INT. J. SYSTEMS ScCIL., 1975, voL. 6, No. 7, 665-680

DISOPT—A general programme for continuous and
discrete non-linear programming problemst

J. W. BANDLER] and J. H. K. CHEN}

An integrated computer programme in Fortran IV for continuous or discrete non-
linear programming problems is presented. Several recent techniques and algorithms
for non-linear programming have been adapted and new ideas have been introduced.
They include the minimax and exterior-point approaches to non-linear programming,
least pth optimization and the Dakin tree-search algorithm. The user may optionally
choose the combination of techniques and algorithms best suited to his problems.
Since many practical design problems can be easily formulated as non-linear pro-
gramming problems, the programme, called DISOPT, enjoys a very wide range of
applications such as continuous and discrete tolerance assignments, digital filter
design, circuit design, system modelling and approximation problems. Numerical
results for a number of functions and circuit tolerance optimization problems are
presented in this paper to demonstrate the performance of DISOPT.

1. Introduction

Optimization has become an almost indispensable step in engineering
design. Many useful algorithms and techniques for optimization have been
proposed. However, it would be very time-consuming and inconvenient for
each individual engineer to implement these algorithms and techniques to
solve his particular design problem. The objective of this paper is to describe
an efficient, user-oriented computer programme called DISOPT, which can
solve continuous or discrete, constrained or unconstrained general optimiza-
tion problems. Several recently proposed algorithms and techniques which
have been reported to be efficient have been programmed into DISOPT.
To the authors’ knowledge, it is the first time that many of these algorithms
and techniques are incorporated in a general programme. Several new ideas
have also been introduced which allow the user to fully employ some of the
latest developments.

Two approaches to non-linear programming are incorporated in DISOPT.
The first is the minimax approach proposed by Bandler and Charalambous
(1974), which compares favourably with the well-regarded sequential
unconstrained minimization technique (Fiacco and McCormick 1968). For the
implementation of this minimax approach, in addition to adapting the
various least pth optimization algorithms due to Bandler and Charalambous,
a new algorithm utilizing an extrapolation technique is developed.
With all the attempted problems, this last algorithm was found
to converge to the minimax optimum faster than the others. The

Received 4 November 1974,

T This work was supported by the National Research Council of Canada under
Grant A7239 and by a Scholarship to J. H. K. Chen. This paper was presented at
the Eighth Annual Princeton Conference on Information Sciences and Systems,
Princeton, New Jersey., 28-29 March 1974.

I Group on Simulation, Optimization and Control, McMaster University,
Hamilton, Canada.

8.8. 2Y

666 J. W. Bandler and J. H. K. Chen

Any
No constraints
V
[¥
Bandler-Charalambous Non-parametric exterior-
technique point method
I |
es Gradient
r=0 checking*
No
Feasibility
checking*
Minimization
Discrete
) Output s
Solution r=r+1

discrete

Obtain initial]
upper bound
Store current on actual
solution if function*
best so far

Yes.

No
J’ Add one
Fathom variable
current constraint

node
J

Fix one

r=r-1 variable*

No JReplace last

variable
constraint

Figure 1. Flow diagram of DISOPT. * Indicates optional.

Continuous and discrete non-linear programming problems 667

second approach to non-linear programming is a modification of an existing
non-parametric exterior-point method described by Lootsma (1972). Some
examples have been included to demonstrate the performance of the methods.

Recently, much attention has been directed to discrete optimization. The
reason is that a discrete solution may be more realistic than a continuous
solution. For example, in practical design problems, a compromise between
maximum performance and minimum cost is often necessary because usually
only components of certain discrete values are available on the market.
Components of other values have to be custom-made and are therefore costly.
The logic of the Dakin tree-search algorithm for integer programming (Dakin
1966) is followed but modifications have been embodied in DISOPT to
enhance the efficiency of the algorithm. Some of them are :

(1) reduction of the dimensionality of the problem ;

(2) evaluation of an initial upper bound on the function value ;

(3) checking the existence of a feasible solution ; and

(4) determination of the availability of a better solution after a discrete
solution is obtained.

