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This paper investigates the feasibility of automated design of lower-order models
for high-order systems where the order of the model can be increased efficiently
according to desired performance criteria. The modelling can be done for a variety
of objectives with or without constraints, so that a realistic on-line or off-line design
can be achieved to satisfy a set of arbitrary transient and steady-state response
specifications. Suitable examples are chosen to illustrate the modelling procedure.

1. Introduction

A number of methods are now available for determining low-order models
for high-order complex systems for a variety of performance criteria and
objectives. Least-squares and minimax system models have been derived
for high-order systems recently (Sinha and Bereznai 1971, Bandler, Markettos
and Sinha 1973, Bandler, Markettos and Srinivasan 1973) using direct search
(Hooke and Jeeves 1961) and gradient (Fletcher and Powell 1963, Fletcher
1970, Bandler, Srinivasan and Charalambous 1972) optimization techniques.
These models were derived on the basis of measured input—output data of the
system and the steady-state of the model was fixed at a certain value.

Minimax objectives have been considered throughout this paper for pur-
poses of modelling, though any other objective could also suit the purpose.
It is now possible to tackle constrained minimax problems rather efficiently
(Bandler and Charalambous 1974, Bandler and Srinivasan 1973 a), and a
generalized objective function can be formulated, which can accommodate
the steady-state error between system and model responses, which makes the
whole modelling procedure rather flexible and meaningful. Thus, arbitrary
transient and steady-state response specifications can be imposed on the
model for a desired performance criterion.

The whole modelling procedure can be automated, so that it is possible to
move from optimal low-order models to higher-order models without degrada-
tion in the objective function value. By this procedure, modelling may be
continued and the order of the model increased, until the error criterion
meets the desired objectives of the user. This can be done on-line or off-
line, though automated modelling would be quite important in on-line opera-
tions.

Once a set of parameters for a model has been obtained by optimization,
it may be important to investigate the solution for optimality, and recently
a programme has been developed (Bandler and Srinivasan 1973 b) which is
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capable of testing a solution for minimax optimality conditions. If the
solution is optimal, the user may decide to increase the order of the model for
improvement in the objective function, while if it is not optimal, the user may
decide to use another optimization technique to improve the results.

Second- and third-order models have been derived for a nuclear-reactor -
system described by a ninth-order non-linear differential equation with and
without steady-state constraint specifications, and the solutions have been
verified to satisfy the necessary optimality conditions. It is proposed to
apply constraints on the model parameters so as to guarantee that the pole-
zero locations of the model in the s-domain may not contribute to instability
of the model.

2. Minimax system modelling

The modelling problem considered assumes that input—output data of the
system is known, and that the error criterion considered is minimax (or
Chebyshev). It is required to find a transfer function of a given order such
that its response is an approximation to the response of the higher-order system
in the minimax sense. The problem may be tackled by efficient direct
(Bandler, Srinivasan and Charalambous 1972) or indirect (Bandler and
Charalambous 1972) minimax algorithms.

In general the transfer function of a given order n may be written as

Cbys™ by, s L D18+ by
s, "4t ags+a,

Hm, n(s)

m

Y bt

— i=0 (1)

n
s+ Y a, s
j=1

where m <n for physical systems. For this work the input is a unit step
and the criterion chosen is to minimize the maximum error between the
system and the model responses over a specified time-interval [0, 7'], where
the vector of variable model parameters is given by

b =[agay ... @y _1boby ... b, 17 (2)
In this paper
¢; is an ¢th time instant in [0, 7],
¢;® is the response of the system at ¢,
¢;™(d) is the response of the approximating model at i,,
e;(d)=c;"(d)—c; is the error between the system and model responses at ¢,
¢, is the steady-state value of the system,

¢,™ is the steady-state value of the model.

The usual approximation problem that has been considered in the past
assumes that c,™ is fixed at a convenient value (usually ¢, or ¢ at t,=T),
so that the objective is to minimize

U(d)= max |e;(¢)] (3)

t:€l0, T']
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It may, however, be unacceptable to fix ¢ ™ at a certain value, in which
case a realistic trade-off between transient and steady-state errors can be
achieved.

