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spatial mode, we set

(24)

The algorithm stability condition follows immediately

from (24). In an inhomogeneous region of space, it is dif-

ficult to determine a spectrum of 1 analogous to (23) for

all possible lattice spatial modes. For absolute algorithm

stability, (7) suffices because it represents a “worst case”

choice of M.
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Worst Case Network Tolerance Optimization
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JAMES H. K. CHEN, STUDENT MEMBER, IEEE

Absfracf—The theory and its implementation in a new user-

oriented computer program package is described for solving con-

tinuous or discrete worst case tolerance assignment problems

simultaneously with the selection of the most favorable nominal

design. Basically, the tolerance problem is to ensure that a desi~

sub ject to specified tolerances will meet performance or other

specifications. Our approach, which is believed to be new to the

microwave design area, can solve a variety of tolerance and related

problems. Dakin’s tree search, a new quasi-Newton minimization

method, and least pth approximation are used. The program itself

is organized such that future additions and deletions of performance

specifications and constraints, and replacement of cost functions

and optimization methods are readily realized. Options and default

values are used to enhance flexibility. The full Fortrsn listing of the

program and documentation will be made available.
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I. INTRODUCTION

A NEW user-oriented computer program package called

TOLOPT (ToLerance omirnization) is presented which

can solve continuous or discrete worst case tolerance

assignment problems simultaneously with the selection of

the most favorable nominal design, taking full advantage

of the most recent developments in optimization practice.

Our approach, it is believed, is new to the microwave

design area. Previous design work has usually. been con-

centrated on obtaining a best nominal design, disregarding

the manufacturing tolerances and material uncertainties.

Basically, the tolerance assignment problem is to ensure

that a design, when fabricated, will meet performance or

other specifications.

The package is designed to handle the objective func-

tions, performance specifications, and parameter con-

straints in a unified manner such that any of the nominal

values or tolerances (relative or absolute) can be fixed or

varied automatically at the user’s discretion. Time-saving

techniques for choosing constraints (vertices selection)

are incorporated. The routine involved also checks assump-
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tions and performs worst case analyses. The paper also

contains a brief discussion of network symmetry and how

it may be implemented to further reduce the number of

constraints.

The continuous and (optional) discrete optimization

methods are programmed in such a way that they may be

used as a separate unit. This part, called DISOP2 and in-

corporating several optional features, is an updated version

of DISOPT, which has been applied successfully in many

different areas [1]–[3]. Dakin’s tree search for discrete

problems [4], efficient gradient minimization of functions

of many variables by a recent quasi-Newton method [5],

and the latest developments in least pth approximation

by Bandler and Charalambous [6]-[9] are employed.

Extrapolation is also featured [10].

Another practical problem which is analogous to the

tolerance assignment problem is to determine the optimum

component values to a certain number of significant figures,

which can be done with DISOP2.

The TOLOPT program is organized in such a way that

future additions and deletions of performance specifica-

tions and constraints, and replacement of cost functions

and optimization methods are readily realized. Any of the

two different vertices elimination schemes can be bypassed

or replaced by the user. It is felt that the program is par-

ticularly flexible in the way that the user may enter at any

stage of the problem’s solution. The user supplies the net-

work analysis subroutines. With an arbitrary initial accept-

able or unacceptable design as a starting point, the pro-

gram would output the set of nominal component param-

eters together with a set of optimal tolerances satisfying

all the specifications in the worst case sense. The user

decides on a continuous solution and/or discrete solutions.

The package, written in Fortran IV and run on a CDC

6400 digital computer, will be made available. Several

test examples are presented here to illustrate the theory

and practice of the approach.

II. THE TOLERANCE PROBLEM

Introduction [11]-[15]

A design consists of design data of the nominal design

point @ A [@l’Jl#zo “ “ “ &o]T and a set of associated toler-

ances 8 A [elcz s.. c~]T, where ii is the number of network

parameters. Let 10 A { 1,2,.. ” ,k) be the index set for

these parameters. We take the ith absolute tolerance as

e; In the discussion in this section; however, the discussion
applies also to the relative tolerance tiQ ei/@iOwithout

any conceptual difference. An outcome of a circuit is any

point ~ Q [414,””. ~k]T in the tolerance region R, A

{~ 10i” – ~~S di < @i” + ‘i, i ~ ~~1. The constra~t re-
gion R= is the region of points ~ such that all performance

specifications and constraints are satisfied by the circuit.

The worst case design requires that R, G R.. The optimal

worst case design can, therefore, be stated as: minimize

some cost function C subject to Rt G R..