The algorithm has also been generalized to handle discrete problems of uniform
as well as non-uniform quantization step sizes. Several examples are given.

A programme due to Fletcher (1972) based on the work of Fletcher (1970)
and Gill and Murray (1972) is employed to perform the minimization. The
formulation of the required derivatives may be optionally checked by DISOPT
using numerical perturbation. A flow diagram of the package is shown in
Fig. 1.

2. The continuous optimization algorithms
Consider the non-linear programming problem of minimizing

()
g:(b)=0, i=1,2,...,m

where f is the objective function, the vector ¢ represents a set of k variables

L[by l”

and ¢,(d), go(d), ..., g,u(P) are the constraint functions. Both f and the g;s
are, in general, non-linear differentiable functions of the variables.

In order that efficient gradient minimization algorithms for unconstrained
functions may be employed, the non-linear programming problem has to be
transformed into an equivalent unconstrained objective. The two trans-
formation methods used in DISOPT will be described next.

subject to

2.1. Bandler—Charalambous technique (1974)
The non-linear programming problem is transformed into the following
unconstrained objective
Vi, «)= max [(d), /() —gi(D)]

where
>0

668 J. W. Bandler and J. H. K. Chen

Sufficiently large « must be chosen to satisfy the inequality

1 m
- <1

- i; u; <

where the u,s are the Kuhn—-Tucker multipliers at the optimum.

The minimization of V(¢, «) with respect to ¢ is a minimax problem and
may be implemented by one of the several recent least pth optimization
algorithms proposed by Bandler and Charalambous (1972), Charalambous and
Bandler (1973) and Charalambous (1974 a).

Let o) f(b) —agi(db), i=1,2,..m
e’m+l(¢) éf(d’)
M)L max ed)
1<jsm+1

Algorithm 1 : Non-linear minimax optimization as a least pth optimization with
a large value of p

Minimize with respect to ¢ the function

) —e \2 Ve
v@)-0ne -9 | 5 (0=)]

where { 0 for M,()+#0
€=

small positive number for 3 ,(b)=0

q=p sign (M (P)—e)

and >0, l<p<oo, J={jle(d)>0,j=1,2,...,m+1}

16|

<0, l1<p<ow, J={1,2,...,m+1}

By employing a sufficiently large value of p, the minimization yields, for all
practical purposes, a minimax solution.

Algorithm 2 : Non-linear minimax optimization as a sequence of least pth

optimization with increasing values of p

U() is defined as in algorithm 1 and minimized using increasing values of
p. The optimum of each minimization is used as the starting point of the
following minimization. The process is terminated if the relative decrease in
M,("), where &' is the optimum of the rth minimization, between two
consecutive minimizations is less than a preset small positive quantity or
after p has reached the maximum assigned value.

Algorithm 3 : Application of an extrapolation technique to a sequence of least
pth optimizations with geometrically increasing values of p (Bandler and
Chu 1974)

The basic formulation is the same as in the two previous algorithms. U(¢)
is minimized with geometrically increasing values of p, i.e. p"=plc’~11 where

T ¢! means ¢ raised to the power r—1.

Continuous and discrete non-linear programming problems 669

p" is the value of p used in the rth optimization and ¢ is the multiplying factor.
The optimum of each minimization is a function of p or 1/p. The minimax
solution is obtained as p— o0 or 1/p—0.

Fiacco and McCormick (1968) have applied an extrapolation technique
effectively to the SUMT constraint transformation algorithm. Since the
situation here is analogous, it is felt that the convergence to the minimax
solution may be improved by utilizing the same extrapolation technique.
After each minimization, the extrapolation formula proposed by Fiacco and
McCormick is applied to estimate the minimax optimum, ¢, and the optimum
of the next optimization.

Let ¢/, i=1,2,...,7, j=0,1,...,0—1 signify the jth order estimate of
J; after ¢ minima have been achieved, then

b=, i=1,2,..,7
where ¢’ is the optimum of the ith optimization and

i I T

— , 1=2,8,...,r7=1,2,..,1-1
-1

$;
The estimate of cf) is given by
&’ = ¢r—-1r
To estimate J;’H, the recursive relation

1 — -1+
cl

b
is used and
(‘f,r-l—l - ¢0r+1
The process stops if the absolute difference between the estimate of & in two
consecutive optimizations is less than a prescribed k-tuple (e, €, ..., €;) where
the elements are small positive numbers, or if the maximum allowable number
of optimizations is exceeded.

