PROCEEDINGS
TWELFTH ANNUAL ALLERTON CONFERENCE

ON CIRCUIT AND SYSTEM THEORY

P. V. Kokotovié
E. S. Davidson

Conference Co-Chairmen

Conference held

October 2, 3, 4, 1974
Allerton House
Monticello, Illinois

Sponsored by the

DEPARTMENT OF ELECTRICAL ENGINEERING
and the
COORDINATED SCIENCE LABORATORY
of the
UNIVERSITY OF ILLINOIS
at
Urbana-Champaign



1

THE TOLERANCE-TUNING PROBLEM: A NONLINEAR PROGRAMMING APPROACH

J.W. BANDLER and P.C. LIU -

Group on Simulation, Optimization and Control
McMaster University

Hamilton, Ontario, Canada

Abstract A theory of optimal worst case design embodying centering, toler-
—_—— . . . . . . . . . .
ancing and tuning with circuit applications.is presented, Some simplified
problems and special cases are discussed. Projections and slack variables
are used to explain some of the concepts. .

INTRODUCTION

Much attention has been drawn recently to the component tolerance
assignment and the design centering problem [1]-[4]. An approach whereby
the nominal point as well as the tolerances are simultaneously optimized to
meet minimum cost requirement in the fabrication of the design has been pro-
posed [1], [2], [4]. On the other hand, component tuning, a very importanf
related subject, is usually dealt with separately on a case-by-case study,
or merely as an alignment procedure after the product is built [s].

A theory of optimal worst-case design embodying all the centering,
tolerancing and tuning problems in a unified formulation at the design stage
is presented here. Our approach incorporates the nominal circuit parameter
values, the corresponding tolerances and tuning variables simultaneously
into an optimization procedure designed to obtain the best values for all
of them in an effort to reduce cost, or make an otherwise impractically
toleranced design more attractive. Intuitively, our aim is to produce the
best nominal point to permit the largest tolerances and the smallest tuning
ranges (preferably zero) such that we can guarantee in'advance that, in the
worst case, the circuit will meet all the constraints and specifications.

THE GENERAL FORMULATION
0T A design consists gf design data of the nominal point Qo = [¢? ¢g e
¢k] Tthe tolerances £ = [e, e, ...€ ]T and the tuning vector b [tl tzu
"tkj , where k is the number of network parameters. Note that not all
the components of Qo, g and t need to be variables. Let I = {1,2,...,k}
be the index set for these parameters. The problem is forfulated as the
- nonlinear programming problem:

>

minimize C(¢, €, t)
subject to L&k

$ € Rc (1)

where o
g4 * R Tp @)

and constraints on Qo, £ £ >0, for all p e Ru and some pe Rp, where
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R and R are sets of real number multipliers that will determine the out-

cbme of

circuit and the amount of tuning required to bring the point into

R and R are determined from realistic situations of the tolerance

R .
sﬁreaduand tuﬁing

range. For example,
Ry= fgl-lcuys-ay, ap sy el ie 1,} (3
where 0 < a, <1, i€ I¢. The most commonly used continuous range is ob-
tained by sétting a. to®zero. A commercial stock will probably have the

better toleranced components taken out, thus 0 < a, < 1. Ifa, =1 R is
jdentical to the set of vertices of the tolerance %egion. Somé of the H
common examples for Rp will be,

R, = (Ql—l’f py L ice I¢} )
or, in the case of one-way tuning or irreversible trimming, R = {plO < p.

1, i€ I¢], or Rp = {Rl-l <py < 0, ice I¢}.

we will consider -1 < ¥y <1, -1 < i <1, ie I¢.

Unless otherwis® indtcatéd,®

. . s . A :
The constraint region Rc is given by Rc = {QIE(Q) > Q} and the toler-

ance rzgion R, 4 {QIQO—& < g < Q°+ g}. Thus, a tuning region

R, & (gle™ By - <4 <8+ By g} Tt ds required that
Rt(K)ch £o,

where @ is the empty set. See Fig. 1 for an illustration.

Tunable Constraint Region

R is defined by a set of specifications and constraints.
cons;rgint regions the problem is subject to

$ € Ré(*)
where y represents other independent variables, and
£= 47+ Bt Tl

Fig. 2 depictsthree different regions of Rc.
allowable.

REDUCED PROBLEM 1

(%)

For tunable

(6)

)

Overlapping is, of course,

Consider the separation of the components into effectively tuned and

effectively toleranced parameters. Let
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A .

I {1|ei >ty de I¢} . (8)
A .