We need the following assumptions on R. in order to

make the problem tractable.
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Assumptions on R.

1) R. is not empty.

2) R. is bounded and simply connected.

3) R. is at least one-dimensionally convex.

Assumption 1) guarantees there is at least one feasible

solution, and assumption 2) is a computational safeguard

against infinite parameter values.

We say that R. is one-dimensionally convex if for all

i E I@ [11]

~)~b[~) & ~ + ffuj ~ R. (1)

where a is some constant and uj is the jth unit vector,

implies that

($ = ~“ + x(($’w – ~“) ~R. (2)

forall O< A<l.

Let us also define the set of vertices R. Q { &,&,... ,&~ },

and the corresponding index set I., where

& Q +0 + Ep(r)

w(r) E { — 1,1 ) and satisfies the relation

‘= l+X(’L+1)2’-’
where E is a diagonal matrix with c~ as the

Under the foregoing assumptions

RVCR.*R,GRO.

(3)

(4)

ith element.

(5)

See [11] for the proof, and Fig. 1 for an illustration of the

concepts.

Assumptions on the Constraints

R. may be defined specifically by a set of constraint

functions, namely,

R. Q {~ \ gi(~) > O,i Cl.} (6)

where I. is the index set for the functions. Concave con-

straint functions or, more generally, quasi-concave f unc-

tions will satisfy assumption 3). The function g($)

(dropping the subscript i, i E 1.) is said to be quasi-

concave in a region if, for all ~,@ in the region,

9(W + ~(~’ – W)) > fin [9(4”),9($b)l (7)

for all O < k <1. An immediate consequence of (7) is

that a region defined as {~ I g(~) > 0) is convex [16].

The intersection of convex regions is also convex, and the

multidimensional convexity implies the one-dimensional

convexity of assumption 3).

If the point c$~in (7) is defined as in (1), then the

function g(~) satisfying (7) will be called a one-dimen-

sional quasi-concave function. The region defined by these
functions is one-dimensionally convex. Assumption 3) is

satisfied [17]. Throughout the following discussions, we

will assume the functions to have this 1ess restrictive

property.

Under the foregoing assumptions we have the nonlinear

programming problem: minimize C subject to gi (~) ~ O

for all & C R., i C 1..
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(a)

(b)

(c)

Fig. 1. Possible regions R.. (a) R. is a subset of R, implies that. Rt
is a subset of R.. (b) IL is a subset of R. implies that R~ is a sub-
set of R.. (c) R, is a subset of R. does not imply that Rt is a subset
of Rc.

Conditions for Monotonicitg

Given a differentiable one-dimensional quasi-concave

function g(4) (see, for example, Fig. 2), the function is

monotonic with respect to 4 on an interval [4”,4b] if

sgn (g’ (4”)) = sgn (g’ (4~) ). Furthermore, the minimum

of g(4) is at 4 = 3[4= + 4b — sgn (g’ (4”)) (4~ — 4“) ].

This may be proved as follows.

Consider the case sgn (g’ (@a)) = sgn (g’ (4’)) >0.

Suppose g(4) is not monotonic. Then there exist two

points 41,42 E (4a,4~) ,42>41 such that g’ (41) <0 and

g(42) > g(41). Thus g(dl + X(42 – 41)) for some O <
A <1 is smaller than g (41), which contradicts (7). The

assumption that g(4) is not monotonic is wrong, hence

g(4) is monotonic. Furthermore, it is nondecreasing on
[4a,4b]. The minimum is at 4“.

Similarly, it maybe proved that the case sgn (g’ (~)) =

sgn (g’(&)) <0 implies monotonicity with g(4) non-

increasing on [4a,4b]. The minimum is at 4b.

Implications of Monotonicity

Suppose g, is monotonic in the same direction with

respect to 4j throughout Rt. Then the minimum of g{ is on

the hyperplane 4j = 4~0 – e, sgn (agJd4J. Hence only

those vertices which lie on that hyperplane need to be

constrained. In general, if there are 1variables with respect

to which the function g~ is monotonic in this way, the

2k–Z vertices lying on the intersection of the hyperplanes

are constrained. In the case where 1 = k, the vertex of

minimum g occurs at + where

Fig. 2. A onAimensional qussi-concave function.

()6’ = 4j0 – Cj sgn 3’ for all j e 14.
c?4j

(8)

Let the set that contains the critical vertices be denoted

by R,’(i) G R.. The modified problem is: minimize C

subject to gi (@) 20, for all # ~ R.’(i), i G l..