Algorithm 4 : Non-linear minimax optimization as a sequence of least pth
optimization with finite values of p

(1) Define g'=min [0, M,(¢°) +y]

where $° is the starting point and y is a small positive number.
(2) Set r=1.
(3) Minimize with respect to ¢ the function

) —&r—_e\d 1/q
U, €)=(M, &)~e) [ZJ <%%§_>—“>]

M (P, &)= ()¢
0 for M(, £)#0

where

small positive number for M (¢, ") =0
q=p sign J[é(q;, &)

670 J. W. Bandler and J. H. K. Chen

and
>0, thenl<p<oo, J= {9|0¢ &,

. 1,2, ...,m+1
it M (¢, &) J= }
<0, thenlgp<oo, J={1,2,...,m+1}

(4) Set ¢l= JIG((‘{)T) + .
5) If |(§m+1—¢n)[é7| <n, where 7 is a suitable small positive number, stop.
Otherwise, set r=7r+1.
(6) Go to step (3).
In this algorithm, any finite value of p greater than unity can be used to
produce minimax solutions.

2.2. A modified non-parametric exterior-point method

This type of approach has been previously considered (Lootsma 1972,
Charalambous and Bandler 1972, Charalambous 1974 b). In this work the
non-linear programming problem is transformed into an equivalent least pth
objective and implemented as follows.

Algorithm 5

(1) Let * be the initial optimistic estimate of f(), i.e. 1! <f().
(2) Set r=1.
(3) Minimize with respect to ¢, the function

r\ » f((l))—t" 14 -—gJ(d)) p]1/p
Vi O= e RW) tE <M I3 tr))]

where
I (&, 1) =max [j($) ", ~g,(P)]
J={jlg;<0}
and
l<p<w

(4) Set ¢rt1=t"+ U (", t").

(5) If |(¢r+1—¢)/t"| <m, where 7 is a small positive number, stop.
Otherwise, set r=r+1.

(6) Go to step (3).

Theorem 1
If < f($), then 1< f().

Proof
By definition of &,

b)— ¢ — . pT]1/p
b e[(855) 5)

(1"
. f&)) tr>p:|1/p
i 1) [((&1

Continuous and discrete non-linear programming problems 671
(since g;($)>0, i=1, 2, ..., m, by definition)
—H§)-tr
Uln, o)+t <f()
< f()

This implies that

Theorem 2

If # is an exact estimate, i.e. #"=f(d) then a solution of U,) is a
solution of the non-linear programming problem and vice versa.

Proof
Ut(d’r’ tr) < Ut(tb’ tr)
=0
since f(¢p)=t" and g,(§)>0, i=1, 2, ..., m.
But
U!(¢: tr) = 0
Hence

This implies that

and
9:(N=0, i=1,2,...,m
Thus J;’ is a solution of the non-linear programming problem.
Conversely,
U,(cl), ") =0
< LTt(¢’ tr)

Thus, ¢ is a solution of U (¢, 7).

2.3. Numerical examples

Two test functions and a continuous tolerance assignment problem were
used to illustrate the performance of the aforementioned algorithms. Allthe
programmes were run on a CDC 6400 computer.

Example 1 : Beale constrained function (Kowalik and Osborne 1968)
Minimize
f(d) =9—8h, — 6y — 45+ 2612+ 26,2 + s>+ 261y + 26165
subject to
$;>0, i=1,2,3

3'—¢1_¢2_2¢3>0

The function has a minimum f($)=4% at J;: [4 Z4]". The numerical results
from a non-feasible starting point are tabulated in Table 1.

