is proposed. An automated scheme is
suggested, starting from arbitrary initial acceptable or unacceptable
designs and culminating in designs which, under reasonable restric-
tions, are acceptable in the worst-case sense. It is proved, in par-
ticular, that, if the region of points in the parameter space for which
designs are both feasible and acceptable satisfies a certain condition
(less restrictive than convexity), then no more than 2% points, the
vertices of the tolerance region, need to be considered during
optimization.

Key Words. Engineering design, nonlinear programming, convex
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1. Introduction

An extremely important practical problem is the problem of optimal
design subject to tolerances. Recently published work (Refs. 1 6) has
yielded some practical insight into the nature of the problem. Indeed, it
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suggests immediately the possibility of formulating the complete worst-
case design of circuits or systems as a nonlinear programming problem.

An automated scheme would start from an arbitrary acceptable or
unacceptable design and, under appropriate restrictions, stop at an
acceptable design which is optimum in the worst-case sense for specified
tolerances. The most suitable objective function to be minimized would
also seem to be one that best describes the cost of fabrication of the
circuit or system, as suggested by some authors (Refs. 1-6).

It is the purpose of this paper to propose possible formulations and
to discuss this problem generally. It is not claimed that a complete
solution has been obtained. However, a number of interesting objective
functions (more appropriately, perhaps, cost functions) have been
investigated.

Many types of objective functions can be formulated. A number of
variations on the sum of the inverses of the absolute tolerances or the sum
of the inverses of the tolerances relative to the respective nominal para-
meter values can be obtained. Furthermore, the nominal parameter
values may or may not be variable. The relative merits of these and other
functions which attempt in some way to maximize the size of the region
of possible designs (namely, the tolerance region) are discussed.

For the purposes of this paper, it is assumed that the parameter
tolerances can be specified independently. Furthermore, it is assumed
that the design parameters and tolerances can be varied continuously.
The tolerance region, in this case, will be defined by simple upper and
lower bounds on the parameters. Of course, the region will contain an
infinite number of acceptable designs, assuming that it is a subregion of
the intersection of regions of acceptable and feasible designs. It is proved
that, if this region satisfies a certain condition (less restrictive than
convexity), then only the (finite) number of vertices of the tolerance
region need, at most, to be investigated.

2. Feasible and Acceptable Designs

A wide range of design problems can be formulated as nonlinear
programming problems. One usually defines a scalar objective function
U(¢), where

b
so %] 1)
b,
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represents the k& independent design parameters. Design constraints can
be assembled into a column vector g(¢) and the problem can be stated as
finding ¢ such that

Ué) = ;g}{: U(¢), (2)
where
R, £{$|8(¢) = O} (3

For the purposes of the present discussion, let us assume that two
kinds' of constraint functions are present, those that determine the
feasibility of a design [designated g(#)] and those that determine the
acceptability of a design [designated g,(#)]. Therefore, we will define a
feasible region of points R; as

R, 2{$lg, >0} 4)
and an acceptable region of points R, as
R, £{$|g. >0} ®)

Thus, R, = R, N R, . It is assumed that all sets are nonempty Note
that R, is not necessarlly a subset of R, .

The objective function is usually set up so that a feasible solution
is obtained at an interior point of the acceptable region and as far as
possible (in some sense) from its boundary. The reasoning behind this is
the hope that, when the design is fabricated, inevitable errors in the
design parameters might yield, nevertheless, an acceptable design. It is this
flexibility which can be exploited in the optimization of tolerances.
Often,

Ul$) = —mingi(9), (6)
where the index set I, relates to constraints defining R, . It follows then

that
R, ={$]| U(¢) < 0} (7

3. Tolerance Region

Given a nominal point ¢° and a set of nonnegative tolerances ¢, where

>0, ®
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we can define a region of possible designs R, as

R A{p|S—es <P <P +e, =12,k )
~ or, equivalently,
R A{pldi =00 +tier, —1<t; <1,i=12,..,k (10)

Obviously, depending on the location of ¢° and the value of ¢, R, may or
may not be a subset of R, .