The Vertices Elimination Schemes

Various schemes may be developed to identify or to

predict the most critical vertices that are likely to give

rise to active constraints. Our proposed schemes will

eliminate all but one vertex for each constraint function

in the most favorable conditions. In this case, the subse-

quent computational effort for the optimization procedure

is comparable to the linearization technique commonly

used. When monotonicit y assumptions are not sufficient

to describe the function behavior, our scheme will increase

the number of vertices until, at worst, all the 2k vertices

are included.

In principle, our schemes maybe stated as follows:

Step 1) systematic generation, for positive a, of sets of

points

h’tep 2) evaluation of the function values and the par-

tial derivatives at these points.

Step 3) If

eliminate the vertices @ E R. on the hyperplane

If

‘gn(%l,=,)‘0and‘gn(%j,+b,i)>o

note that the quasi-concavity assumption is violated.

Comments

1) We have investigated and implemented two methods

for step 1), involving: a) ~ = ~“ – ~ju~ and ~b = @ +

~ju~) for all j ~ I+; b) all the vertices of Rt. A special case
which we do not consider in this paper is for ~ = @ in



BANDLER d d :NETWORK TOLERANCE OPTIMIZATION

step 1~, in which case the first part of step 3) is applicable.

R.’ (i) contains only one vertex.

2) It is possible to further eliminate some vertices by

considering the relative magnitudes of g~(&).

3) For method b), a worst case check can be accom-

plished as a by-product of the vertices elimination scheme

since function values are computed at each vertex.
4) The schemes are based on local information. R:

should be updzted at suitable intervals.

Symmetry

A circuit designer should exploit symmetry to reduce

computation time. The following is an example of how it

may be done in the tolerance problem.

A function is said to be symmetrical with respect to S

in a region if

g(s+) = g(+) (9)

where S is a matrix obtained by interchanging suitable

rows of a unit matrix [18]. It has exactly one entry of 1

in each row and in each column, all other entries being O.

A common physical symmetry configuration is a mirror-

image symmetry with respect to a center line. The S

matrix in this case is

s=

o “ 1-

1
.

1
..

1 0,

(10)

Postmuhiplication of a matrix A by any S simply

permutes the columns of A, and premultiplication of A

permutes the rows of A. SST = 1, and STDS = D., where

D is a diagonal matrix and D. is also a diagonal matrix

with diagonal entries permuted.

Consider symmetrical S, ~“, and a By this we imply

S(SA) = A (11)

S(p = +0 (12)

and

STEfJ = E. (13)

Let us premultiply the rth vertex from (3) by S, giving

S@ = S~O +S(EIJ,(r)), r ~Io

== $0+ S(STESp(r) )

= c$” + ESp(r). (14)

Now SK(T) is another vector with +1 and – 1 entries.

Let it be denoted by p(s), s { 10. In some cases p(r) is

identical to p,(s) if the vector is symmetrical. In other

cases p,(r) # p(s). In all cases

s@ = *. (15)

Making use of the symmetrical property of g
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g(s~) = g(~) = g(@). (16)

Let the number of symmetrical vectors p,(r) and the

number of pairs of nonsymmetrical p.(r) and p,(s) be

denoted by N (r = s) and N (r # s), respectively. Then

N (r = S) = 2~–%, 2ks < k (17)

and

N(T # S) = (2’ – 2~-~a)/2, 2ii. < k (18)

where k. is the number of pairs of symmetrical components.

Therefore, there are N(? = s) + N (r # s) effective

vertices as compared to 2~ topological vertices. Take, for

example, k = 6 and k. = 3; only 36 function evaluations

are required for all the 64 vertices.

The above discussion and results may be u~ed to reduce

computation time, However, in general, it i~~not certain

that a nominal design without tolerances yielding a sym-

metrical solution will imply a symmetrical cllptimal solu-

tion with tolerances either in the continuous or in the

discrete cases.

III. OPTIMIZATION METHODS

Nonlinear Programming Problem

After eliminating the inactive vertices and constraints

as discussed in Section II, the tolerance problcrn takes the

form

minimize j ~j(x) (19)

subject to

gi (x) >0, i= 1,2,. ..,m (20)

where j is the chosen objective function (see Section IV).

The vector x represents a set of up to 2k design variables

which include the nominal values, and the relative and/or

absolute tolerances of the network components. The con-

straint functions gl (x) ,gz(x),. . . ,g~ (x) comprise the

selected response specifications, component lbounds, and

any other constraints. The constraints are renumbered

from 1 to m for simplicity.