672

J. W. Bandler and J. H. K. Chen

Algorithms 1 2 3 4 5
p value(s) 10° 10, 105 4, 16, 64, 256 10 1-5
Other a=1
parameter a=1 a=1 Order of a=1 =0
value(s) extrapolation=3
&y 1-3333338 1-3333338 1-3333333 1-3333353 1-3333333
b 0-7777775 07777772 0-7777778 07777776 07777778
b 0-4444437 0-4444438 0-4444444 0-4444436 0-4444444
f(d) 0-1111114 01111114 0-1111111 0-1111111 0-1111111
Number of
function 79 57 45 57 63
evaluations
Table 1. Comparison of continuous optimization algorithms on Beale function for starting

point ¢0=[1 2 1]T.

Algorithms 1 2 3 4 5
p value(s) 10° 10, 103, 10° 4, 16, 64, 102 15
‘ 256, 1024
Other =10
parameter =10 =10 Order of a=10 tt=—50
value(s) extrapolation=3
&, —0-0000021 —0-0000021 —0-0000011 0-0000080 0-0000071
o 0-9999976 0-9999976 1-0000035 0-9999996 1-0000033
3 1-9999908 1-9999908 1-9999989 2-0000043 2-0000079
n —0-9999883 —0-9999883 —1-0000025 —0-9999653 —0-9999848
f(d) —43-9998041 —43-9998041 —44-0000025 —43-9999210 —44-0000720
Number of
function 110 90 67 90 300
evaluations

Table 2. Comparison of continuous optimization algorithms on Rosen—Suzuki function for
starting point $%=[0 0 0 0]T.

Algorithm 1 2 3 4 5
p value(s) 105 10, 103, 10° 4, 16, 64, 256 4 1-5
Other a=100
parameter a=100 a=100 Order of =100 =0
value(s) extrapolation=23
?y 7-58638 7-60603 7-:60599 7-60604 7-60600
b, 9-87321 9-89770 9-89772 9-89771 9-89778
3 - 9-86777 9-89771 9-89772 9-89771 9-89778
i 0-90573 0-90564 0-90564 0-90564 0-90563
5 204267 1-99923 1-99923 1-99923 1-99923
&g 1-95586 1-99923 1-99923 1-99923 1-99923
f(d) 0-33444 0-33354 0-33354 0-33354 0-33354
Number of
function 7007 425 337 478 157
evaluations

1700 is the maximum allowable number of function evaluations.

Table 3. Comparison of continuous optimization algorithms on LC low-pass filter tolerance
assignment problem for starting point $%=[5 5 5 1 1 1]T.

Continuous and discrete non-linear programming problems 673

Ezxample 2 : Rosen—Suzuki function (Kowalik and Osborne 1968)
Minimize
Hd) =1+ o+ 2¢5> + b2 — 5y — 5y — 215+ Tehy
— P b — b= — i+ py— Py + Py +8>0
— $1% = 2¢9% — h? = 2,7+ 1+ $y + 1020
—2¢% — " — Pg® — 21+ byt Py + 520

The function has a minimum f($)= —44 at $=[012 —1]T. Table 2 shows
the performance of the five algorithms from a feasible starting point.

subject to

#s %
mm mm

Rg
- R,

Vg

I
Nl

Figure 2. LC low-pass filter used in a tolerance assignment problem.

Example 3 : Tolerance assignment in the design of a low-pass filter (Bandler
1974, Bandler and Liu 1974)

Consider the low-pass filter shown in Fig. 2. We will minimize the cost
function 301

=23

where ¢, is the percentage tolerance of component ¢, ..
Let I' denote the insertion loss. Suppose the pass-band and stop-band
specifications are given by

I'(¢, w)<1-5dB for 0< w< 1 rad/sec
and
(¢, w) =25 dB for w>2-5 rad/sec

respectively. A set Q of five sampling frequency points, namely,
Q={0-50, 0-55, 0-60, 1-00, 2-50} rad/sec

was chosen. Minimization was started from a non-feasible point and the
results are shown in Table 3.