" The tolerance problem is beginning to take shape: R, should be
placed inside R, in some optimal manner by adjusting ¢° and ¢ to optimal
values ¢9 and ¢&. A serious development, however, is that all points ¢ € R,
must satisfy g > 0. We have, effectively, to deal with an infinite number
of constraints. ,

For any given point ¢° we can view the functions g(¢) with respect
to € as follows. We let the origin of the e-space correspond to ¢° (transla-

¢, ¢,

¢

T D

Fig. 1. Allowable tolerances corresponding to particular constraints and particular
nominal points.
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tion). Then, we consider all the possible linear parameter transformations
[from (10)]

«=T(¢—¢%
suggested by the transformation matrix (magnification and reflection)

I, 0 - 0
0 1/t - O

N
I

,  —1<t<1, i=1,2.,k (I1)
0 0 - 1/

Two-dimensional examples of allowable tolerances in the tolerance
space corresponding to particular constraints and particular nominal
points in the parameter space are shown in Figs. 1-2.

%
}

7 7

Z |
/ - — ¢

7 1 Z !

Fig. 2. Allowable tolerances corresponding to particular constraints and particular
nominal points.
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4. Restrictions on R,

For obvious reasons, it is impractical to consider an infinite number
of constraints. In order to make the problem tractable, a number of
simplifying assumptions could be made to try to obtain a solution to the
problem with reasonable computational effort,

It can be shown that, if R, is convex, then from Refs. 7 or 8,

FeR, i=12.m . (12)
implies that
¢ = f Agie R, (13)
=1 .
for all A; satisfying
i M=1 and XA =0 i=12.,n (14)

For example, given a finite number of points 4¢ in a finite-dimensional
Euclidean space, it is easy to visualize that the ¢* are vertices of a polytope
(the intersection of a finite number of closed halfspaces) and that ¢ is
any interior or boundary point. If R, is itself a polytope (all constraints
linear), it is clearly convex.

The polytope R, has 2% vertices. Let the 7th vertex be denoted by
¢t and Jet

§ = — e 2oy eRyy i = 1,228, (15)
where
¢ 0 = 0
2 (16)
S

and where v; is a k-element vector whose elements reflect the subscript ¢
in binary notation, i.e.,

0 1 0 1
0 0 1 1
o], wolo], walo}.. an

o
[=2Ek
@
(=}
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The vector v;_; can be formed as follows:
k -
vy =), mi)uy,
=1
where
Ha s g seess g E{O, 1}

must satisfy (see Table 1)

k
i=1+4 3 mli) 2

el

and where the k-element vectors u; are given by

1
th é (:) ’ Uy é ? yoeey Up é
0 0

105

(18)

19

(20)

@1)

Figure 3 illustrates an example in three dimensions. Observe that

k
Eviy =Y, poi) ey .
=1

(22)

Table 1. Numbering scheme for the vertices of R, .

®

i () palf) mi) ) ;j paE) ety
mal
1 0 0 0 0 0
2 1 0 0 0 €ty
3 0 1 0 0 €Uy
4 1 1 0 0 QU + ety
5 0 0 1 0 €U
6 1 0 1 0 €ty + ety
7 0 1 1 0 €ty + €gtiy
8 1 1 1 0 €Uy + esty + €U,

I\n)‘
- eae
—
—
—
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¢° ¢

¢g %¢p%+e

¢

Fig. 3. Three-dimensional example of points defining the vertices of R; .

Using (12)—(14), we have

b—P—ct2¥ (Ai S i) e,-uf) eR, 23)

i=1 i=1

if R, is convex and the vertices of R, are elements of R, . Equation (23)
generates the set R, . Therefore, R, C R, . See Fig. 4.
It will now be shown that the assumption that R, is convex is

unnecessarily restrictive.

Theorem 4.1. If the vertices of R, are in R,, then R,C R, if,
forallj=1,2,.,4

$% ¢"? = ¢° + ou;€R,, (24)
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Fig. 4. Possible region R, .

where « is a scalar, implies that
$ =¢°+AFP —¢)eR, (25)
for all A satisfying
0<A<L (26)
See, for example, Fig. 5.

Proof. Let ¢; denote some point, in general, in an /-dimensional

linear manifold generated by the first 2! vertices as
13

b= —et2¥ (p‘ S i) e,aj), @)

fml je=1 \

4’3 ¢4
¢! $2
W\

A

Fig. 5. Possible region R, .
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with p, satisfying
i po=1 and p;>0, i=12,.,2. (28)
Note that, since max ¢ = 2}, we can deduce from (20) that
w =0, j>1, (29)

in (22), so that the relevant summation need be taken only up to / and
not k.
Assume that ¢, € R, for all ¢* € R, given in (22). Now, consider

gt o
b =#—+23 (02wl -l (30)
=} Gual
with ¢, satisfying
814'1
Y g = and ¢, >0, i=12,..,2". 31)

After some manipulation, we find that

st : ot
¢l+l =¢0 — € + 2 Z [(q‘ + qgl_,,‘) Z F-,(i) eju’] + 2( 2 q‘) U (32)
=1 el §=2041
Let ‘
gH-l
A=) (33)
$=2i41
and
Pi=q+ 4, i=12.,2. (34)
Hence, (32) becomes
$r1 = + ety - (35)
With A = 0,
¢l+1 = ¢l € Rc ]

by assumption. If A = 1,
b = b1 + 2149814,

which represents a translation of the /-dimensional manifold. Thus,
&1 € R,, by assumption. For 0 <A < 1, we note that ¢,,, € R, if
(24)«26) hold for j =1+ 1.
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Fig. 6. Possible region R, .