Constraint Transformation

Recently, Bandler and Charalambous have proposed a

minimax approach [8] to transform a nonlinear program-

ming problem into an unconstrained objective. The method

involves minimizing the function

V(x,a) = max [j(x) ,.f(x) – ag; (x) ] whel~e a >0.
l<i~m

(21)

A sufficiently large value of a must be chosen to satisfy

the inequality

:5U,<1 (22)
a >~

where the U,’S are the Kuhn-Tucker multipliers at the

optimum. This approach compares favorably with the

well-regarded Fiacco–McCormick technique [19].
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Several least pth optimization algorithms are available

for solving the resulting minimax problem. The function

to be minimized is computed in the present paper as

u(x) + (M(x) –

where

M(x) e max ej(x)
jtJ

{

O for M(x) # O
e+

small positive number for M(x) = O

qepsgn (M(%) – e)

p>l

and if

I

>O,J+- {j/ dx) > 0}

M(x)

<o,J+{l,2, ”””,m+ l].

The definition of the ej, the appropriate value(s) of p, and

the-convergence features of the algorithms are summarized

in Table I (algorithms 1-4).

Another approach to nonlinear programming which

utilizes a least pth objective is also detailed in Table I
(algorithm 5). It is a modification of an existing non-

parametric exterior-point algorithm described by Lootsma

[20].

Existence of a Feasible Solution

The existence of a feasible solution can be detected by

minimizing (23) when

I

– 9j, j = 1,’,. ..,m

t?j +

f–i j=m+l

where ~ is an upper bound on f. A nonpositive value of M

at the minimum, or even before the minimum is reached

indicates that a feasible solution exists. Otherwise, no

feasible solution satisfying the current set of constraints

and the upper bound on the objective function value is

perceivable. Only one single optimization with a small

value of p greater than unity is required.

Unconstrained Minimization Method

Gradient unconstrained minimization methods have

become very popular because of their reported efikiency.

TABLE I
THE OPTIONALLEASTpTH ALGORITHMS

Algorithm Definition of Convergence Value (s) of Number of
ei feature P optimization

1

I

f -agi, i=l,2, . . ..me i+ Large 1
f, i = m+l

2 where Increment Increasing Implied by
a>o of p the sequence

3
but superseded

Extrapolation Geometrically by the
increasing stopping

quantity

4

I
f -agi-Cr, i=l,2, ,.., m Depend on

ei+ Updating of Finite
the stopping
quantity

f - gr, i = m+l
5=

where
~>o

I

min[O,MO + Y], r-l
G* +

ti-l+y, r>l

r indicates the optimization
number

y is a small positive quantity

5

[

-gi, i=l,2,. ..,m U@ating of
ei + tr

f - t=, i = m+l

where

{

optimistic estimate of f, r = 1
t= +

~r- 1+ J-1
,r>l

r is defined as in 4
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One such program is the Fortran subroutine, which utilizes

first derivatives, implemented by Fletcher [5]. The

method used belongs to the class of quasi-Newton methods.

The direction of search sj at the jth iteration is calculated

by solving the set of equations

B~s~ = – v u(x~) (24)

where B~ is an approximation to the Hessian matrix G of

U, VU is the gradient vector, and x~ is the estimate of the

solution at the jth iteration.

As proposed by Gill and Murray [21], the matrix Bj is

factorized as

Bi = L~DjL#’ (25)

where L is a lower unit triangular matrix and D is a

diagonal matrix. It is important that Bj must always be

kept positive definite, and with the above factorization,

it is easy to guarantee this by ensuring dii > 0 for all i.

A modification of the earlier switching strategy of

Fletcher r221 is used to determine the choice of the cor-

rection fo~m~la for the approximate Hessian matrix. The

Davidon-Fletcher-Powe~ ‘(DFP) formula is used if

5TLDLTti < tiT(v U(XJ+l) – v U(xi) )

where
~ = x~+l _ xi.

Otherwise, the complementary DFP formula is used.

The minimization will be terminated when ] wfil –

is less than a prescribed small quantity for all i.

Discrete Optimization

In practical design, a discrete solution may be more

realistic than a continuous solution. In network tolerance-

optimization problems, very often only components of

certain discrete values, or having certain discrete toler-

ances are available on the market. At present, a general

strategy for solving a nonlinear discrete programing

problem is the tree-search algorithm due to Dal& [4].