2.4. Eaistence of a feasible solution

If the constraints cannot be satisfied at the optimum of the least pth
objective with any value of p greater than unity, then no feasible solution is
attainable (Charalambous and Bandler 1973 a) for all permissible values of p.
The existence of a feasible solution may be optionally checked by DISOPT

674 J. W. Bandler and J. H. K. Chen

before solving the non-linear programming problem. DISOPT minimizes
with a small value of p the function

—q. p1/p
U)= 1,(4) [zJ(M‘(’J(ﬁ’)’> }

where M, ($)=max [—g;(P)]

jeJ

J={j|g}.(¢)<0’ j=1,2,...,m}

The minimization terminates if M (d)<0 A non-positive value of M () at
the minimum or even before the minimum is reached indicates that a feasible
solution is perceivable. Otherwise, there is no feasible solution to the problem
with the current set of constraints.

3. The discrete optimization algorithm

The branch and bound technique was first proposed by Land and Doig
(Taha 1971) and later modified by Dakin (1966). The solution of a discrete
programming problem by DISOPT follows the logic of this latter approach.

3.1. Dakin’s tree-search algorithm

The algorithm first finds a solution to the continuous problem. If this
solution happens to be integral, the integer problem is solved. If it is not,
then at least one of the integer variables, e.g. ¢;, is non-integral and assumes
a value ¢,;*, say, in this solution. The range

[:*]< ;<[] +1

where [¢,%] is the largest integer value included in ¢;*, is inadmissible and
consequently we may divide all solutions to the given problem into two non-
overlapping groups, namely,

(1) solutions in which

b <[;*]
$i=[d*]+1

Each of the constraints is added to the continuous problem sequentially and
the corresponding augmented problems are solved. The procedure is repeated
for each of the two solutions so obtained. KEach resulting non-linear pro-
gramming problem thus constitutes a node and from each node two branches
may emanate. A node will be fathomed if the following happens :

(2) solutions in which

(1) the solution is integral ;

(2) no feasible solution for the current set of constraints is achievable ;

(3) the current optimum solution is worse than the best integer solution
obtained so far.

The search stops when all the nodes are fathomed.

Continuous and discrete non-linear programming problems 675

It seems, then, that the most efficient way of searching would be to
branch, at each stage, from the node with the lowest f(¢) value. This would
minimize the searching of unlikely subtrees. To do this, all information
about a node has to be retained for comparison and this may require cumber-
some housekeeping and excessive storage for computer implementation. One
way of compromising is to search the tree in an orderly manner ; each branch
is followed until it is fathomed.

The tree is not, in general, unique for a given problem. The tree structure
depends on the order of partitioning on the discrete variables used. The
amount of computation may be vastly different for different trees.

3.2. Discrete programming

For the case of discrete programming problems subject to uniform
quantization step sizes, the Dakin algorithm is moditied as follows. Let ¢;
be the discrete variable which assumes a non-discrete solution, ¢,*, and ¢; be
the corresponding quantization step, then the two variable constraints added
sequentially after each node become

¢i= %919+ ¢

b <[:*/q:14;

The integer problem is thus a special case of the discrete problem with ¢;=1,
i=1, 2, ...,n, where n is the number of discrete variables.
If, however, a finite set of discrete values given by

and

S, =181, gy s Sjy Sjy1s s Sy t=1,2,,m

is imposed upon each of the discrete variables, the variable constraints are
then added according to the following rules :

(1) if s;< ¢;* <s;,4, then add the two constraints

b <s;
and

b= 851
sequentially ;

(2) if ¢,* <s,, only add the constraint

b =8

3 lf F > 8 s Only add the COHStTaiDt
i d
¢’i, < 8(]

The resulting non-linear programming problem at each node is solved by
one of the algorithms described earlier. The feasibility check is particularly
useful here since the additional variable constraints may conflict with the
original constraints on the continuous problem. If an upper bound, f, on
f(¢) is available, then the additional constraint

fd)<f

676 J. W. Bandler and J. H. K. Chen

is included in the feasibility check. This upper bound, if not specified, will
be taken as the current best discrete solution. To obtain an initial upper
bound on f(¢) for a discrete problem, DISOPT may be asked to check all the
discrete solutions given by letting the variables assume combinations of the
nearest upper and lower discrete values (if they exist) and store the best
feasible solution.

