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Abstract

A new concept of practical design applicable to microwave circuits and involving, in general, simultaneous
centering, tolerancing and tuning is presented. The worst-case tolerance problem falls out as a special case.
With such an integrated approach, designs previously regarded as unrealistic might be made more attractive.
Practical implementation involving, for example, nonideal components and uncertain reference planes is also
treated in this paper from the tolerance point of view.

Introduction

Component tolerance assignment is now c n idered

to be an integral part of the design process
Y-7

. The

optimal worst-case tolerance problem with variable nom-

inal point has benefitted significantly in terms of in-

creased tolerances obtained3-6. Tuning is known to be

very important in microwave design. This work, there-
fore, brings in the tuning of one or more circuit com-

ponents basically to further increase tolerances to
reduce cost or to make unrealistically tolerance solu-

tions more attractive. This new approach embodies cen-

tering, tolerancing and ~uning in a unified formula-
tion at the design stage . The worst-case purely tol-

erance problem and purely tuned problem fall out as

special cases.

The general problem is both mathematically and

computationally complicated, much more so than the

conventional computer-aided design approach which
seeks a single nominal design best satisfying perform-

ance specifications subject to other design constraints.

The latter approach, however, would normally be used

to find a starting point for the work we have in mind.

The Tolerance-Tuning Problem

The problem we are considering may, in general,

be stated as: minimize a cost function C($,”, ~,, :,) ,

the number of designable parameters, $0 is the nominal
point, ~ is the tolerance vector and ~ is the tuning

vector. Let ~ and ~ be the k x k diagonal matrices
with diagonal elements set to s i and t.

1’
respectively.

Then

for all -1 < pi ~ 1 and some -1 < pi ~ 1. Rc is the

constraint region defined by m nonline~r inequality

constraint functions of $ given by R = {$lgi($) ~ 0,
i = 1,2, . . ..m}. The cost function i$ chosen, In gen-

eral, to maximize the tolerances and minimize the-
tuning range.

To reduce the computational complexity of the
problem, and also from a practical point of view, we
separate the components into effectively tuned and

effectively tolerance parameters. Thus

under the same restrictions that -1 < Vi ~ 1 and
-I<p;:l.

A geometric interpretation of the simplified prob-
lem employs the concept of projection. Tuning within
a tuning range may be mathematically regarded as the
projection of points within the tuning range on the
subspace spanned by the tolerance parameters. The re-
sult of this,will be, then, equivalent to solvinga
purely tolerance problem in the projected subspace.
Furthermore, if the projected region satisfies certain

convexity assumptions, only the vertices of the pro-

jected region need be considered. Thus , instead of
considering g.($) > 0, i = 1,2, . . ..m. for every pOSS-
ible outcome, lwe might then take the constraints of
the forma

where~g denotes a chosen vertex6, ~. is the jthunit

vector, It is the index set for the ~ffective tuning
components and ~ is ‘a k x k diagonal matrix with pii=l

except for i c lA, in which case pii=O.
.

If It is empty, ~ is a unit matrix and the prob-
lem is the purely tolerance problem.

Examples

A two-section lossless transmission-line trans-
former with quarter-wave length sections and source to
load impedance of 10 : 1 and 100% relative bandwidth is
used as an illustration of the concepts6. See Table I
for the specifications. Some results are shown in
Table II. As expected, tuning of any element enhances
all the tolerances. Furthermore, if tuning is expen-

sive it will be rejected by the formulation. The ori-

ginal formulation, though more complicated computation-
ally, is useful if the designer has no idea which com-

ponents are to be tolerance or tuned.

As a more realistic example we consider a one-
section transformer on stripline from 50 to 20Q, The
physical circuit and its equivalent network are shown
in Fig. 1. The specifications are listed in Table III.
The physical dimensions WI, W2, W3, and !, are the de-

sign variables. The cost function shown in Table IV

is minimized taking into account

(1) parasitic inductances due to step discontin-
uities

(2) tolerances on w~,w2,w3,L,cr (the dielectric
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constant), t (the strip thickness), and b
(the substra?e thickness)

(3) uncertainties inmodelling of the parasitic

and electrical line parameters
(4) mismatched source and load, represented by

reflection coefficients of known maximum
magnitude and arbitrary phase (e.g., imper-
fect connectors).

Tolerances on c , t and b are independently im-
posed on each of ther3 s?ripline sections. The range
of possible values for each of these three quantities
is the same for all sections, but the actual outcomes
within these ranges could be different.