Dakin’s integer tree-search algorithm first finds a solu-

tion to the continuous problem. If this solution happens

to be integral, the integer problem is solved. If it is not,

then at least one of the integer variables, e.g., xi, is non-

integral and assumes a value zi*, say, in this solution. The

range

[Z,*] < z, < [Zt”] + 1

where [w*] is the largest integer value included in zi*, is

inadmissible, and consequently we may divide all solutions

to the given problem into two nonoverlapping groups,

namely, 1) solutions in which

xi < [xi*]

2) solutions in which

xi 2 [w*] + 1.

Each of the constraints is added to the continuous problem

sequentially, and the corresponding augmented problems
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are solved. The procedure is repeated for each of the two

solutions so obtained. Each resulting nonlinear program-

ming problem thus constitutes a node, and from each node

two branches may emanate. Anode will be fathomed fi the

following happen: 1) the solution is integral; ‘2) no feasible

solution for the current set of constraints is achievable;

3) the current optimum solution is worse than the best

integer solution obtained so far. The search stops when

all the nodes are fathomed.

It seems, then, that the most efficient way of searching

would be to branch, at each stage, from the node with the

lowest f(x) value. This would minimize the searching of

unlikely subtrees. To do this, all information about a node

has to be retained for comparison; this may require cum-

bersome housekeeping and excessive storage for computer

implementation. One way of compromising is to search

the tree in an orderly manner; each branch is followed

until it is fathomed.

The tree is not, in general, unique for a given problem.

The tree structure depends on the order of partitioning

on the integer variables used. The amount of computation

may be vastly cliff ~rent for cliff erent trees.

For the case of discrete programming problems subject

to uniform quantization step sizes, the Dakin algorithm

is modified as follows: let xi be the discrete variable which

assumes a nondiscrete solution xi*; and let qi be the

corresponding quantization step; then the two variable

constraints added sequentially after each node become

% 2 [xi*/qa]qi + q%

and

xi 5 [X%*/qi]qt.

The integer problem is thus a special case of the discrete

problem with qi = 1, i = 1,2,.0” ,n, where n iIs the number

of discrete variables.

If, however, a finite set of discrete values given by

D; = {dil)d~z, .- _,dij)di(j+l), _ s “ ,~iu ) ,
~ =: l,z,. ..,n

is imposed upon each of the discrete variables, the variable

constraints are then added according to the following

rules.

1) If

di~ < X$* < di(j+l)

then add the two constraints

xi ~ dij

and

xi ~ di(j+l)

sequentially.
2) If ~

xi* < dil

only add the constraint

xi ~ dil.
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only add the constraint

The resulting nonlinear programming problem at each

node is solved by one of the algorithms described earlier.

The feasibility check is particularly useful here since the

additional variable constraints may conflict with the

,original constraints on the continuous problem. An upper

bound ~, on ~(x), if not specified, may be taken as the

current best discrete solution. For a discrete problem, the

best solution among all the discrete solutions given by
letting variables assume combinations of the nearest

upper and lower discrete values (if they exist ) may be

taken as the initial upper bound on f(x).

The new variable constraint added at each node excludes

the preceding optimum point from the current solution

space and the constraint is therefore active if the function

is locally unimodal. Thus the value of the variable under

the new constraint may be optionally fixed on the con-

straint boundary during the next optimization. See Fig. 3

for illustrations of the search procedure and a tree struc-

ture.

x“

—
I 1/

d26

’25

’24

‘f22

’23

d2 I
I 1/ I I ~.~

~II 42 ‘+3 $4

(a)

cmtmuo.s
SOlutlon

9/’?2/
d2

‘1:d12

no feasible
.9 J1”’CLO”

b3

‘1~d13

upper bound
exceeded

%ptm.1 d.screte upper bound
solution exceeded

(b)

Fig. 3. An illustration of the search for discrete solutions. (a) Con-
tours of a function of two variables with grid and intermediate
solutions. (b) The tree structure.

IV. IMPLEMENTATION OF THE

TOLERANCE PROBLEM

The Overall Structure of TOLOPT

Fig. 4 displays a block diagram of the principal sub-

programs comprising the TOLOPT program. A brief descrip-

tion of these subprograms is given in this section.

TOLOPT is’ the subroutine called by the user. It organizes

input data and coordinates other subprograms. Subroutine

DISOP2 is a general program for continuous and discrete

nonlinear programming problems. Subroutine VERTST

eliminates the inactive vertices of the tolerance region.

Subroutine CONSTRsets up the constraint functions based

on the response specifications, component bounds, and

other constraints supplied in the user subroutine USERCN.