The new variable constraint added at each node excludes the preceding
optimum point from the current solution space and the constraint is therefore
active if the function is locally unimodal. Thus the value of the variable
under the new constraint may be optionally fixed on the constraint boundary.
Hence, only a k—1 variable problem need be solved and much computa-
tional effort would be saved.

3.3. Numerical examples

Four discrete minimization problems have been included here to demons-
trate the use of the programme.

Ezxample 1 : Modified banana shape function
Minimize
() =100((¢y+ 0:5) — ($1 + 0-6)%)* + (0-4 — ;)

subject to
¢y, b, natural numbers

The results are tabulated in Table 4. This example serves to illustrate that
the optimum discrete solution is not guaranteed by simply chopping or
rounding off the continuous solution. From the contour plot shown in Fig. 3

Solution Continuous Discrete
by 0-4000 1
by 0-5000 2
f(d) 0-0000 072
Function evaluations 878
Nodes 9
Time (sec) 8

Table 4. Results for example 1 starting at $0=[—1-8 0-5]T and using algorithm 3.
pt=4, c=4.

it is obvious that the optimum discrete solution is not given by any of the
vertices about the continuous solution. The best vertex is given by ¢ =[0 0]*
with a function value f(db)=2-12 which is much higher than that for the
optimum discrete solution.

Continuous and discrete non-linear programming problems 677

3

o} 2
#

Figure 3. Contour plot for the modified banana shape function.

Example 2 : Beale constrained function

Minimize the Beale function subject to the additional constraint that the
variables must be integers. The results are shown in Table 5. All the three
optimum discrete solutions of unity function value are detected by the
algorithm. However, if the user indicates that only one optimum discrete
solution is required, DISOPT will check the existence of a better solution
before solving the non-linear programming problem at a node. As illustrated
by this example, this will reduce the necessary computational effort.

Solution Continuous Discrete

o 1-3333 2 1 2

N 0-7778 0 1 1

és 0-4444 0 0 0

f(P) 0-1111 1 1 1
Number of optimum discrete

solutions required 3 1

Function evaluations 226 160

Nodes 7 7

Time (sec) 5 4

Table 5. Results for example 2 starting at $°=[1 2 1]T and using algorithm 1.
p=10%

678 J. W. Bandler and J. H. K. Chen

Example 3 : Tolerance assignment in the design of a wvoltage divider (Karafin
1972)

Consider the simple voltage divider as shown in Fig. 4. The transfer
function is given by 7 =d¢,/(d;+ ¢,) and the input resistance is R = s+ ¢,.
The design specifications are 0-46 <7'<0-53 and 1-85< R <2-15. The obtain-
able discrete tolerances for both ¢, and ¢, are given by the set

S={1, 3, 5, 10, 15} per cent
The cost function
i 1
i=1 ¢i
where ¢, is the percentage tolerance in component ¢, ,, was first minimized
by fixing one variable at each node in the search for discrete solution. The
minimization was then repeated as a four-dimensional problem throughout to

highlight the extra amount of effort that was required. The numerical results
are shown in Table 6.

f

o -0

Figure 4. Voltage divider used in a tolerance assignment problem.

Solution Continuous Discrete
o 7-0007 5
by 7-0007 5
s 1-0137
by 0-9935
0-2854 0-4
Dimensionality of the problem used
in the search for discrete solution 3 4
Function evaluations 589 1083
Nodes 9 9
Time (sec) 10 17

Table 6. Results for example 3 starting at $0=[1 1 1 1]T and using algorithm 4.
p=6.

Ezxample 4 : Tolerance assignment in the design of a low-pass filter

The cost function for the previous tolerance assignment problem in filter
design was minimized with the additional constraint that only the following
set, S, of discrete tolerances was available for each of the components :

S={1, 2, 5, 10, 15} per cent

Continuous and discrete non-linear programming problems 679

The numerical results are tabulated in Table 7. This example illustrates
that the tree structure and hence the computational effort is dependent upon
the order of partitioning on the discrete variables.