3. A generalized objective function
It has been recently proposed (Bandler and Charalambous 1974) that a
constrained minimization problem can be formulated as an unconstrained
minimax problem. This approach has been used by Bandler and Srinivasan
(1973 a) to consider the constrained minimax problem as a non-linear pro-
gramming problem, and then reformulating it into an unconstrained minimax
problem. It is now possible to apply this method to system modelling so
that a generalized objective function can be defined to take into account
both the transient and steady-state response errors. The following additional
notation is required :
S, is the upper bound of the system specifications at steady-
state,
S, is the lower bound of the system specifications at steady-
state,
€un =Cos™— 8, 18 the error between upper system specifications and model
steady-state value,
€1, =C,"—48,, is the error between lower system specifications and model
steady-state value.

The problem may now be formulated into two forms as follows.

3.1. Formulation 1

Vi, 2, a, ayy,, dyp) = tn&)a);] [2, 2—a(z— |e(D)]), 2— X1ions 2+ Xyeuoo]  (4)

€0,
where «, «;, and «a,, are positive. For sufficiently large values of «, o,
and «,,, one can obtain, in principle, the exact optimal solution for the original
problem by minimizing this reformulated objective function. If ¢, ™ is fixed
such that e, and —e,, are positive, the objective function (4) reduces essen-

tially to U(d).

3.2. Formulation 2

Minimize
W(¢’ Wiss wuoo) = max [161(4))" _wlooeloo’ /wuooeuoo] (5)
4:€[0, T
where

=0 for —e;, <0

wloo
>0 for —e; 20
=0 fore,, <0

wuoo

>0 fore,,>0

If ¢,™ is fixed within satisfied specifications the above objective function
reduces to U(d).
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Comments. In cases where suitable constraints—including parameter
constraints—are imposed, the above procedure may be used to incorporate
this in the objective function (Bandler and Srinivasan 1973 a). In many
cases it is convenient to choose S, =8, =c,*

4. Automated lower-order models

One of the major problems that is encountered during modelling is to
decide whether a certain lower-order model is acceptable or not. If the model
is too simple so that computing time for optimizing model parameters is small,
the approximation to the original system may be very bad, while if the model
is complex, then the very need for system modelling is lost. If one were to
strike a reasonable compromise between the speed with which the model is
optimized, and the accuracy of the approximation, it would not be unreason-
able to devise a scheme whereby one could increase the complexity of the
model in an automated fashion after a certain number of iterations or computer
time. It is, however, important to keep in mind the desirability of making
this increase in complexity as smooth as possible, so that the objective func-
tion value is not degraded. Thus, either the number of parameters could be
increased for a model with a certain order, or the order of the model itself can
be increased.

Let H,, ,* denote an optimized model of the form (1). Three possibilities
occur as follows.

4.1. Increase in parameters only
Hm, n*(s)_)Hm—i»p, n(s)

Here b,,,,,0,,., 1, ---, b,,.; are assumed to be initially zero so that H,,, ,=

H,, ,* in the first iteration.

4.2. Increase in order
Hm, n*(s)_’HmﬂLq, n—kq(s)

Here ¢ poles of H,, ., ,.,(s) are assumed to cancel with ¢ zeros initially, so
that H,,, ,.,=H, ,*in the first iteration. In this case, initial guesses for

q poles (or zeros) are necessary.

4.3. Increase in order and parameters
H, .*(s)—-H

m, n 8)

m+p+aq, n+q(

Here b,,.,.,,
cancellation of ¢ zeros and ¢ poles at start, so that H
first iteration.

A careful choice of initial parameters can make the increase in model
complexity smooth so that the whole modelling procedure can be automated

on a small digital computer on-line.

coes by g1 are assumed to be zero initially and that there is a
H, ,*in the

miptq, ntqg— Hm, n

5. Optimality conditions

Once a certain low-order model has been optimized using an optimization
technique, it may be necessary to investigate the parameter solution for
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minimax optimality conditions (Bandler 1971). Though the necessary
optimality conditions seem straightforward to verify it is both tedious and
difficult in practice. Bandler and Srinivasan (1973 b) have recently pro-
posed a user-oriented computer programme which makes the testing of a
solution for optimality practicable.