I, = {i]ti >e, de I¢} 9)

" a . ’
€, = € - ti , 1€ IC (10)
and '
t 8t me, it an

¢
It is obvious that I_ and 1 _are disjoint and It LJIg =1,. Now, we may
consider the problem subjecE to ¢

i i

k € Rc
)
where ) €5 ¥y " for i e IE
6. = ¢° + (12)
i i t' ) for iel
i®i t

]
for all -1 < Hy <1, ie IE and for some -1 < CH <1, ie It'

Theorem 1

‘A feasible solution to the reduced problem 1 is a feasible solution to
the original problen.

Proof

Given Qo, £+ t we will show that

(1) ey gyt 05 =65y el
LI |
(@) ey uy vty =typy fel

: '
under the restrictions on His Py and Py

(1) Since p; can be freely éhosen from -1 < G <1, we can let pi'= ¥y
giving ,

. (e - tduy = &5 0y ,

(2) For any -1 < Py S 1 and all -1 < My S 1, we can choose
]
(t.-e.)p.-€,H,
Q<p, = A i1 E < 1,

t
Thus, any point with components represented by (12) of the reduced problem
can be represented by (2) of the original problem.

We state here without proof the following theorem,
Theorem 2

A feasible solution to the original problem implies a feasible solu-
tion to the reduced problem if R, is one-dimensionally convex.
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A GEOMETRIC INTERPRETATION

Let
A [} .
R, = {Q|¢i - e] <y < ¢g +ef, iel) (13)
and A o o .
S - ¢! [
R, = {,g|¢i SRR IR A (14)
Consider the following regions
A -
Rgtp - ('tpl%p N m’ * € REt} ' ) (15)
A
Rete = Re r]Rte
and A
Rctep = {Qp|$p = RQ' Q F Rcte} (16)
where
P
A P;
k= .
Py
and , Ofor i€l
i= { 1for e IE

The constraints of the problem are now interpreted by the requirement
that

Retp C; Rctep ' (17)
Fig. 3 depicts the definition of the different regions. Any point whose
components are given by (12) is in the intersection of R t and R__, may be
tuned into R te by changing the value of p,, i € I_ if tfis projesgion of
R te ONto th& Subspace spanned by the components stibject to tolerances in-
cllides the projection of that point.

The reduced problem may be stated as: " solve a pure tolerance problem
(i.e., no tuning) in the subspace spanned by the toleranced variables with
R as the tolerance region and R as the constraint region.

etp ctep
Special Cases

1) Ie = ¢, the pure tuning problem. -
In this case, R . is the entire space and P is a zero matrix. The
problem has a sofution if

R #P. (18)

cte
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(2) I, =P, the pure tolerance problem.
In this case, R e is the entire space and R is a unit matrix. This
problem has bee& treated thoroughly, It is required that,

netg R, .- (19)

Fig. 4 illustrates a case where R tn tep' An outcome at Qo can-
not be tuned to R_ within the effectivé Euningcrggge. However, there
exists a solution®to the original formulation by tuning both components,
RC is not one-dimensionally convex in this case,

Extension. for Tunable Constraint Region

Three types of components can be identified when the constraint region
is considered to be tunable. They are:

(a) Fixed components with tolerances

(b) Components tuned by the manufacturer
(c) Components tunable by the customer
In this case,

Q € Rc(*)
where
e! u, for iel
° "ot for i ; 20
by =4y vty fordiely 20

] ] 3
ti pi(Q)for ice Itc
where Itm identifies components (b) and Itc identifies components (c). -

Setting the value J to a particular value will control the setting of
the value of pi, ie It such that ¢ will be in that particular constraint

region Rc(*)'
REDUCED PROBLEM 2
We consider -1 < Wy < 1 replaced by My € {(-1,1}, i € I..

Theorem 3 A feasible solution to reduced problem 2 implies a feasible
LA LA . c ° 1
solution to reduced problem 1 if Rctep is one-dimensionally convex.

( ghis is a pure tolerance problem in the subspace. The proof is given
in [1].

Implementation for Frequency Domain Problem

Let ¢* be a vertex of Ret . The constraints can be expressed explic-
itly as P

_ T o , T
2 = gk, +i§1 (4 + t] p)g) > 0 (21)
t ’
where g, is the ith unit vector. The slack variables p? are also to be

constrained by -1 < pf <1, Strategies to eliminate inictive vertices [4]
will not be discussed here.

The optimizationparameters x may now be identified as a n-dimensional
vector consisting of the variable nominal values, tolerances, tuning vari-

ables and all the appropriate slack variables p. A total of m constraint
functions may be formed. in general,
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n= k° + ke + kt(i + nv) (22)
n

and w
iZlnv(i) J +.2kn 4 (23)

m

where k , k_ and k, are the numbers of nomiEal parameter values, toleranced
and tun&d pgrameteﬁs, respectively; n < 2%¢ is the number of distinct
vertices chosen; ny, is the number of f¥equency points considered; n_(i) is
the number of vertices chosen at the ith frequency point and 2k _n_ 1is the

. tv
number of slack variable bounds.