Solution Continuous Discrete
s 7-6061 5 10 10
&y 9-8978 10 5 10
o 9-8978 10 10 5
&4 0-9056
&5 1-9992
b6 19992
0-3335 04

The discrete variable first
used for constructing the

variable constraints &y b
Function evaluations 3704 3314
Nodes 27 23
Time (sec) 91 82

Table 7. Results for example 4 starting at $°=[5 5 5 1 1 1]T and using algorithm
5. p=15.

4. Conclusions

An integrated optimization programme called DISOPT is presented in
this paper. Many up to date algorithms and techniques have been incorporated
into one programme and made available to the user. Illustrative examples
have been included to demonstrate the efficiency of DISOPT and the various
options present.

An unfortunate characteristic of optimization is that no one technique is
best for all kinds of problems. Hence, it is advantageous to have a multi-
technique general programme. From the authors’ experience, algorithm 5
should be recommended only if a good optimistic estimate of the optimum
function value is available. Otherwise, the minimax approach to non-linear
programming should be used. If the starting point is not likely to lie in the
close vicinity of the optimum, a sequence of least pth optimizations should be
used to avoid poor scaling of the problem. However, if the starting point
happens to be very close to the optimum, the use of small values of p in the
initial optimizations will actually give worse estimates of the optimum.

The amount of programming effort required of the user has been reduced
to a minimum. A user is responsible only for

(1) supplying the values and/or proper dimensioning of the parameters in
the argument list ; and

(2) writing two service subroutines to define the objective function, the
constraints and their respective partial derivatives.

680 Continuous and discrete non-linear programming problems

DISOPT will, on exit, output the required solution or a message if a solution
does not exist. Since all the input data is entered through the argument of
DISOPT, the programme can be easily incorporated into other user-oriented
computer-aided design packages. The complete listing and documentation
are available (Chen 1974).

REFERENCES

BaxprLEr, J. W., 1974, J. Optimiz. Theory Applic., 14, 99.

BaxprLER, J. W., and CrHARALAMBOUS, C., 1972, I.E.E.E. Trans. microw. Theory
Tech., 20, 834 ; 1974, J. Optim. Theory Applic., 13, 607.

BANDLER, J. W., and Cuu, W. Y., 1974, Proc. Twelfth Allerton Conf. on Circuit and
System Theory, Urbana, Illinois.

BANDLER, J. W., and Liu, P. C., 1974, I.E.E.E. Trans. Circuits Systems, 21, 219.

CaarALAMBOUS, C., 1974 a, I.E.E.E. Trans. microw. Theory Tech., 22, 289 ; 1974 b,
Department of Combinatorics and Optimization, Research Report 74-2
(Waterloo, Canada : University of Waterloo).

CrArRALAMBOUS, C., and BANDLER, J. W., 1972, Internal Report (Hamilton, Canada :
Department of Electrical Engineering, McMaster University); 1973 a,
1.E.E.E. Trans. microw. Theory Tech., 21, 815; 1973 b, Internal Report in
Simulation, Optimization and Control, SOC-3 (Hamilton, Canada : McMaster
University).

Caen, J. H. K., 1974, Internal Report in Simulation, Optimization and Control,
SOC-29 (Hamilton, Canada : McMaster University).

Daxiwn, R. J., 1966, Computer J., 8, 250.

FrercuEr, R., 1970, Computer J., 13, 317 ; 1972, Report AERE-R7125 (Harwell,
Berkshire : Atomic Energy Research Establishment).

F1acco, A. V., and McCormick, G. P., 1968, Nonlinear Programming: Sequential
Unconstrained Minvmization Techniques (New York : Wiley).

Giry, P. E., and Murray, W., 1972, J. Inst. Maths. Applic., 9, 91.

Karariy, B. J., 1972, B.S.T.J., 50, 1225.

Kowarik, J., and OsBor~NE, M. R., 1968, Methods for Unconstrained Optimization
Problems (New York : Elsevier).

Loorsma, F. A., 1972, Numerical Methods for Nonlinear Optimization, edited by
F. A. Lootsma (New York : Academic Press).

Tana, H. A., 1971, Operations Research— An Introduction (New York : MacMillan).

