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Correspondence

MICROWAVE ABSORPTION AND SERIES
RESISTANCE OF SILICON-MESA
PARAMETRIC-AMPLIFIER DIODES

The paper by Thompson [Proc. IEE, 1965, 112, (11),
pp. 2013-2018] presents a new equivalent circuit for para-
metric-amplifier diodes which takes into account microwave
losses attributed to the p-n junction. His theory and experi-
ments appear to agree that

(a) the microwave loss occurs within the p-n junction

(b) it is due to a dielectric type of loss mechanism

(c) a resistance in series with the junction capacitance results

(d) this resistance is independent of the junction capacitance,
and vice versa.

The case for (a) and (b) seems rather qualitatively presented,
but will be assumed for the purposes of this correspondence.
In this context, it might be pointed .out that eqn. 14 appears
to suffer from some inconsistency in the units. Possibly it
should read

P = 0555, tan 8/E* mWjecm?® . . . . . (A)

where £ is in volts per centimetre and fis in gigahertz.

The author attempts in Fig. 4(i) to indicate an absorption
resistance within the p-» junction in series with the junction
capacitance C,. Electrically, however, the representation is a
parallel one. Now, assuming the loss mechanism is given by
eqn. A, it follows that the effective resistivity p, in ohm-
centimetres, in the junction region is obtained from
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It should be observed that the electric field £ is common to
both resistance and capacitance. Thus the natural equivalent
circuit in which both absorption resistance and junction
capacitance appear, linked presumably by a common voltage,
is a parallel one at first glance. Suppose we define

C,, = parallel capacitance
R,, = parallel resistance

C

R, = series resistance

«s = Series capacitance

!

then it is well known and easily derived that
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Assuming uniform material, we can see the analogy between
eqn. B and the parallel version of eqn. C. Now

R
R,=—2®0 __ . . . (D
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Two possibilities are
. tan &
(i) tand » 1, R;; = R, but C;; ~ R,

(ii) tan § < 1, Cyy = C,,, and Ry > R, tan? &

The first case involves a frequency-dependent series capaci-
tance. The second involves a capacitance independent of loss
with a series resistance which depends on capacitance. Neither
of these is consistent with Thompson’s experiments; it would
seem that the reason is that the loss is not uniform within
the p-n junction. If this is so, both eqn. 14 and Fig. 4(i) are
misleading. (Note that, because of its high value, the author’s
R, does not affect these generalisations at high frequencies.)
Could it be possible to combine cases (i) and (ii) for the
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Fig. A

An equivalent circuit which could represent the experimental results
on Thompson’s parametric-amplifier diode

Circuit (a), intended to illustrate nonuniform loss within the p-n junct,ion, is
approximately equivalent to circuit (b), from which we obtain Thompson’s pro-
posed circuit (c)

parametric diode into the circuit of Fig. A(a) to a first
approximation?

The author states that he found the series resistance of a
parametric diode to be independent of frequency in the range
2-6GHz. This raises the question of how does the series
resistance actually vary as a function of frequency from d.c.
into the microwave region for a particular diode. Does the
author have more recent data or any further speculation?
The only data in the paper are for d.c. and 2GHz.

The author concludes that ‘these considerations also apply

PROC. IEE, Vol. 116, No. I, JANUARY 1969



to . . . Esaki diodes’. Would the author suggest that the -

proper equivalent circuit of the Esaki diode is like Fig. 4(ii)
[Fig. A(c) here], in which R, is replaced by the junction
negative resistance of the diode? Then eqn. 8 could be used
to predict the resistive cutoff frequency.

1 would like to thank Prof. E. Bridges of the University
of Manitoba for helpful discussions on dielectric-loss
phenomena.
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STABILITY OF PASSIVE TIME-VARIABLE
CIRCUITS

In the paper by Klamm, Anderson and Newcomb
[Proc. IEE, 1961, 114, (1), pp. 71-75], the authors claim to have
shown that ‘circuits composed of a finite connection of linear
passive time-variable elements are necessarily stable’. Quoting
from the introduction: ‘This is accomplished by making
circuit replacements to obtain pseudostate variables as
voltages across graphically independent capacitors. From
such an equivalent circuit, a cutset analysis shows that the
energy in the capacitors serves as a suitable Lyapunov
function . ...’

The equivalent circuit referred to is generated by replacing
each time-variable element by their ‘gyrator equivalents’
illustrated in Figs. A, B and C. Since the equivalence is on an
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Gyrator equivalent of a passive time-variable inductor
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Gyrator equivalent of a passive time-variable capacitor
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Fig.
Gyrator equivalent of a passive time-variable resistor

element basis, it seems obvious that the total stored energy
at any instant in the equivalent circuit must be equal to that
stored in the original network. This leads one to ask what is
accomplished by the rather cumbersome gyrator equivalents.

To elaborate this viewpoint somewhat, it can be easily
shown that the input current of the gyrator equivalent of a
time-variable inductor and the input voltage of the gyrator
equivalent of a time-variable capacitor are, respectively,
related to the voltage across the unit capacitor by

Q= and vp =
20 € Ve
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For networks containing neither inductor cutsets nor
capacitor loops, the gyrator equivalents can therefore be
regarded as physical realisations of a transformation relating
the inductor-current and capacitor-voltage state variables to
the unit-capacitor state variables; i.e.

X)) = M-")Y(@r)
where
X(t) = state vector of inductor currents and

capacitor voltages
Y(t) = state vector of unit-capacitor voltages

and

M —112(t) = diagonal matrix whose nonzero entries are
reciprocals of the square roots of the time-
variable inductor and capacitor values

Alternatively,
Y(r) = MNAOX(1),
and therefore

YY) = XT(OM(DHX(1)

which shows that the stored-energy functions are indeed
equal.

There seem to be two errors in the original paper. The first
appears in the gyrator constants of the capacitor equivalent,
which are given as the reciprocal of those shown in Fig. B of
this correspondence. This error persists in the circuit example
of ‘Section 4.2, which suffers additionally from a missing
gyrator and resistance. Since the analytical part of the
example is carried out on the incorrect circuit, the result,
which supports the theorem, is not valid.

R(t) == -\-cm

Fig. D
Passive-time-variable-circuit example

Looking at this example (Fig. D) without transforming the
circuit, the state equation is

—o(1) 1
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+ C'(r))

The stored energy function is

vy < 0t cz(r)]vZ(r)

and its derivative is therefore

. 1« C@)
V() = — vt (——— — —)

) = =20 (755~
While V() is definite for nonnegative C(¢), this is not the
case for V(r); therefore, nothing conclusive can be said about
stability. Tt is interesting to note that if

1 + C@) = e~
and R(t) = e
then V() = v(t)(a — 1)

which is unstable for « > 1. The argument that this happens
because C(r) becomes negative can be refuted by removing
the 1 F capacitor and making C(t) = e—%',
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