Any optimization algorithm may be used to minimize C(x) subject to
g1(§) z 0: 1 = 1125--'1m'

EXAMPLE
Consider the constraints
by -6 - 220 (24)
2
-95 *+ 160, > 0 . , (25)
Tolerance Example
Minimize L + 1
1 %2
subject to o o
gl=€120'g2=8220‘g3=¢130'g4=¢230
g5 (i) = (85 + €,u,()) - (8] + eu (1)) - 220 i = 1,2,... (26)

o
[
n

. [ iyy 2 [¢] .
8g(1) = -(0; + eu,(1))7+16() + €u (1)) > 1,2,... (27)
where -1 < ul(i) <1 and -1 < “2(1) < 1. .

' Optimality requires

L up ] BN I 16u, (i)
€1
-4 u, | ey “2u,(1) (83 + €,u, (1))
& | = + Z u (1) + Z ug (1) (28)
0 ug 1 -1 1 16
0 B ! -2(¢; + e,u,(1))
ulgi = ..o ug, = u (i) go(1) = u (i) ge(i) = 0 i = 1,2,... (29)
Upy e Uy, Ug(d), u (1) 20 i=1,2,... (30)

o
Assume that €1s €5 ¢1 and ¢§ are not zero, therefore,_set up,U,,Ug and u,

to zero, Minimize gs(i) of (26) and gG(i) of (27) w.r.t. g(i). This leads,
respectively, to

~

0 0
T (¢2 - e2) - (¢I + el) - 2 2 0
using p(i) = [1 -1 and



0 2 0
_(¢2 + 52) + 16(¢1 - Cl) 2 0
using p(i) = [-1 l]T. The optimality conditions (28) - (30) are corresp-
ondingly reduced yielding the solution -

€, = 0.5, ¢,=05, ¢? = 3.5, ¢g = 7.5,

which have been verified by numerical optimization,

Tuning Examgle

Suppose ¢, has a 10% tuning range and ¢, is toleranced. Consider the
problem of minimizing

1
€
subject to o
g1=tizolgz Eézolg3_¢120'g4 ¢2>0
Y
B =,1- vy >0 (31)
g (1) = () + e3u,()) - (8] + tipf(i) - 220 i =1,2,... (32
. 112 . . .
g,(1) = -(8 ¢ equ, ()7 ¥ 16067 + t{pf()) 2 0 & = 1,2,000 (33)
gg(1) = 1 - pj(1) 20 i=12,... (34)
go(i) = 1+ 0j(1) 2 0 i=1,2,... (35)

. . o .0 . .
The variables are ti, ei, ¢1, ¢2 and pi(l), and -1 < u2(1) < 1.

Optimality requires

0] [y] -5 ] -0} (i)] )]
¢
A, o | b, () ~2(85requ, (1)) (1)
E'
o] - T I B I O Lug@| g |*1w® 16
. ’ 0
0 u, 0 1 -2(¢2+eéu2(i))
2] (0] 9] % | letig |
0] "0 ]
0 0
+ % u (i) | 0|+ E ugd) | o (36)
0 0
MQL KA
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ugy = s U = ug(i) g (1) = ... ='ug(i) go(i) = 0 =1,2,...

g
5%5 (37)

181

Ups ool u6(i),...,u9(i) >0 i=1,2,... (38)

where g¢. is the ith unit vector. Minimize g, (i) of (32) and g,(i) of (33)
Ri 6 7

w.,r.t., u,(i). We use p,(i) = -1 in (32) and uz(i) = 1 in (33) for this
purpose.” The corresponaing pi(i) = -1 and Di(l) = 1, respectively, are

obtained by maximizing g (i) and g.(i) w.r.t. p!(i). This yields the
solution ti = 0.5432, eé = 1,444, g = 5.4321, g = 8,3333, :

CONCLUSIONS

A theory of optimal worst case design -embodying centering, tolerancing
and tuning with circuit applications has been presented. The concept of a
tunable constraint region thatallows variable specifications as set by the
customer has also been incorporated. This may find application, for
example, in tunable filters. Components can be separated into effectively
tuned and effectively toleranced parameters to simplify the solution, but
possibly at the expense of optimality. The purely toleranced and purely
tuned problems become special cases. Further simplification has been
discussed in the light of one-dimensional convexity,

It may be added that as far as the authors are aware, this seems to be
the most general formulation to date dealing with the centering, toleran-
cing and tuning problems at the design stage. Tuning uncertainties can
also be taken care of in the formulation.
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Fig. 1 An illustration of the regions RE, Rt’ and Rc'

Fig. 2 An example of three different settings of the tunable
constraint regions.
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Fig. 4 An example of Retpg Rctcp'
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