Subroutine cosTm computes the cost function. The user

has the option of supplying his own subroutine to define

other cost functions. The user-supplied subroutine NETWRK

returns the network responses and the partial derivatives.

Table II is a summary of the features and options cur-

rently incorporated in TOLOPT.

Some components of e and ~“ may be fixed which do not

enter into the optimization parameters x. The user supplies

the initial values of the tolerances (relative or absolute)

and the nominals with an appropriate vector to indicate

whether they are fixed or variable, relative or absolute.

The program will assign those variable components to

vector x.

The Objective Function

The objective function we have investigated and im-

plemented is [11]-[13]

C=x:i (26)
~ xi

where x; is either ei or ti,and the ci are some suitable

weighting factors supplied by the user. The default value

is one. To avoid negative tolerances we let x, = xi’2, where

x~’ is taken as a new variable replacing xi.

Vertices Selection and Constraints

Two schemes of increasing complexity are programmed

in the subroutine. The user decides on the maximum

allowable calls for each scheme, starting with the simple

one. He may, if he wishes, bypass either one or even bypass

/

TOLOPT CONSTR

Fig. 4. The overall structure of TOLOPT. The user is responsible for
NETWRK and USERCN.
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TABLE II

SUMMARY or FEATURES, OPTIONS, PARAMETERS, AND SUBROUTINES REQUIRJiID

Features Type Opt ions Paramet ers+/subrout ines

Design parameters Nominal and tolerance Variable or fixed Nuuber of parameters
Relative or absolute Start ing values
tolerances Indication for fixed or variable

parameters and relative or absolute
tolerances

Objective cost Reciprocal of Weigkt ing factors
function relative and/or absol-

ute tolerances

Other Subroutine to define the objective
function and its partial derivatives

Vertices Gradient direction Maximum allowable number of calls
select iOn* strategy of the vertices selection subroutine

Constraints Specifications on Upper and/or lower Sample points (e. g., frequency)
functions of Specif icat ions
network parameters Subroutine to calculate, for example,

the network response and its partial
derivatives (NE’TWRK)

Network parameter Upper and lower bounds
bounds

Other constraints As many as required Subroutine to define the constraint
functions and their partial de-
rivatives (uSERCN)

Nonlinear Bandler-Charalambous Least pth optimi zat Ion Controll Ing parameter a
programming minimax algorithms Value(s) of p

See Table I Test quantities for termination

Exterior-point Optimistic estimate of objective
function
Value of p

Solution feasibility Least pth Discrete problem
check*

Constraint violation tolerance
Continuous and discrete value of p
problem

Unconstrained Quasi-Newton Gradient checking at Number of function evaluations

minimization starting point by
method

allowed
numerical perturbation Estimate of lower bound cm least pth

ob3ective
Test quantities for termination

Discrete Dakin tree-search Reduction of dimen-
optimizat i On* sionality

User supplied or program
determined initial upper
bound on objective func -
t ion
Single or multiple
optimum discrete solu-
tion
Unxform or nonuniform
quantization step sizes

Upper bound on objective function
Maximum permissible number of nodes
Discrete values on step sizes
Number of discrete variables
Discrete value tolerance
Order of partitioning
Indication for discrete variables

t Parameters associated with the options are not explicitly listed.
* These features are optional and may be bypassed.

the whole routine by supplying his own vertices, or setup specification and the other with a lower specification. The

his own strategy of vertices selection routine. theory presented earlier will apply in this case under the

The user supplies three sets of numbers, the elements of monotonicit y restrictions.

which correspond to the controlling parameter 40 the The scheme will, for each i, select a set of appropriate

specification S~, and the weighting factor wi. +~ is an inde- ~. Corresponding to each p., the values ~;, fii, and wi are

pendent parameter, e.g., frequency, or any number to stored. This information is outputted and used for forming

identify a particular function. Wi is given by the constraint functions.

1

+1 if Sj is an upper specification
The constraints associated with response specifications

w,’ =
are of the form

“1 – 1 if Si is a lower specification. g=w(S– F)z O (27)

If both upper and lower specifications are assigned to one with appropriate subscripts, where F is the cilrcuit response

point, the user can treat it as two points, one with an upper function of 4 and t, and w and S are as before.
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The parameter constraints are

4~0–~j–4~~~0 (28)

and

&j-~jO-Cj~O (29)

where 4Uj and ~ Zj, j E I@ are the user-supplied upper and

lower bounds.