It is now possible to investigate the solutions after a certain number of
iterations of the modelling algorithm, or when a certain convergence criterion
is reached, so that one may decide whether to carry on with further optimiza-
tion, to increase the order of the model, or to terminate altogether.

6. Results
For the examples considered, two second-order models and a third-order
model were chosen.

b
H..(s -0
02() s +a;8+a,
H,(s)= Bs+ B,
128 T2+ As+ 4,
282+ 28+
H _ 6 5 4
2s(%) (8 +3)(s% + X8 + 1)

The transition between the three models can be made smooth by making
the following substitutions at the start of the new model.

* . p— & — % —} * —

Hy*—H,,: Ag=a,*, A;=a,*, By=>by*, B;=0

Hy*—Hyy o xy=0,%, xy=0a,* x3=positive value
Z,=2x3bo*, X5 =by*, 25=0

H*—Hyy i xy=Ay*, x,=A,*, x3=Dpositive value
2y = By*zs, x5= By*x3+ By*, ¥5=B;*

Two cases were considered for both examples.

c,,™ fixed
In this case,
Wi =Wy = 0
and

U($)= max |e($)]

tel0, T

Co™ varied

In this case,

Wi =Wy =W,
and
U(d)= max [|e,(d)], —%eplimr Wepy ]
4el0, T]

Example 1

A ninth-order nuclear reactor system (Bereznai 1971) was chosen, where a
step input is considered so that the power level of the reactor system changes
from 909, to 1009, of the full power. 7T was equal to 10 seconds.
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The results, shown in Table 1, indicate that the increase in order of the
model did not produce any large improvement in U, the minimum value of
U, and in this case a model increase is quite wasteful from the computing
viewpoint. On the other hand, an improvement in the transient error at a
slight expense on the steady-state error is obtained.

. 1000 max
Case Model 1000 U [—e;y, €uo]
H,, 2-9234 0
C,™ fixed
H, 2-7018 0
at ¢ °
H,, 2-4040 0
C,,™ varied
H,, 1-2167 1-2166
wy =1
Sloo = Suoo = cc:oS

Table 1. Results for Example 1.

Example 2

The system considered was a seventh-order control system for the pitch
rate of a supersonic aircraft (Bandler, Markettos and Sinha 1973, Bandler,
Markettos and Srinivasan 1973). 7' was equal to 8seconds though the
responses shown in Figs. 1 to 3 were taken up to 20 seconds. ¢, ® was equal
to 0-11111. The results are summarized in Table 2.

- 1000 max
Case Model 1000 U [—€i> €ue) Fig.
Hg, 3-7635 1
c,™ fixed at
H, 2-4872 2
¢ fort,=T
Hyq
(6 ripple) 1-0207 3
(5 ripple) 1-2140 —
C,™ Varied Hg, 4-1656 4-1656 1
we=1 H,, 4-1582 4-1582 2
81 =8y =C* Hy, 1-0201 0-91785 3
€™ varied H,, 77657 7-6945 x 10-¢ —
w,, =108 H, 7-8624  0-0000 —
8, =0-11061
H,, 10201  9-8483 x 107 —

Sy =0-11161

Table 2. Results for Example 2.
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The results indicate that when c, ™ is fixed increasing the order of the
model does improve the transient errors, and it has been shown that for the
third-order model both the 5-ripple and 6-ripple solutions satisfy the necessary
minimax optimality conditions (Bandler, Markettos and Srinivasan 1973).
It is interesting to note that in all the cases considered, the third-order model
gives the best result corresponding to the same transient error and three
different steady-state errors. Some of the optimal parameters when c, ™ is
fixed tend to have nearly zero real parts which may make the model oscillatory.
Using appropriate parameter constraints (as indicated in an earlier section)
satisfactory results can be obtained which would guarantee a minimum damp-
ing of the model for a step input.

7. Conclusions

Lower-order modelling of high-order systems can be automated rather
easily, and, with the availability of efficient optimization techniques, on-line
system modelling and control is entirely feasible. The proposed ideas can be
effectively used to get desired optimal models in the minimax sense within
user-specified computing times and error allowances.
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