Explicit formulas for the worst-case reflection

coefficient for all possible source and load mismatches

were used. The worst possible phase was chosen inde-
pendently with respect to frequency to accommodate

completely general connectors and other adjacent ele-
ment imperfections. At each frequency, the worst
interpretation of source and load mismatch was assumed,

taking into account the actual characteristic impedance

values being considered of the input and output lines.

Formulas for the parasitic were taken from

Nalbandian and Steenaart9. The parasitic equivalent

circuit was calculated on the basis of the average

values of =, ts.and b across a particular junction.

The model un$ertalnties were conservatively estimated

from published experimental results9~10.

A worst-case study has been made to select a rea-

sonable number of constraints. We generalize the prob-
lem to allow for

These

candi

(1)

2)

#9

tolerances on the 13 physical parameters

(w1>w2,~, !L,and cr,ts and b for each of the

3 sections)

uncertainties on the 6 model parameters
D1, D2, D3, L1, L2 and Lt treated as tolerances,

where Di is the effective line width of the

ith section.

sets of extreme values could be considered
ates for the worst case, The vertex selection

procedure for t~e 13 physical parameters follows
Bandler et. al. From each of the selected vertices
the worst values of the modelling parameters are chosen.
After each optimization this selection procedure is

repeated, new constraints being added, if necessary.

Results on centering and tolerancing using

DISOPT1l are shown in Table IV. We note that the final
number of constraints used is 18. Seven runs were
needed to identify the final constraints. About two
minutes on the CDC 6400 are required altogether. To
verify that the solution meets the specification, the

constraint selection procedure was repeated at 21
points in the band.

TABLE I

TWO-SECTION 10:1 QUARTER-WAVE TRANSFORMER

Relative Sample Reflection Type
Bandwidth Points Coefficient

(GHz) Specification

100% 0.5,0.6 ,. ... 1.5 0.55 upper

Minimax solution 101=0.4286
(no tolerances)

Conclusions

The conceptswe have derived and the results ob-

tained are proqising. It is felt that our approach

represents not only an advance in computer-aided design
but is currently the most direct way of obtaining

minimum cost designs under practical situations, at
least in the worst-case sense.
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TABLE III

ONE-SECTION STRIPLINE TRANSFORMER

Center Frequency 5 GHz
Frequency Band 4.5-5.5 GHz
Reflection Coefficient Specification 0.25 (upper)

Source Impedance 50 Q (nominal)
Load Impedance 20 0 (nominal)
Source Mismatch 0.025 (ref. toe. )
Load Mismatch 0.025 (ref. toe. )

2.54 + 1%

2 6.35 ;m + 1%
ts 0.051 mm-+ 5%

Uncertainty on L1, L2 3%

D1>D2>D3 1%

.tt lmm
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TABLE II

TWO-SECTION 10:1 QUARTER-WAVE TRANSFORMER
DESIGN CENTERING, TOLERANCING AND TUNING

Cost Function*
Parameters

c1 c1 c1 C2 C3 C4 C5

% 2.1487 2.0340 2.2754 2.5025 1.8748 2.1487 2.1487

z;
4.7307 4.5355 4.9467 5.3337 4.2642 4.7307 4.7307

El/z; x 100% 12.74 17.83 17.60 25.08 31.62 31.62 12.74

c2/z; x 100% 12.74 17.60 17.83 31.62 25.08 31.62 12.74

tl/z: x 100% 10.00 31.62 18.88 0.00

t2/z; x 100% 10.00 31.62 18.88 0.00

E;/z; x 100% 7.83 0.00 12.74 12.74

E;/z; x 100% 7.83 0.00 12.74 12.74

*c =z”/c +zO/E~ ~ ~ 2 ‘2> c2=z;/el+z;/E2+lo(t2/z;),c3=z;/=l+z;/E2 +lo(tl/z;), c4=z;/sl+z;/E2+lo(t1/z;+t2/z;)

c5=z;/E1+z;/E2 + 5oo(t1/z&2/z;)

TABLE IV
RESULTS FOR ONE-SECTION STRIPLINE TRANSFORMER

Cost Function 1

-[

‘: w;
w; Lo

100 7 ‘7+7 ‘~

‘1 ‘2 ‘3 1

Sample Points
No. of Variables

No. of Final Constraints
Minimal Cost

~qo
1

Wo
2

ew,/w; x 100

4.5, 5.5 GHz
8

18

4.82

4.660 mm

8.968 mm

15.463 mm

8.457 mm

0.94 %
.

Ewa/w; x 100 1.20 %

.w:/w:x 100 0.74 %
5

@x 100 0.64 %

IA

‘1

-d t’d t ]4 -1 e

t,

IA. it

Fig. 1. Stripline transformer and equivalent circuit.
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