Updating Procedure

Once the constraints have been selected, optimization

is started with a small value of p and a (p = a = 10 as

default values). We have decided to call the routine for

updating constraints whenever the a value is updated or

the optimization with the initial value of p is completed,

until the maximum number of calls is exceeded, or when

there is no change of values for consecutive calls. For up-

dating the values, we add new values of p. to the existing

ones without any eliminations. This may not be the most

efficient way, but it will be stable.

Example 1

To illustrate the

V. EXAMPLES

basic ideas of different cost functions,

variable nominal point, and continuous and discrete solu-

tions, a two-section 10:1 quarter-wave transformer is

considered [23]. Table III shows the specifications of the

design and the result of a minimax solution without toler-

ances. Fig. 5 shows the contours of maxi I p; I over the

range of sample points. The region R. satkfies all the

assumptions. Two cost functions, namely, Cl = l/tz, +

l/tz, and Cz = l/ez, + l/ez, are optimized for the con-

tinuous case. The optimal solution with a fixed nominal

point at a yields a continuous tolerance set of 8.3 percent

and 7.7 percent for Cl. Foi the same function with a

variable nominal point, the set is { 12.8,12.8) percent with

nominal solution at b. The tolerance set for C2 is { 15.0,9.1}

percent with nominal solution at c. d and e correspond to

the two discrete solutions with tolerance 10 percent and

15 percent. This example depicts an important fact that

an optimal discrete solution cannot always be obtained

by rounding or truncating the continuous tolerances to

the discrete values. The nominal points must be allowed

to move.

Example 2

To illustrate the branch and bound strategy, a 3-com-

ponent LC low-pass filter is studied [12]. The circuit is

shown in Fig. 6. Table IV sumarizes the specifications

and Table V lists the results for both the continuous and

the discrete solutions. Two different tree structures are

shown in Figs. 7 and 8. This example illustrates that the

tree structure, and hence the computational effort, is
dependent upon the order of partitioning on the discrete

variables. An asterisk attached to the node denotes an

optimum discrete solution. It maybe noted that one of the

discrete solutions, as well as the continuous solution. –,

TABLE III

TWO-SECTION 10:1 QUARTER-WAVE TRANSFORMER

Relative Sample Reflection Coefficient Type
Bandwidth Points Specification

(GHz)

100% 0.5, 0.6, . . . . 1.5 0.55 upper

Minim solution (no tolerances) IPI = 0,4286

I i 3
z,

Fig. 5. Contours of max I pi I with respect to Z, and ZZ for example
1 indicating a number of relevant solution points (see text).

‘u’
Fig. 6. The circuit for example 2.

yields symmetrical results, although symmetry is not

assumed in the formulation of the problem.

Example 3

Consider a five-section cascaded transmission-line low-

pass filter with characteristic impedances

values

210 = 230 = 250 = 0.2

2,0 = 240 = 5.0

fixed at the

and terminated in unity resistances [1], [6]. See Table

VI for the specifications. The length units are normalized

with respect to lq = c/4f0, where jO = 1 GHz. Two prob-

lems are presented here.

1) A uniform l-percent relative tolerance is allowed for

each impedance. Maximize the absolute tolerances on the
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TABLE IV
LC LOW-PAW FILTER

Frequency Sample insertion Loss Type
Rauge Points Specification

(r~dls) (radfs) (dB)

o-1 0.S, 0.55,0.6, 1.0 1.s upper (passband)

2,5 2.5 25 l~wer (stopband)

Minimax solution (no tolerances)

passband 0.53 dB
stopband 26 dB

TABLE V

LC LOW-PASS FILTER TOLERANCE OPTIMIZATION (CJ

Parameters Cent inuous Solution Discrete Solution
Fixed Nominal Variable Nominal From {1,2, S,10,15)%

1 2 3

X2 = 5.5 %
t L1

9.9 % 5% 10 % 10 %

xl .
tc

3.2 % 7.6 % 10 % 5% lo %

‘3 = tL 3.5 % 9.9 $ 1(I % 10 % 5%
2

‘5 = L; 1.628 1.999

~.
4 co 1.090 0.906

~=o
6 Lz

1.628 1.999

n0

m23* 24

’1510 ‘I?ls

Fig. 7. Tree structure for example 2, partitioning on xl first (see
Table V). &teri8k denotes optimal discrete solutions.

section lengths and find the corresponding nominal lengths.
Let the cost function be

51

2) A uniform length tolerance of 0.001 is given. Maxi-

mize the relative tolerances on the impedances and obtain

the corresponding nominal lengths. Let the cost function be

n0

cm17 18

‘1: 2 ’12 s

Fig. 8. Tree structure for example 2, partitioning on *3 first (see
Table V). Asterisk denotes optimal discrel e solutions.