It is easy to verify that ¢, € R, and, furthermore, that ¢, e R, if
(24)—(26) hold for j = 1 and j = 2, respectively. It follows by the
foregoing inductive reasoning that ¢, = ¢, as defined by (23), is in R,
under the conditions of the theorem.

The theorem allows both Figs. 4-5, but not Fig. 6.

5. Some Objective Functions

A number of potentially useful and fairly well-behaved objective
functions which might be used to represent the cost of a design can be
formulated. In practice, of course, a suitable modelling problem would
first have to be solved to determine the significant parameters involved
partially or totally in the actual cost. Here, we will assume that either
absolute or relative tolerances are the main variables and, furthermore,
that the total cost C(¢°, €) of the design is just the sum of the cost of the
individual components.

It is intuitively reasonable to assume that

C(¢%e)—c =0 as e— 00, (36)
C($% €) > © for any ¢ — 0. 37

Two out of many possible functions which fulfil these requirements are,
for c = 0,

Ca =Y. (cles) o (38)

i=1
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subject to € > 0 as stated in (8), and

k
C, = Y c;loge(/<y), (39)
=1
subject to
P=e>0. (40)
In both cases,
=0, i=1,2..k (41)

6. Examples

It is interesting to consider C, and C, for the different regions R,
. sketched in Figs. 7-10. We will let ¢; = ¢, = 1. Figure 7 depicts a
situation where §° has relatively little variation in going from C, to C, .
Figure 8 has 4,° > & and §,° = &, ; for C, , 4,° > O but, for C,, §,° = 0
which (physics permitting) indicates that one parameter may be removed.
It can be shown (see Fig. 11) that min C, is given by $,° = 0, at §,° =
2.5, & = L.5. Figure 9 allows the possibility of removing ¢, if C, is
optimized. The minimum cost is then log, 9. However, it is easily shown
that, to minimize the cost, ¢, should not be removed (see, for example,
Fig. 12). Using C, in Fig. 10 would indicate that ¢,° and §,° may be
zero. Using C, in all the cases of Figs. 7-10, we would find ¢° to be an
interior point of R, .

¢2 / :
5 b - »
4 - ///
3 - ) . k
2 -
l L

1 ] ] ] |;¢1 
0 | 2 3 4 5

Fig. 7. Example used in the discussion of objective functions.
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o 1 2 3 4 5

Fig. 8. Example used in the discussion of objective functions.

A number of corresponding observations to those made above can
be made if, for the cases sketched in Figs. 7-10, we take (for example)
¢, = 1/¢, and ¢," = ¢, as parameters.

.

7. Conclusions

If, as is usual in the design of circuits or systems, the optimal
design is obtained by solving an approximation problem, then a fairly

¢2
5_.
4/
3
2 .
I | ] H |¢1
(0] Il 2 3 4 5

Fig. 9. Example used in the discussion of objective functions.
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-

ro

{ It
Z #
0 177273 e s

Fig. 10. Example used in the discussion of objective functions.

large number of inequality constraints usually define the acceptable
region. For any particular set of reasonable tolerances, one could exploit
the likelihood of the worst case (point most likely to violate a given
constraint) being predictable by a local linearization or higher-order
approximation of the constraints to greatly reduce the computational
effort over the computational effort implied by the 2% vertices of the tole-
rance region. Further study of these ideas from a nonlinear programming

5 L 1/4

0 [ 2 3 4 5

Fig. 11.  Example corresponding to Fig. 8 with «;," =& = 0.
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€2

5 F 1/3

4

3

2

1

_ ¢2

0] | 2 3 4 5

Fig. 12. Example corresponding to Fig. 9 with ¢,° = 1 and ¢; = 0.5. The best value
of C, is, in this case, loge 6.

point of view should yield more insight into the possible success or failure
of particular tolerance optimization algorithms that might suggest
themselves.
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