The filter has 10 circuit parameters which may be

arranged in the order .%,ZZ, ”” ● ,Z&ZZ,” o“ ,1s To simplify

the problem, symmetry with respect to a center line
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TABLE VI

FIVE-SECTION TRANSMISSION-LINE LOW-PASS FILTER

Frequency Sample Insertion Loss
Range Points

Type
Specification

(GHz) (GHz) (dB)

o-1 .35,,4, ,45,.75,.8,.85,1.0 .02 upper (passband)

2.5 - 10 2.5, 10 25 lower (stopband)

through the circuit is assumed. The matrix S is given by

s=

1 c

1

1’

1

1

1

1

1

1

L o 1

which also implies that 11°= lsO, and 12°= 11O.The same

kind of equalities is applied to the tolerances.

The first vertices elimination scheme is applied with

values at the optimal nominal values without tolerances,

and the relative impedance tolerance and the absolute

length tolerances at 2 percent and 0.002, respectively. A

total of 46 vertices corresponding to all the frequency

points were selected from a possible set of 9 X 210.Fourteen

were further eliminated by symmetry. A final total of 15

constraints were chosen after comparing relative magni-

tudes. These 15 constraints were used throughout the

optimization. The continuous and discrete solutions

two problems are shown in Tables VII and VIII.

VI. DISCUSSION AND CONCLUSIONS

to the

We have described an efficient user-oriented program

for circuit design with worst case tolerance considerations

embodying a number of new ideas and recent algorithms.

The automated scheme could start from an arbitrary

initial acceptable or unacceptable design to obtain con-

tinuous and/or discrete optimal nominal parameter values

and tolerances simtitaneously. However, optimization of

the nominal values without tolerances should preferably

be done first to obtain a suitable starting point. The effort
is small compared with the complete tolerance problem

when a small value of p greater than unity, e.g., p = 2, is

TABLE VII
FIVE-SECTIONTRANSMLSSION-LINELOW-PASSFILTER TOLERANCE

OPTIMIZATION(C,)

Discrete Solution
Parameters CentinuousSolution From (.5, 1, 1.5, 2, 3, 5}%

tz=t 3.56 % 3%
1 25

t= = tz 2.27 % 2%
24

tz3
1.98 % 2%

to . to
15

0.0786

t; = %; 0.1415

to
3

0.1736

z; = z; = z: = 0.2, Z;=z:=s

bi
= 0.001, i = 1,2, ..., 5

TABLE VIII

FIVE-SECTION TRANSMISSION-LINE LOW-PASS FILTER TOLERANCE

OPTIMIZATION (c,)

Discrete Solution
Parameters COnt inuous Solution .0005 Step Size

~il = ~B5 0.0033 0.0030

h2 = E84
0.0028 0.0030

b3
0.0027 0.0025

?-; . 9?
5 0.07S8

.$ . lo
4 0.1414

~ 0.1738

Z;= Z;= Z;= 0.2, Z;= Z;=5

tzi
= 1%, i=l,2, ...,5

used. An exact minimax solution is not needed. This also

serves as a feasibility check. If Rc is indicated to be empty,

the designer has to relax some specifications or change his

circuit. The solution process may also provide valuable

information to the designer, e.g., parameter or frequency

symmetry.

The problem without tolerances may be solved easily

by available programs such as cmoPT [24]. The user may

alternatively utilize the optimization part, namely DISOP2,

of the present package.

It is good practice first to obtain a continuous solution

before attempting the discrete problem. A useful feature

of the program is that, for example, depending on informa-

tion obtained from prior runs, the user can reenter at a

number of different stages of the solution process.

The assumptions on the constraints may be difficult to
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test. For this reason, a Monte Carlo simulation of the

final solution is usually carried out.

We have presented results for two basic types of cost

function. A more realistic cost-tolerance model shoqld be

established from known component cost data, if these are

unsuitable in particular cases,

The complete Fortran listing and documentation for

TOLOPT will be made available [25]. It is very important

that the user-provided routine for network function com-

putation and the respective sensitivities be efficient. Typi-

cal running time for a small and medium size problem (less

than 10 network parameters or 20 optimization param-

eters) will be from 2 to 20 min. The execution time on a

CDC 6400, taking the LC low-pass filter as an example,

was less than 10 s for the continuous case, and a total of

80-100 s for the entire problem, depending on the order

of partitioning. The five-section transmission-line example

needed about 300-400s.
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